
The Wild West of post-POSIX IO

Anil Madhavapeddy, University of Cambridge
with many thanks to Thomas Leonard, Patrick Ferris, Sadiq Jaffer, Ryan Gibb,

David Allsopp, KC Sivaramakrishnan, Thomas Gazagnaire, Christiano Haesbart,
Stephen Dolan and lots of help from others in the OCaml and Linux community 

VMIL Keynote, 15th October 2025

at ICFP/SPLASH, Singapore

OCaml in 1996:

OCaml in 2004:

Single core

SMP (2-4 sockets)

Spinning harddrives
Unix mattered

Harddrives -> SSDs
Linux / Windows dominate

Xen hypervisor stack
(~2004-present)
Unix+threads

Are IO libraries still really a research topic??

OCaml in 1996:

OCaml in 2004:

Single core

SMP (2-4 sockets)

Spinning harddrives
Unix mattered

Harddrives -> SSDs
Linux / Windows dominate

Xen hypervisor stack
(~2004-present)
Unix+threads

Docker
(~2015-present)

MirageOS+virtualisation

Are IO libraries still really a research topic??

OCaml in 1996:

OCaml in 2004:

OCaml in 2023:

Single core

SMP (2-4 sockets)

Spinning harddrives
Unix mattered

Harddrives -> SSDs
Linux / Windows dominate

Many core (128+ cores)
NVMe / flash
Linux / Windows / macOS / JavaScript / wasm / unikernel
Enclaves for encrypted memory
GPGPU/FPGAs everywhere

Xen hypervisor stack
(~2004-present)
Unix+threads

Docker
(~2015-present)

MirageOS+virtualisation

Planetary computing
(~2022-present)

Heterogenous hardware
+ browser interfaces

Are IO libraries still really a research topic??

OCaml in 1996:

OCaml in 2004:

OCaml in 2023:

Single core

SMP (2-4 sockets)

Spinning harddrives
Unix mattered

Harddrives -> SSDs
Linux / Windows dominate

Many core (128+ cores)
NVMe / flash
Linux / Windows / macOS / JavaScript / wasm / unikernel
Enclaves for encrypted memory
GPGPU/FPGAs everywhere

Are IO libraries still really a research topic??

POSIX must have

POSIX must try

POSIX is an illusion

Deploying software
on modern hardware
uses shared memory
parallelism all over

What are some of
these post-POSIX

interfaces and do they
share anything in

common?

We're having a go at
supporting this in

OCaml 5 with our Eio
library using the new

effect handlers feature

Kernel

Processes

Apps

Hardware

runtime

You are
here

Kernel

Processes

Apps

An OS kernel drives
the hardware and

builds software
services over it

Kernel implements
services such as

storage / networking

drivers

isolation

services

scheduling

It schedules multiple
userspace processes
that are isolated from
each other, but share

kernel resources

Hardware

runtime

Kernel

Processes

Apps

interrupts

memory

cpus

Hardware has
become diverse, with
thousands of device
drivers in a kernel

Multicore processors
and NUMA memory

also make those
resources complex

Ring buffers are
mapped into kernel
memory or via DMA

drivers

isolation

services

scheduling

Hardware

runtime source: dtrace book

https://myaut.github.io/dtrace-stap-book/

Kernel

Processes

Apps

interrupts

memory

cpus

Hardware has
become diverse, with
thousands of device
drivers in a kernel

Multicore processors
and NUMA memory

also make those
resources complex

Ring buffers are
mapped into kernel
memory or via DMA

drivers

isolation

services

scheduling

Hardware

runtime source: dtrace book

https://myaut.github.io/dtrace-stap-book/

Kernel

Processes

Apps

Hardware

Kernel runs
processes at lower
privilege level with

own address spaces

Interface from
process to kernel is

typically via a syscall
or ioctl interface

syscalls

ioctls

interrupts

memory

cpus

drivers

isolation

services

scheduling

Hardware

runtime

Syscalls also force a
context switch since
they switch privilege
levels into the kernel

Kernel

Processes

Apps

Hardware

Kernel runs
processes at lower
privilege level with

own address spaces

Interface from
process to kernel is

typically via a syscall
or ioctl interface

syscalls

ioctls

interrupts

memory

cpus

drivers

isolation

services

scheduling

Hardware

runtime

Syscalls also force a
context switch since
they switch privilege
levels into the kernel

Kernel

Processes

Apps

System libraries like
libc often abstract the

low-level syscalls
with a C interface

Standards like
POSIX define

function calls that try
to be portable across

operating systems

syscalls

ioctls

interrupts

memory

cpus

drivers

isolation

services

scheduling

libc

Applications link with
system libraries and
runtimes (VMIL!) and
call them to interface

with outside world

Hardware

runtime

Kernel

Processes

Apps

Hardware

Kernel schedules all
the processes to try
to make best use of

the hardware

But the scheduling is
difficult without some
cooperation from the

application logic

syscalls

ioctls

interrupts

memory

cpus

drivers

isolation

services

scheduling

libc

Utilising all of the
hardware from a

language runtime is
quite tough! But it

gets tougher...

Hardware

runtime

Kernel

Processes

Apps

drivers

isolation

services

scheduling

interrupts

memory

cpus

syscalls

ioctls

libc

Hypervisor

Multiplex abstraction
of physical computer

Carve up resources
so poorly utilised

physical computers
are consolidated

2003: Xen hypervisor
1.0 was released. 

2018: tens of billions
of virtual machines
are “in the cloud” 

 
2025: hypervisors
run everywhere

Hardware

runtime

Kernel

Processes

Apps

drivers

isolation

services

scheduling

interrupts

memory

cpus

syscalls

ioctls

libc

Hypervisor

The hardware
resources are given
virtual equivalents

The kernel is patched
to use new software
interfaces, or CPU

virtualisation is setup

Hardware

runtime

Kernel

Processes

Apps

drivers

isolation

services

scheduling

interrupts

memory

cpus

syscalls

ioctls

libc

Hypervisor

The hardware
resources are given
virtual equivalents

Hardware

runtime

Kernel

Processes

Apps

drivers

isolation

services

scheduling

interrupts

memory

cpus

syscalls

ioctls

libc

Hypervisor

The hardware
resources are given
virtual equivalents

Hardware

runtime

Kernel

Processes

Apps

drivers

isolation

services

scheduling

interrupts

memory

cpus

syscalls

ioctls

libc

Hypervisor

The hypervisor starts
fighting the kernel for
scheduling resources

Since multiple guest
kernels can run, each

thinks it owns the
underlying hardware

Multiplexed
scheduling is

considered harmful

Userspace schedules
some resources too

Hardware

runtime

Hypervisor

Kernel

Processes

Apps

drivers

isolation

services

scheduling

interrupts

memory

cpus

syscalls

ioctls

libc

VMs cannot share
kernel resources and

so can be isolated

Linux introduces
process namespaces
to virtualise syscalls

Container

Hardware

namespace

A container is a
process set and

filesystem isolated
but sharing kernel

runtime

Hypervisor

Kernel

Processes

Apps

drivers

isolation

services

scheduling

interrupts

memory

cpus

syscalls

ioctls

libc

VMs cannot share
kernel resources and

so can be isolated

Linux introduces
process namespaces
to virtualise syscalls

Container

Hardware

namespace

A container is a
process set and

filesystem isolated
but sharing kernel

runtime

Shared Linux kernel

Hypervisor

Kernel

Processes

Apps

drivers

isolation

services

scheduling

interrupts

memory

cpus

syscalls

ioctls

libc

Container

Hardware

namespace

runtime

Hypervisor

Kernel

Processes

Apps

drivers

isolation

services

scheduling

interrupts

memory

cpus

syscalls

ioctls

libc

Container

Hardware

namespace

runtime

SHARED MEMORY RING

SHARED MEMORY RING

SHARED MEMORY RING

Hypervisor

Kernel

Processes

Apps

drivers

isolation

services

scheduling

interrupts

memory

cpus

syscalls

ioctls

libc

Container

Hardware

namespace

runtime

SHARED MEMORY RING

SHARED MEMORY RING

SHARED MEMORY RING

NOT SHARED MEMORY RING

Hypervisor

Kernel

Processes

Apps

drivers

isolation

services

scheduling

interrupts

memory

cpus

syscalls

ioctls

libc

Container

Hardware

namespace

runtime

Deploying software
on modern hardware
uses shared memory
parallelism all over

What are some of
these post-POSIX

interfaces and do they
share anything in

common?

We're having a go at
supporting this in

OCaml 5 with our Eio
library using the new

effect handlers feature

Hypervisor

Kernel

Processes

Apps

drivers

isolation

services

scheduling

interrupts

memory

cpus

syscalls

ioctls

libc

Container

Hardware

namespace

runtime

Deploying software on
modern infrastructure
needs shared memory
parallelism everywhere

What are some of
these post-POSIX

interfaces and do they
share anything in

common?

We're having a go at
supporting this in

OCaml 5 with our Eio
library using the new

effect handlers feature

image credit: https://developers.mattermost.com/blog/hands-on-iouring-go/

“POSIX” Synchronous,
Async via threads

Includes a context
switch from user

to the kernel

image credit: https://developers.mattermost.com/blog/hands-on-iouring-go/

[pid 1189143] pread64(4,
"\332-5\370`\306\223\323\374\16\326\212GD#\271Dh\325\341\362:\3234\373\314\334Ql`\374\360"...,
32768, 2064384) = 32768
[pid 1189143] futex(0x55572e6d4f48, FUTEX_WAIT_BITSET_PRIVATE|FUTEX_CLOCK_REALTIME, 0, NULL,
FUTEX_BITSET_MATCH_ANY <unfinished ...>
[pid 1189142] poll([{fd=5, events=POLLOUT}], 1, 0) = 1 ([{fd=5, revents=POLLOUT}])
[pid 1189142] futex(0x55572e6d4f4c, FUTEX_WAKE_PRIVATE, 1) = 1
[pid 1189145] <... futex resumed>) = 0
[pid 1189142] poll([{fd=5, events=POLLOUT}], 1, 0 <unfinished ...>
[pid 1189145] futex(0x55572e6d4ee0, FUTEX_WAKE_PRIVATE, 1 <unfinished ...>
[pid 1189142] <... poll resumed>) = 1 ([{fd=5, revents=POLLOUT}])
[pid 1189145] <... futex resumed>) = 0
[pid 1189142] futex(0x55572e6d4f4c, FUTEX_WAKE_PRIVATE, 1 <unfinished ...>
[pid 1189145] pwrite64(5, "\270\213N\374\335\277j\32\357\233\234\222+\246`2\312\214S\230
\326e\244\n\16\310\217\325\242R\324"..., 32768, 0 <unfinished ...>
[pid 1189142] <... futex resumed>) = 1
[pid 1189144] <... futex resumed>) = 0
[pid 1189142] poll([{fd=5, events=POLLOUT}], 1, 0 <unfinished ...>

“POSIX” Synchronous,
Async via threads

Includes a context
switch from user

to the kernel

io_uring Multiple
requests

on
shared

ring

io_uring Multiple
requests

on
shared

ring

SQ: applications submit
requests to a shared submission
queue with user data attached

https://github.com/axboe/liburing/blob/master/src/include/liburing/io_uring.h#L214

enum io_uring_op {
IORING_OP_NOP,
IORING_OP_READV,
IORING_OP_WRITEV,
IORING_OP_FSYNC,
IORING_OP_READ_FIXED,
IORING_OP_WRITE_FIXED,
IORING_OP_POLL_ADD,
IORING_OP_POLL_REMOVE,
IORING_OP_SYNC_FILE_RANGE,
IORING_OP_SENDMSG,
IORING_OP_RECVMSG,

 IORING_OP_TIMEOUT,
IORING_OP_TIMEOUT_REMOVE,
IORING_OP_ACCEPT,
IORING_OP_ASYNC_CANCEL,
IORING_OP_LINK_TIMEOUT,
IORING_OP_CONNECT,
IORING_OP_FALLOCATE,
IORING_OP_OPENAT,
IORING_OP_CLOSE,
IORING_OP_FILES_UPDATE,
IORING_OP_STATX,
IORING_OP_READ, ...

io_uring Multiple
requests

on
shared

ring

https://github.com/axboe/liburing/blob/master/src/include/liburing/io_uring.h#L214

struct io_uring_cqe {
 __u64 user_data; /* sqe->user_data value passthru */
 __s32 res; /* result code for this event */
 __u32 flags;

SQ: applications submit
requests to a shared submission
queue with user data attached

CQ: kernel asynchronously
places the result into a ring with

user data + status attached

image credit: https://developers.mattermost.com/blog/hands-on-iouring-go/

io_uring_enter(5, 64, 0, 0, NULL, 8) = 64
io_uring_enter(5, 64, 0, 0, NULL, 8) = 64
io_uring_enter(5, 0, 1, IORING_ENTER_GETEVENTS, NULL, 8) = 0
io_uring_enter(5, 1, 0, 0, NULL, 8) = 1
io_uring_enter(5, 1, 0, 0, NULL, 8) = 1
io_uring_enter(5, 2, 0, 0, NULL, 8) = 2
io_uring_enter(5, 2, 0, 0, NULL, 8) = 2
io_uring_enter(5, 5, 0, 0, NULL, 8) = 5
io_uring_enter(5, 5, 0, 0, NULL, 8) = 5
io_uring_enter(5, 8, 0, 0, NULL, 8) = 8
io_uring_enter(5, 8, 0, 0, NULL, 8) = 8

io_uring

image credit: https://developers.mattermost.com/blog/hands-on-iouring-go/

io_uring has many features for even more throughput:
- “linked requests” and “barriers” for IO

- callback steering for responses across cores

- fixed buffers and descriptors to avoid page mapping

To take full advantage, the application must:
- submit IO requests in batches

- track a parallel data dependency graph across requests

- enforce linear buffer usage

io_uring

image credit: https://developers.mattermost.com/blog/hands-on-iouring-go/

io_uring has many similarities to other shared rings:
- how many userspace/kernel rings do we allocate?

- how big should each ring be?

- what does the runtime do when a ring is full?

- how many threads/cores should push to one ring? 

io_uring patterns show up and down the stack:
- Xen/KVM also have the same problems

- Docker for Desktop also plumbs macOS/Linux like this

- Security is an issue, as the Linux kernel isn't async-friendly

io_uring

image credit: https://developers.mattermost.com/blog/hands-on-iouring-go/

io_uring has many similarities to other shared rings:
- how many userspace/kernel rings do we allocate?

- how big should each ring be?

- what does the runtime do when a ring is full?

- how many threads/cores should push to one ring? 

io_uring patterns show up up and down the stack:
- Xen/KVM also have the same problems

- Docker for Desktop also plumbs macOS/Linux like this

- Security is an issue, as the Linux kernel isn't async-friendly

io_uring Google awards $1m worth of vulnerability reports in 2023 for....

image credit: https://windows-internals.com/one-i-o-ring-to-rule-them-all-a-full-read-write-exploit-primitive-on-windows-11/

windows ioring is very similar to Linux:
- The NT kernel has long had full async ops (IOCP)

- The ioringapi.h has submission/completion queues

- Separate APIs for files (ioring) and networks (RIO)

- The overarching term is called "overlapping IO"

ioring

image credit: https://windows-internals.com/one-i-o-ring-to-rule-them-all-a-full-read-write-exploit-primitive-on-windows-11/

but macOS diverges dramatically!
- libdispatch is based on M:N threading

- the runtime defines a series of queues and priorities

- the kernel creates and destroys threads depending on backpressure

- the shared memory rings are hidden here (dynamically resized)

Grand Central Dispatch

image credit: https://collabnix.com/docker-and-wasm-containers-better-together/

and we have emerging WebAssembly ("WASI") system interfaces:
- these have no kernel/userspace, but are sandboxed

- WASI programs interact with the outside world via capabilities
- capabilities are defined at link-time or at run-time

- the application bindings are high-level IO streams

- the WASM runtime can implement these using io_uring/etc.

WebAssembly / WASI

Instead, a modern stack needs to directly support these
sorts of interfaces:

Linux (io_uring, eBPF, seccomp)
macOS (Grand Central Dispatch)

Windows (IOCP, ioring)

FreeBSD (aio, jails)

OpenBSD (kqueue, pledge)
wasm (wasi, browser)

JavaScript (webworkers)

Xen/KVM (paravirtual devices)

Bare metal (direct hardware)

POSIX is now firmly a historical myth

Hypervisor

Kernel

Processes

Apps

drivers

isolation

services

scheduling

interrupts

memory

cpus

syscalls

ioctls

libc

Container

Hardware

namespace

runtime

Deploying software on
modern infrastructure
needs shared memory
parallelism everywhere

What are some of
these post-POSIX

interfaces and do they
share anything in

common?

We're having a go at
supporting this in

OCaml 5 with our Eio
library using the new

effect handlers feature

module Main
 (Console: Mirage_types_lwt.CONSOLE)
 (Time: Mirage_types_lwt.TIME) = struct

 let start c _ =
 let rec loop = function
 | 0 -> Lwt.return_unit
 | n ->
 Console.log c "hello" >>= fun () ->
 Time.sleep_ns (Duration.of_sec 1) >>= fun () ->
 Console.log c "world" >>= fun () ->
 loop (pred n)
 in
 loop 4

end

module Main
 (Console: Mirage_types_lwt.CONSOLE)
 (Time: Mirage_types_lwt.TIME) = struct

 let start c _ =
 let rec loop = function
 | 0 -> Lwt.return_unit
 | n ->
 Console.log c "hello" >>= fun () ->
 Time.sleep_ns (Duration.of_sec 1) >>= fun () ->
 Console.log c "world" >>= fun () ->
 loop (pred n)
 in
 loop 4

end

ML functors
for portability

across
hardware Monadic

cooperative
concurrency

"Capabilities"
to access

drivers passed
in as args

let start () =
 Eio_main.run @@ fun env ->
 for i = 0 to 5 do
 traceln "hello";
 Time.sleep (Stdenv.clock env) 1.0;
 traceln "world"
 done

let start () =
 Eio_main.run @@ fun env ->
 for i = 0 to 5 do
 traceln "hello";
 Time.sleep (Stdenv.clock env) 1.0;
 traceln "world"
 done

Direct-style
blocking! No

monadic binds!

Normal OCaml
code. No
functors!

Capabilities
passed in as

subtype-
friendly value

Can use
imperative

affordances in
the language

let start () =
 Eio_main.run @@ fun env ->
 for i = 0 to 5 do
 traceln "hello";
 Time.sleep (Stdenv.clock env) 1.0;
 traceln "world"
 done

module Main
 (Console: Mirage_types_lwt.CONSOLE)
 (Time: Mirage_types_lwt.TIME) = struct

 let start c _ =
 let rec loop = function
 | 0 -> Lwt.return_unit
 | n ->
 Console.log c "hello" >>= fun () ->
 Time.sleep_ns (Duration.of_sec 1) >>= fun () ->
 Console.log c "world" >>= fun () ->
 loop (pred n)
 in
 loop 4
end

OCaml 5.0 (multicore+effects)

open Printf

let _ = run (fun _ ->
 fork (fun _ ->
 printf "[t1] Sending 0\n";
 let v = xchg 0 in
 printf "[t1] received %d\n" v);
 fork (fun _ ->
 printf "[t2] Sending 1\n";
 let v = xchg 1 in
 printf "[t2] received %d\n" v))
[t1] Sending 0
[t2] Sending 1
[t2] received 0
[t1] received 1

We can now
implement "fork"

in OCaml

And xchg for
application-specified

message passing

No monadic
concurrency

tricks required

Effect is an
extensible type

with a GADT
for each effect

These helper
functions

actually raise
the effect

type _ Effect.t += Fork : (unit -> unit) -> unit t
 | Yield : unit t

let fork f = perform (Fork f)
let yield () = perform Yield
let xchg v = perform (Xchg v)

type _ Effect.t += Fork : (unit -> unit) -> unit t
 | Yield : unit t

let fork f = perform (Fork f)
let yield () = perform Yield
let xchg v = perform (Xchg v)

let run (main : unit -> unit) : unit =
 let xchger = ref None in
 let enqueue k v = Queue.push (continue k v) run_q in
 let dequeue () =
 if Queue.is_empty run_q then ()
 else Queue.pop run_q () in
 let rec spawn f =
 match f () with
 | () -> dequeue ()
 | exception e -> dequeue ()
 | effect Yield, k -> enqueue k (); dequeue ()
 | effect (Fork f), k -> enqueue k (); spawn f
 | effect (Xchg n), k ->
 match !exchanger with
 |Some (n',k') -> xchger := None; enqueue k' n; continue k n'
 |None -> xchger := Some (n, k); dequeue ()
 in
 spawn main

Effects are
handled

alongside
exceptions

Effects supply
a one-shot

continuation

Things that worked well 
in 20 years of OCaml happiness

Things to improve after 
20 years of OCaml pain

No forced preemption

(either concurrency or parallelism)

Error handling mixed up 
monadic+exceptions+result

Deep functor stacks are just 
impenetrable to figure out

Arranging libraries as functors 
led to good systems hygiene

Monadic concurrency led to

high heap memory usage

Strict execution model  
made systems bindings easy

Exception backtraces not 
preserved with Lwt/Async

Customising runloop for

application is straightforward

Lifetimes/cancels difficult 
to track systematically

Sequential OCaml performance 
is very very good.

Eio uses modern IO APIs with the new OCaml 5 effects

let () =
 let buf = Bytes.create 4096 in
 let rec copy () =
 match input stdin buf 0 4096 with
 | 0 -> ()
 | got ->
 output stdout buf 0 got;
 copy ()
 in
 copy ()

let () =
 Eio_main.run @@ fun env ->
 Eio.(
 Flow.copy
 (Stdenv.stdin env)
 (Stdenv.stdout env)
)

Eio looks like a DSL interpreted by the IO backend

io_uring has many fancy features for even more speed:
- “linked requests” and “barriers” for IO

- callback steering for responses across cores

- fixed buffers and descriptors to avoid page mapping

To take full advantage, the application must:
- submit IO requests in batches

- track a parallel data dependency graph across requests

- enforce linear buffer usage

The Eio library spawns
fibres to keep the uring
filled asynchronously

eio has a “low-level” interface to each supported system. 
Hard to program portably but everything is exposed to the programmer.

eio_linux

io_uring

eio_macos

gcd

eio_windows

ioringposix posix "posix"

*BSD

iocp

posix

eio_main

eio_js

browser node

eio_solo5

unikernel

let read t ~file_offset fd buf user_data =
 with_id_full t (fun id ->
 Uring.submit_read t.uring fd id buf file_offset
) user_data ~extra_data:buf

eio has a “low-level” interface to each supported system. 
Hard to program portably but everything is exposed to the programmer.

Linux is increasingly adding many new extensions
To take advantage of these, we do type-safe bindings to io_uring with tight
integration with the OCaml GC

let fn_on_ring fn t =
 match fn t.uring with
 | Uring.Cqe_none -> None
 | Uring.Cqe_some { user_data_id; res } ->
 let data = Heap.free t.data user_data_id in
 Some { result = res; data }

let with_id_full t fn datum ~extra_data =
 match Heap.alloc t.data datum ~extra_data with
 | exception (Invalid_argument _ as ex) -> check t; raise ex
 | entry ->
 let ptr = Heap.ptr entry in
 let has_space = fn ptr in
 if has_space then Some entry
 else (ignore (Heap.free t.data ptr : a); None)

type Stdenv.t = <
 stdin : Flow.source;
 stdout : Flow.sink;
 stderr : Flow.sink;
 net : Net.t;
 domain_mgr : Domain_manager.t;
 clock : Time.clock;
 mono_clock : Time.Mono.t;
 fs : Fs.dir Path.t;
 cwd : Fs.dir Path.t;
 secure_random : Flow.source;
 debug : Debug.t;
 >

val stdin : <stdin : #Flow.source as 'a; ..> -> 'a
val stdout : <stdout : #Flow.sink as 'a; ..> -> 'a
val stderr : <stderr : #Flow.sink as 'a; ..> -> 'a
val secure_random : <secure_random : #Flow.source as 'a; ..> -> ‘a

eio has a “low-level” interface to each supported system. 
Hard to program portably but everything is exposed to the programmer.

eio has a “high-level” portable interface for applications.
Does not expose ambient resources, but instead an (OCaml) object/class-based
interface that exposes capabilities and a functional direct style of IO

 (** [initialise ~ctx ~endpoint ~email priv] constructs a [t] by
 looking up the directory and account of [priv] at [endpoint]. If no
 account is registered yet, a new account is created with contact
 information of [email]. The terms of service are agreed on. *)
 val initialise : < net : #Eio.Net.t; .. > -> endpoint:Uri.t -> ?email:string ->
 X509.Private_key.t -> (t, [> `Msg of string]) result

 (** [sign_certificate ~ctx solver t sleep csr] orders a certificate for
 the names in the signing request [csr], and solves the requested
 challenges. *)
 val sign_certificate : < net : #Eio.Net.t; .. > ->
 solver -> t -> (int -> unit) ->
 X509.Signing_request.t ->
 (X509.Certificate.t list, [> `Msg of string]) result

let cert_dir env = Stdenv.cwd env
let token_dir env = Eio.Path.(Stdenv.fs env / “tokens”)

let priv_pem = Eio.Path.(load (cert_dir / priv_pem)) in
let csr_pem = Eio.Path.(load (cert_dir / csr_pem)) in
let* account_key = X509.Private_key.decode_pem (Cstruct.of_string priv_pem) in
let* request = X509.Signing_request.decode_pem (Cstruct.of_string csr_pem) in
let solver =
 match solver, acme_dir, ip, key with
 | _, Some path, None, None ->
 traceln "using http solver, writing to %s" path);
 let solve_challenge _ ~prefix:_ ~token ~content =
 let path = Eio.Path.(token_dir / path / token) in
 Eio.Path.save ~create:(`Or_truncate 0o600) path content;
 Ok ()

Deploying software on
modern hardware

uses shared memory
parallelism all over

What are some of
these post-POSIX

interfaces and do they
share anything in

common?

We're having a go at
supporting this in

OCaml 5 with our Eio
library using the new

effect handlers feature

eio does (https://github.com/ocaml-multicore/eio):
- zero-copy memory that can be mapped elsewhere

- programmer-controlled context switching

- lower pauses due to reduced GC activity + batching

- very high throughput IO by default

- reasonable migration path from Lwt/Async

- working backtraces and capabilities by default

Modern runtimes need to not block:
- shared memory channels run throughout the stack

- make rings safer and easier to share.

- POSIX is anathema to concurrent, parallel IO

- ...but POSIX is still around making trouble

Design for post-POSIX first in your runtime/language:
- io_uring forces you to design for concurrency first

- macOS is an awkward blocker here with GCD

- but Windows has the best-of-breed support

- the evolution of WASI[X]/WALI are critical here

The Wild West of post-POSIX IO

https://github.com/ocaml-multicore/eio

