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POSIX must have

POSIX must try

POSIX is an illusion



Deploying software 
on modern hardware 
uses shared memory 
parallelism all over

What are some of 
these post-POSIX 

interfaces and do they 
share anything in 

common?

We're having a go at 
supporting this in 

OCaml 5 with our Eio 
library using the new 

effect handlers feature
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An OS kernel drives 
the hardware and 

builds software 
services over it

Kernel implements 
services such as 

storage / networking

drivers

isolation

services

scheduling

It schedules multiple 
userspace processes 
that are isolated from 
each other, but share 

kernel resources

Hardware

runtime
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Kernel

Processes

Apps

System libraries like 
libc often abstract the 

low-level syscalls 
with a C interface

Standards like 
POSIX define 

function calls that try 
to be portable across 

operating systems

syscalls

ioctls

interrupts

memory

cpus

drivers

isolation

services

scheduling

libc

Applications link with 
system libraries and 
runtimes (VMIL!) and 
call them to interface 

with outside world

Hardware

runtime



Kernel

Processes

Apps

Hardware

Kernel schedules all 
the processes to try 
to make best use of 

the hardware

But the scheduling is 
difficult without some 
cooperation from the 

application logic

syscalls

ioctls

interrupts

memory

cpus

drivers

isolation

services

scheduling

libc

Utilising all of the 
hardware from a 

language runtime is 
quite tough! But it 

gets tougher...

Hardware

runtime
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Hypervisor

Multiplex abstraction 
of physical computer

Carve up resources 
so poorly utilised 

physical computers 
are consolidated

2003: Xen hypervisor 
1.0 was released. 

2018: tens of billions 
of virtual machines 
are “in the cloud” 

 
2025: hypervisors 
run everywhere

Hardware

runtime
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The hypervisor starts 
fighting the kernel for 
scheduling resources

Since multiple guest 
kernels can run, each 

thinks it owns the 
underlying hardware

Multiplexed 
scheduling is 

considered harmful

Userspace schedules 
some resources too

Hardware

runtime
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[pid 1189143] pread64(4, 
"\332-5\370`\306\223\323\374\16\326\212GD#\271Dh\325\341\362:\3234\373\314\334Ql`\374\360"..., 
32768, 2064384) = 32768 
[pid 1189143] futex(0x55572e6d4f48, FUTEX_WAIT_BITSET_PRIVATE|FUTEX_CLOCK_REALTIME, 0, NULL, 
FUTEX_BITSET_MATCH_ANY <unfinished ...> 
[pid 1189142] poll([{fd=5, events=POLLOUT}], 1, 0) = 1 ([{fd=5, revents=POLLOUT}]) 
[pid 1189142] futex(0x55572e6d4f4c, FUTEX_WAKE_PRIVATE, 1) = 1 
[pid 1189145] <... futex resumed>)      = 0 
[pid 1189142] poll([{fd=5, events=POLLOUT}], 1, 0 <unfinished ...> 
[pid 1189145] futex(0x55572e6d4ee0, FUTEX_WAKE_PRIVATE, 1 <unfinished ...> 
[pid 1189142] <... poll resumed>)       = 1 ([{fd=5, revents=POLLOUT}]) 
[pid 1189145] <... futex resumed>)      = 0 
[pid 1189142] futex(0x55572e6d4f4c, FUTEX_WAKE_PRIVATE, 1 <unfinished ...> 
[pid 1189145] pwrite64(5, "\270\213N\374\335\277j\32\357\233\234\222+\246`2\312\214S\230 
\326e\244\n\16\310\217\325\242R\324"..., 32768, 0 <unfinished ...> 
[pid 1189142] <... futex resumed>)      = 1 
[pid 1189144] <... futex resumed>)      = 0 
[pid 1189142] poll([{fd=5, events=POLLOUT}], 1, 0 <unfinished ...>

“POSIX” Synchronous, 
Async via threads

Includes a context 
switch from user 

to the kernel
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io_uring Multiple 
requests 

on 
shared 

ring

SQ: applications submit 
requests to a shared submission 
queue with user data attached

https://github.com/axboe/liburing/blob/master/src/include/liburing/io_uring.h#L214

enum io_uring_op {
IORING_OP_NOP,
IORING_OP_READV,
IORING_OP_WRITEV,
IORING_OP_FSYNC,
IORING_OP_READ_FIXED,
IORING_OP_WRITE_FIXED,
IORING_OP_POLL_ADD,
IORING_OP_POLL_REMOVE,
IORING_OP_SYNC_FILE_RANGE,
IORING_OP_SENDMSG,
IORING_OP_RECVMSG,

     IORING_OP_TIMEOUT,
IORING_OP_TIMEOUT_REMOVE,
IORING_OP_ACCEPT,
IORING_OP_ASYNC_CANCEL,
IORING_OP_LINK_TIMEOUT,
IORING_OP_CONNECT,
IORING_OP_FALLOCATE,
IORING_OP_OPENAT,
IORING_OP_CLOSE,
IORING_OP_FILES_UPDATE,
IORING_OP_STATX,
IORING_OP_READ, ...



io_uring Multiple 
requests 

on 
shared 

ring

https://github.com/axboe/liburing/blob/master/src/include/liburing/io_uring.h#L214

struct io_uring_cqe {
 __u64 user_data; /* sqe->user_data value passthru */
 __s32 res;  /* result code for this event */
 __u32 flags;

SQ: applications submit 
requests to a shared submission 
queue with user data attached

CQ: kernel asynchronously 
places the result into a ring with 

user data + status attached



image credit: https://developers.mattermost.com/blog/hands-on-iouring-go/

io_uring_enter(5, 64, 0, 0, NULL, 8)    = 64 
io_uring_enter(5, 64, 0, 0, NULL, 8)    = 64 
io_uring_enter(5, 0, 1, IORING_ENTER_GETEVENTS, NULL, 8) = 0 
io_uring_enter(5, 1, 0, 0, NULL, 8)     = 1 
io_uring_enter(5, 1, 0, 0, NULL, 8)     = 1 
io_uring_enter(5, 2, 0, 0, NULL, 8)     = 2 
io_uring_enter(5, 2, 0, 0, NULL, 8)     = 2 
io_uring_enter(5, 5, 0, 0, NULL, 8)     = 5 
io_uring_enter(5, 5, 0, 0, NULL, 8)     = 5 
io_uring_enter(5, 8, 0, 0, NULL, 8)     = 8 
io_uring_enter(5, 8, 0, 0, NULL, 8)     = 8

io_uring



image credit: https://developers.mattermost.com/blog/hands-on-iouring-go/

io_uring has many features for even more throughput: 
- “linked requests” and “barriers” for IO

- callback steering for responses across cores

- fixed buffers and descriptors to avoid page mapping


To take full advantage, the application must: 
- submit IO requests in batches

- track a parallel data dependency graph across requests

- enforce linear buffer usage

io_uring
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io_uring has many similarities to other shared rings: 
- how many userspace/kernel rings do we allocate?

- how big should each ring be?

- what does the runtime do when a ring is full?

- how many threads/cores should push to one ring? 

io_uring patterns show up and down the stack: 
- Xen/KVM also have the same problems

- Docker for Desktop also plumbs macOS/Linux like this

- Security is an issue, as the Linux kernel isn't async-friendly

io_uring
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io_uring patterns show up up and down the stack: 
- Xen/KVM also have the same problems

- Docker for Desktop also plumbs macOS/Linux like this

- Security is an issue, as the Linux kernel isn't async-friendly

io_uring Google awards $1m worth of vulnerability reports in 2023 for....



image credit: https://windows-internals.com/one-i-o-ring-to-rule-them-all-a-full-read-write-exploit-primitive-on-windows-11/

windows ioring is very similar to Linux: 
- The NT kernel has long had full async ops (IOCP)

- The ioringapi.h has submission/completion queues

- Separate APIs for files (ioring) and networks (RIO)

- The overarching term is called "overlapping IO"

ioring



image credit: https://windows-internals.com/one-i-o-ring-to-rule-them-all-a-full-read-write-exploit-primitive-on-windows-11/

but macOS diverges dramatically! 
- libdispatch is based on M:N threading

- the runtime defines a series of queues and priorities

- the kernel creates and destroys threads depending on backpressure

- the shared memory rings are hidden here (dynamically resized)

Grand Central Dispatch



image credit: https://collabnix.com/docker-and-wasm-containers-better-together/

and we have emerging WebAssembly ("WASI") system interfaces: 
- these have no kernel/userspace, but are sandboxed

- WASI programs interact with the outside world via capabilities 
- capabilities are defined at link-time or at run-time

- the application bindings are high-level IO streams

- the WASM runtime can implement these using io_uring/etc.

WebAssembly / WASI



Instead, a modern stack needs to directly support these 
sorts of interfaces:


Linux (io_uring, eBPF, seccomp) 
macOS (Grand Central Dispatch)


Windows (IOCP, ioring)

FreeBSD (aio, jails)


OpenBSD (kqueue, pledge) 
wasm (wasi, browser)


JavaScript (webworkers)

Xen/KVM (paravirtual devices)

Bare metal (direct hardware)

POSIX is now firmly a historical myth
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Deploying software on 
modern infrastructure 
needs shared memory 
parallelism everywhere

What are some of 
these post-POSIX 

interfaces and do they 
share anything in 

common?

We're having a go at 
supporting this in 

OCaml 5 with our Eio 
library using the new 

effect handlers feature



module Main 
 (Console: Mirage_types_lwt.CONSOLE) 
 (Time: Mirage_types_lwt.TIME) = struct

  let start c _ =
    let rec loop = function
      | 0 -> Lwt.return_unit
      | n ->
        Console.log c "hello" >>= fun () ->
        Time.sleep_ns (Duration.of_sec 1) >>= fun () ->
        Console.log c "world" >>= fun () ->
        loop (pred n)
    in
    loop 4

end



module Main 
 (Console: Mirage_types_lwt.CONSOLE) 
 (Time: Mirage_types_lwt.TIME) = struct

  let start c _ =
    let rec loop = function
      | 0 -> Lwt.return_unit
      | n ->
        Console.log c "hello" >>= fun () ->
        Time.sleep_ns (Duration.of_sec 1) >>= fun () ->
        Console.log c "world" >>= fun () ->
        loop (pred n)
    in
    loop 4

end

ML functors 
for portability 

across 
hardware Monadic 

cooperative 
concurrency 

"Capabilities" 
to access 

drivers passed 
in as args



let start () =
  Eio_main.run @@ fun env ->
  for i = 0 to 5 do
     traceln "hello";
     Time.sleep (Stdenv.clock env) 1.0;
     traceln "world"
  done



let start () =
  Eio_main.run @@ fun env ->
  for i = 0 to 5 do
     traceln "hello";
     Time.sleep (Stdenv.clock env) 1.0;
     traceln "world"
  done

Direct-style 
blocking! No 

monadic binds!

Normal OCaml 
code. No 
functors!

Capabilities 
passed in as 

subtype-
friendly value

Can use 
imperative 

affordances in 
the language



let start () =
  Eio_main.run @@ fun env ->
  for i = 0 to 5 do
     traceln "hello";
     Time.sleep (Stdenv.clock env) 1.0;
     traceln "world"
  done

module Main 
 (Console: Mirage_types_lwt.CONSOLE) 
 (Time: Mirage_types_lwt.TIME) = struct

  let start c _ =
    let rec loop = function
      | 0 -> Lwt.return_unit
      | n ->
        Console.log c "hello" >>= fun () ->
        Time.sleep_ns (Duration.of_sec 1) >>= fun () ->
        Console.log c "world" >>= fun () ->
        loop (pred n)
    in
    loop 4
end

OCaml 5.0 (multicore+effects)



open Printf

let _ = run (fun _ ->
  fork (fun _ ->
    printf "[t1] Sending 0\n";
    let v = xchg 0 in
    printf "[t1] received %d\n" v);
  fork (fun _ ->
    printf "[t2] Sending 1\n";
    let v = xchg 1 in
    printf "[t2] received %d\n" v))
[t1] Sending 0
[t2] Sending 1
[t2] received 0
[t1] received 1

We can now 
implement "fork" 

in OCaml

And xchg for 
application-specified 

message passing

No monadic 
concurrency 

tricks required



Effect is an 
extensible type 

with a GADT 
for each effect 

These helper 
functions 

actually raise 
the effect

type _ Effect.t +=   Fork : (unit -> unit) -> unit t
                   | Yield : unit t

let fork f = perform (Fork f)
let yield () = perform Yield
let xchg v = perform (Xchg v)



type _ Effect.t +=   Fork : (unit -> unit) -> unit t
                   | Yield : unit t

let fork f = perform (Fork f)
let yield () = perform Yield
let xchg v = perform (Xchg v)

let run (main : unit -> unit) : unit =
  let xchger = ref None in
  let enqueue k v = Queue.push (continue k v) run_q in
  let dequeue () =
    if Queue.is_empty run_q then ()
    else Queue.pop run_q () in
  let rec spawn f =
    match f () with
    | () ->                  dequeue ()
    | exception e ->         dequeue ()
    | effect Yield, k ->     enqueue k (); dequeue ()
    | effect (Fork f), k ->  enqueue k (); spawn f
    | effect (Xchg n), k ->
        match !exchanger with
        |Some (n',k') -> xchger := None; enqueue k' n; continue k n'
        |None -> xchger := Some (n, k); dequeue ()
  in
  spawn main

Effects are 
handled 

alongside 
exceptions

Effects supply 
a one-shot 

continuation



Things that worked well 
in 20 years of OCaml happiness

Things to improve after 
20 years of OCaml pain

No forced preemption

(either concurrency or parallelism)

Error handling mixed up 
monadic+exceptions+result

Deep functor stacks are just 
impenetrable to figure out

Arranging libraries as functors 
led to good systems hygiene

Monadic concurrency led to

high heap memory usage

Strict execution model  
made systems bindings easy

Exception backtraces not 
preserved with Lwt/Async

Customising runloop for

application is straightforward

Lifetimes/cancels difficult 
to track systematically

Sequential OCaml performance 
is very very good.

Eio uses modern IO APIs with the new OCaml 5 effects



# let () = 
    let buf = Bytes.create 4096 in 
    let rec copy () = 
      match input stdin buf 0 4096 with 
      | 0 -> () 
      | got -> 
        output stdout buf 0 got; 
        copy () 
    in 
    copy ()

# let () = 
    Eio_main.run @@ fun env -> 
    Eio.( 
      Flow.copy 
       (Stdenv.stdin env) 
       (Stdenv.stdout env) 
    )

Eio looks like a DSL interpreted by the IO backend

io_uring has many fancy features for even more speed: 
- “linked requests” and “barriers” for IO

- callback steering for responses across cores

- fixed buffers and descriptors to avoid page mapping


To take full advantage, the application must: 
- submit IO requests in batches

- track a parallel data dependency graph across requests

- enforce linear buffer usage

The Eio library spawns 
fibres to keep the uring 
filled asynchronously



eio has a “low-level” interface to each supported system. 
Hard to program portably but everything is exposed to the programmer. 

eio_linux

io_uring

eio_macos

gcd

eio_windows

ioringposix posix "posix"

*BSD

iocp

posix

eio_main

eio_js

browser node

eio_solo5

unikernel



# let read t ~file_offset fd buf user_data = 
  with_id_full t (fun id -> 
    Uring.submit_read t.uring fd id buf file_offset 
  ) user_data ~extra_data:buf

eio has a “low-level” interface to each supported system. 
Hard to program portably but everything is exposed to the programmer. 

Linux is increasingly adding many new extensions 
To take advantage of these, we do type-safe bindings to io_uring with tight 
integration with the OCaml GC

# let fn_on_ring fn t = 
  match fn t.uring with 
  | Uring.Cqe_none -> None 
  | Uring.Cqe_some { user_data_id; res } -> 
    let data = Heap.free t.data user_data_id in 
    Some { result = res; data } 

# let with_id_full t fn datum ~extra_data = 
   match Heap.alloc t.data datum ~extra_data with 
  | exception (Invalid_argument _ as ex) -> check t; raise ex 
  | entry -> 
 let ptr = Heap.ptr entry in 
 let has_space = fn ptr in 
 if has_space then Some entry 
 else (ignore (Heap.free t.data ptr : a); None) 



type Stdenv.t = < 
    stdin  : Flow.source; 
    stdout : Flow.sink; 
    stderr : Flow.sink; 
    net : Net.t; 
    domain_mgr : Domain_manager.t; 
    clock : Time.clock; 
    mono_clock : Time.Mono.t; 
    fs : Fs.dir Path.t; 
    cwd : Fs.dir Path.t; 
    secure_random : Flow.source; 
    debug : Debug.t; 
  > 

val stdin  : <stdin  : #Flow.source as 'a; ..> -> 'a 
val stdout : <stdout : #Flow.sink   as 'a; ..> -> 'a 
val stderr : <stderr : #Flow.sink   as 'a; ..> -> 'a 
val secure_random : <secure_random : #Flow.source as 'a; ..> -> ‘a

eio has a “low-level” interface to each supported system. 
Hard to program portably but everything is exposed to the programmer. 

eio has a “high-level” portable interface for applications. 
Does not expose ambient resources, but instead an (OCaml) object/class-based 
interface that exposes capabilities and a functional direct style of IO



  (** [initialise ~ctx ~endpoint ~email priv] constructs a [t] by 
      looking up the directory and account of [priv] at [endpoint]. If no 
      account is registered yet, a new account is created with contact 
      information of [email]. The terms of service are agreed on. *) 
  val initialise : < net : #Eio.Net.t; .. > -> endpoint:Uri.t -> ?email:string -> 
      X509.Private_key.t -> (t, [> `Msg of string ]) result 

  (** [sign_certificate ~ctx solver t sleep csr] orders a certificate for 
        the names in the signing request [csr], and solves the requested 
        challenges. *) 
  val sign_certificate : < net : #Eio.Net.t; .. > -> 
      solver -> t -> (int -> unit) -> 
      X509.Signing_request.t -> 
      (X509.Certificate.t list, [> `Msg of string ]) result

let cert_dir env = Stdenv.cwd env 
let token_dir env = Eio.Path.(Stdenv.fs env / “tokens”) 

let priv_pem = Eio.Path.(load (cert_dir / priv_pem)) in 
let csr_pem = Eio.Path.(load (cert_dir / csr_pem)) in 
let* account_key = X509.Private_key.decode_pem (Cstruct.of_string priv_pem) in 
let* request = X509.Signing_request.decode_pem (Cstruct.of_string csr_pem) in 
let solver = 
   match solver, acme_dir, ip, key with 
   | _, Some path, None, None ->  
     traceln "using http solver, writing to %s" path); 
     let solve_challenge _ ~prefix:_ ~token ~content = 
       let path = Eio.Path.(token_dir / path / token) in 
       Eio.Path.save ~create:(`Or_truncate 0o600) path content; 
       Ok ()



Deploying software on 
modern hardware 

uses shared memory 
parallelism all over

What are some of 
these post-POSIX 

interfaces and do they 
share anything in 

common?

We're having a go at 
supporting this in 

OCaml 5 with our Eio 
library using the new 

effect handlers feature

eio does (https://github.com/ocaml-multicore/eio): 
- zero-copy memory that can be mapped elsewhere

- programmer-controlled context switching

- lower pauses due to reduced GC activity + batching

- very high throughput IO by default

- reasonable migration path from Lwt/Async

- working backtraces and capabilities by default

Modern runtimes need to not block: 
- shared memory channels run throughout the stack

- make rings safer and easier to share.

- POSIX is anathema to concurrent, parallel IO

- ...but POSIX is still around making trouble

Design for post-POSIX first in your runtime/language: 
- io_uring forces you to design for concurrency first

- macOS is an awkward blocker here with GCD

- but Windows has the best-of-breed support

- the evolution of WASI[X]/WALI are critical here

The Wild West of post-POSIX IO

https://github.com/ocaml-multicore/eio

