The Wild West of post-POSIX IO

Anil Madhavapeddy, University of Cambridge

with many thanks to Thomas Leonard, Patrick Ferris, Sadiq Jaffer, Ryan Gibb,
David Allsopp, KC Sivaramakrishnan, Thomas Gazagnaire, Christiano Haesbart,
Stephen Dolan and lots of help from others in the OCaml and Linux community

VMIL Keynote, 15th October 2025
at ICFP/SPLASH, Singapore

Are 10 libraries still really a research topic??

OCaml in 1996:

OCaml in 2004:

Single core
Spinning harddrives
Unix mattered

SMP (2-4 sockets)
Harddrives -> SSDs
Linux / Windows dominate

Xen hypervisor stack

(~2004-present)
Unix+threads

OCaml in 1996:

OCaml in 2004:

Single core
Spinning harddrives
Unix mattered

SMP (2-4 sockets)
Harddrives -> SSDs
Linux / Windows dominate

Xen hypervisor stack
(~2004-present)
Unix+threads

Docker
(~2015-present)
MirageOS+virtualisation

Are 10 libraries still really a research topic??

Xen hypervisor stack

(~2004-present)
OCaml in 1996: Single core Unix+threads

Spinning harddrives
Unix mattered

_ Docker
OCaml in 2004: SMP (2-4 sockets) (~2015-present)

Harddrives -> SSDs MirageOS+virtualisation
Linux / Windows dominate

OCaml in 2023: Many core (128+ cores)
NVMe / flash
Linux / Windows / macQOS / JavaScript / wasm / unikernel

Enclaves for encrypted memory

GPGPU/FPGAs everywhere e A G AT

(~2022-present)

Heterogenous hardware
+ browser interfaces

Deploying software
on modern hardware
uses shared memory

parallelism all over

What are some of
these post-POSIX
interfaces and do they
share anything in
common?

We're having a go at
supporting this In
OCaml 5 with our Eio
library using the new
effect handlers feature

Hardware

You are
here
Processes /

Hardware

Kernel

Processes

Apps

drivers
services
scheduling

isolation

runtime

An OS kernel drives
the hardware and
builds software
services over it

Kernel implements
services such as
storage / networking

It schedules multiple
userspace processes
that are isolated from
each other, but share
kernel resources

Hardware

Kernel

Processes

Apps

interrupts
memory
cpus

drivers

runtime

Hardware has
become diverse, with
thousands of device

drivers in a kernel

Multicore processors
and NUMA memory
also make those
resources complex

Ring buffers are
mapped into kernel
memory or via DMA

source: dtrace book

https://myaut.github.io/dtrace-stap-book/

https://myaut.github.io/dtrace-stap-book/

Hardware

Kernel

Processes

Apps

isolation
syscalls

joctls

runtime

Kernel runs
processes at lower
privilege level with

own address spaces

Interface from
process to kernel is
typically via a syscall
or ioctl interface

Syscalls also force a
context switch since
they switch privilege
levels into the kernel

SYSCALL

SYSC ALL

Hardware

Kernel

Processes

Apps

libc

runtime

System libraries like
libc often abstract the
low-level syscalls
with a C interface

Standards like
POSIX define
function calls that try
to be portable across
operating systems

Applications link with
system libraries and
runtimes (VMIL!) and
call them to interface
with outside world

Hardware

Kernel

Processes

Apps

interrupts
memory
cpus
drivers
services
scheduling
isolation
syscalls
joctls
libc

runtime

Kernel schedules all

the processes to try

to make best use of
the hardware

But the scheduling is

difficult without some

cooperation from the
application logic

Utilising all of the
hardware from a
language runtime is
quite tough! But it
gets tougher...

Hardware

Hypervisor

Kernel

Processes

Apps

interrupts
memory
cpus
drivers
services
scheduling
isolation
syscalls
joctls
libc

runtime

Multiplex abstraction
of physical computer

Carve up resources
so poorly utilised
physical computers
are consolidated

2003: Xen hypervisor
1.0 was released.

2018: tens of billions
of virtual machines
are “in the cloud”

2025: hypervisors
run everywhere

Hardware

Hypervisor

Kernel

Processes

Apps

interrupts
memory
cpus
drivers

services

runtime

The hardware
resources are given
virtual equivalents

The kernel is patched
to use new software
interfaces, or CPU
virtualisation is setup

Hardware

Hypervisor

Processes

interrupts
memory
cpus

drivers

(syscalls)

 ioctls

The hardware
resources are given
virtual equivalents

DomO

Disk Driver
Domain

Network

Driver Domain DomU

N BlockFront

N NetFront

Disk Driver Network
Domain Driver Domain

T T~

BlockBack NetBack BlockFront

Disk Driver Network Driver NetFront

Xe

Hardware

~

Domainl

J
]

Response

Response Producer

IDALI(] puaddeg
JQALI(] PUIUOL]

Request Consumer Request Producer

Native
Driver

\

Request

(

Hardware

Hypervisor

Kernel

Processes

Apps

interrupts
memory
cpus
drivers
services
scheduling
isolation
syscalls
joctls
libc

runtime

The hypervisor starts
fighting the kernel for
scheduling resources

Since multiple guest
kernels can run, each
thinks it owns the
underlying hardware

Userspace schedules
some resources too

Multiplexed
scheduling Is
considered harmful

Hardware

Hypervisor

Kernel

Container

Processes

Apps

interrupts
memory
cpus
drivers
services
scheduling
isolation
namespace
syscalls
joctls
libc

runtime

VMs cannot share
kernel resources and
SO can be isolated

Linux introduces
process namespaces
to virtualise syscalls

A containeris a
process set and
filesystem isolated
but sharing kernel

®Ser e s ccccccccccces s

Shared Linux kernel

namespace 1 namespace 2

&

(interrupts
C memory)

e

<&

syscalls
Processes 4

joctls

4

O

@D>

QY

NIC sends
packet :

Application
sends packet

Domainl

SHARED MEMORY RING —»

JQALI(] puajuod

SHARED MEMORY RING —»

namespace 2

namespace 1

SYSC_ALL

=
- QQN ﬂw" User
Qop\ /Qopy K err\ej
xecute

SSSSS
DDDDDD

Hardware

Hypervisor

Kernel

Container

Processes

Apps

interrupts
memory
cpus
drivers
services
scheduling
isolation
namespace
syscalls
joctls
libc

runtime

Deploying software
on modern hardware
uses shared memory

parallelism all over

What are some of
these post-POSIX
interfaces and do they
share anything in
common?

We're having a go at
supporting this in
OCaml 5 with our Eio
library using the new
effect handlers feature

Hardware

Hypervisor

Kernel

Container

Processes

Apps

interrupts
memory
cpus
drivers
services
scheduling
isolation
hamespace
syscalls
joctls
libc

runtime

Deploying software on
modern infrastructure
needs shared memory
parallelism everywhere

What are some of
these post-POSIX

interfaces and do they
share anything in
common?

We're having a go at
supporting this in
OCaml 5 with our Eio
library using the new
effect handlers feature

“POSIX”

Sysc ALl Synch_ronous,
- =~ Async via threads
Call Retorn User Includes a context

switch from user
to the kernel

Copy Copy kernel

Execute

image credit: https://developers.mattermost.com/blog/hands-on-iouring-go/

“POSIX”
-

Call

SYSC ALL Synchronous,
~ Async via threads
Return User Includes a context

switch from user

[pid

Qopy

to the kernel
Copy K ernd

Execute

1 preado4(4,

\332-5\370 \306\223\323\374\16\326\212GD#\271Dh\325\341\362:\3234\373\314\33401 \374\360". ..

)

[pid

FUTEX_BITSET

[pid
[pid
[pid
[pid

[pid
[pid
[pid
[pid
[pid
\326e\244\n\16\310\217\325\242R\324" . . ., , <unfinished ...>

[pid
[pid
[pid

) = 32768

] futex(, FUTEX_WAIT_BITSET_PRIVATEIFUTEX_CLOCK_REALTIME, @, NULL,
MATCH_ANY <unfinished ...>

poll([{fd=5, events=POLLOUT}], 1, ©) = 1 ([{fd=5, revents=POLLOUT}])

futex(, FUTEX_WAKE_PRIVATE, 1) =1

<... futex resumed>) =0

poll([{fd=5, events=POLLOUT}], 1, @ <unfinished ...>

futex(, FUTEX_WAKE_PRIVATE, <unfinished ...

<... poll resumed>) = 1 ([{fd=5, revents=POLLOUT}])

<... futex resumed>) =0

futex(, FUTEX_WAKE_PRIVATE, <unfinished ...>

pwrite64(5, "\270\213N\374\335\2777\32\357\233\234\222+\246 7\312\2145\230

N NSy Sy S [y Ny Ny Yy N oy By |

1 <... futex resumed>) 1
1 <... futex resumed>) =0
1 poll([{fd=5, events=POLLOUT}], 1, <unfinished ...

image credit: https://developers.mattermost.com/blog/hands-on-iouring-go/

—— cCQ Multiple

requests
Cob User |consumes i
2, & shared
User A
GE Q ker neJ
CQE

SQE] SGE |sqe SGE | SQE

© 1 & 3 4

@ consumes Kernel produces
SYSCO\“ e xecution

10_uring ca Multiple

requests
User [consumes
CaE /> on
Cq % shared
User .
ring
pre GE l(e,rne_l
CaE
SGE isq& ISQE SGE | SQE
©c 1 & 3 4
Kernel consumes Kernel pr oduces
Syscall e xecution
SQ: applications submit " sz op o,
requests to a shared submission igiigg_gi_ﬁﬁ; IORING OP ACCEPT, '
queue with user data attached TORING OP FSYNC, IORING_OP_ASYNC_CANCEL,

IORING OP LINK TIMEOUT,
IORING OP_ CONNECT,
IORING OP FALLOCATE,
IORING OP OPENAT,
IORING OP CLOSE,
IORING OP FILES UPDATE,
IORING OP STATX,
IORING OP_ READ,

IORING OP READ FIXED,
IORING OP WRITE FIXED,
IORING OP POLL ADD,
IORING OP POLL_REMOVE,
IORING OP SYNC FILE RANGE,
IORING OP_ SENDMSG,
IORING OP RECVMSG,

https://github.com/axboe/liburing/blob/master/src/include/liburing/io_uring.h#L214

Multiple

jo_urin
requests
User |[consumes
CQE /s on
Cq shared
User .
vee rlng
e QE l(e,rne_l
CaE
SQE isqe ISQE SGE | SQE
o | & 3 ¢
Kernel consumes Kernel P‘"OA"C&S
Syscall e xecution
SQ: applications submit
requests to a shared submission
queue with user data attached
. struct io uring cqge {
CQ' kernel aSynChronOUS|y __u64 user data; /* sge->user data value passthru */

/* result code for this event */

places the result into a ring with __s32 res;
user data + status attached —u3z flags;

https://github.com/axboe/liburing/blob/master/src/include/liburing/io_uring.h#L214

io_uring

CQ
User [consumes
CQE
User|produces & ea
User

A% QE Kern
M %[cae ernel

SQ Array

SGE | saE | sag | saE | sae

O 3
Q consumes Kernel produce,s
SYSC(,\H e xecution

10 uring enter
1o uring enter
1o uring enter
10 uring enter
1o uring enter

, 0, 0, NULL, 8) 64
o4, 0, O, NULL, 8) = 04
TORING ENTER GETEVENTS, NULL, 8) = 0
NULL, 8) =1

NULL, 8 =

NULL,

NULL,

NULL,

NULL,

NULL,

NULL,

O
~

~

~
~
~

~
~
~

~
~
~

10 uring enter
1o uring enter
1o uring enter
10 uring enter
1o uring enter

~
~

~
~
~

~
~
~

(5
(5
(5
(5
(5
1o uring enter (5
(5
(5
(5
(5
(5

~

OO O OO OoCo o
~

O OO OO o oo
~

~

O o U1 UT NN B
~

~
~

image credit: https://developers.mattermost.com/blog/hands-on-iouring-go/

10_uring

CQa
User |[consumes
Cae Z
CQ Q
User
GE 7 kernel
CaE
SQE iSQE ISQE SaE | sae
© 1 & 3 4
Kernel consumes Kernel produces

Syscall e xecution

I0_uring has many features for even more throughput:
- “linked requests” and “barriers” for 10

- callback steering for responses across cores

- fixed buffers and descriptors to avoid page mapping

To take full advantage, the application must:

- submit IO requests in batches

- track a parallel data dependency graph across requests
- enforce linear buffer usage

image credit: https://developers.mattermost.com/blog/hands-on-iouring-go/

10_uring

CQa
User [consumes
CaE
User
CQE

SQE isqe ISQE SGE | saE

o | & 3 ¢«

@ . kernel produces
Sl/SCa“ e xecution

I0_uring has many similarities to other shared rings:
- how many userspace/kernel rings do we allocate?

- how big should each ring be?

- what does the runtime do when a ring is full?

- how many threads/cores should push to one ring?

I0_uring patterns show up and down the stack:

- Xen/KVM also have the same problems

- Docker for Desktop also plumbs macOS/Linux like this

- Security is an issue, as the Linux kernel isn't async-friendly

image credit: https://developers.mattermost.com/blog/hands-on-iouring-go/

lo_uring

A

Google awards $1m worth of vulnerability reports in 2023 for....

Total rewards

$1,250,000 25

$1,000,000 20

$750,000 15

$500,000 10
$250,000 S
$0 0

I0_uring net fs

B Total rewards [Number of exploits

Number of exploits

10_uring patterns show up up and down the stack:

- Xen/KVM also have the same problems

- Docker for Desktop also plumbs macOS/Linux like this

- Security is an issue, as the Linux kernel isn't async-friendly

image credit: https://developers.mattermost.com/blog/hands-on-iouring-go/

ioring
loRingObject->RegFiles
FileHandle[O]

o FileHandle[1]
Submission o .
Queue i'_-’ Submission Queue Entry :- ------ »| FileHandle[2] |------------
- - -
Operation = READ : FlleHandle[...]
I
Flags =
ags =3 | J -
FileRef=2 F------- ! !
FileOffset ~ f---------------- !
Buffer=1 = F----1 loRingObject->RegBuffers
1
BufferOffset T Buffer[0] |~ Address f---- :
) 1
BufferSize ! Lo--o| Buffer[1] e |
! ' ¥
: Buffer[2] (\
: Buffer]...]
:
I
------------------------------ *| Output Buffer

windows ioring is very similar to Linux:

- The NT kernel has long had full async ops (IOCP)
- The ioringapi.h has submission/completion queues
- Separate APIs for files (ioring) and networks (RIO)
- The overarching term is called "overlapping IO"

image credit: https://windows-internals.com/one-i-o-ring-to-rule-them-all-a-full-read-write-exploit-primitive-on-windows-11/

Grand Central Dispatch

Serial Concurrent Serial
Queue Queue Queue
Serial Serial Concurrent
Custom Queues Queue Queue Queue
Main High Default Low Background
GCD Queues Queue Priority Priority Priority Priority
Queue Queue Queue Queue
Thread Main GCD Thread Pool
reads Thread

but macOS diverges dramatically!

- libdispatch is based on M:N threading

- the runtime defines a series of queues and priorities

- the kernel creates and destroys threads depending on backpressure
- the shared memory rings are hidden here (dynamically resized)

image credit: https://windows-internals.com/one-i-o-ring-to-rule-them-all-a-full-read-write-exploit-primitive-on-windows-11/

WebAssembly / WASI

\

~

OPERATING, SYSTEM

Rust
Source Code -> Wasm @est/s‘tem) [Ne‘twrk] ‘ Do:tod:ase,l

/

Python
[0 J E/Asr, WASI-WW, PRoxY—WAsa
[)

A
WASM
/ /L BINARY “/[WASM RUNTIME j
C/C++
a 7
[/
Y

_ J

S\

and we have emerging WebAssembly ("WASI") system interfaces:
- these have no kernel/userspace, but are sandboxed

- WASI programs interact with the outside world via capabilities
- capabilities are defined at link-time or at run-time

- the application bindings are high-level IO streams
- the WASM runtime can implement these using io_uring/etc.

image credit: https://collabnix.com/docker-and-wasm-containers-better-together/

POSIX is now firmly a historical myth

Instead, a modern stack needs to directly support these
sorts of interfaces:

Linux (io_uring, eBPF, seccomp)
macOS (Grand Central Dispatch)
Windows (IOCP, ioring)
FreeBSD (aio, jails)
OpenBSD (kqueue, pledge)
wasm (wasi, browser)
JavaScript (webworkers)
Xen/KVM (paravirtual devices)
Bare metal (direct hardware)

Hardware

Hypervisor

Kernel

Container

Processes

Apps

interrupts
memory
cpus
drivers
services
scheduling
isolation
hamespace
syscalls
joctls
libc

runtime

Deploying software on
modern infrastructure
needs shared memory
parallelism everywhere

What are some of
these post-POSIX
interfaces and do they
share anything in
common?

We're having a go at
supporting this In

OCaml 5 with our Eio
library using the new
effect handlers feature

module Main
(Console: Mirage_ types lwt.CONSOLE)
(Time: Mirage types lwt.TIME) = struct

let start c =

let rec loop = function
| -> Lwt.return unit
| n -
Console.log ¢ "hello" >>= fun () ->
Time.sleep ns (Duration.of sec 1) >>= fun () ->
Console.log ¢ "world" >>= fun () ->
loop (pred n)
in
loop

end

ML functors
for

hardware

portability
across

Monadic

cooperative

n ->
"Capabilities” l Console.log ¢ "hello" >>= fun () ->
.u)access Time.sleep ns (Duration.of sec 1) >>= fun () ->
d“_Vers passed Console.log c¢ "world" >>= fun () ->
INn as args loop (pred n)
in
loop 4

module Main

end

concurrency

(Console: Mirage types lwt.CONSOLE)
(Time: Mirage types lwt.TIME) = struct

let start c =

let rec loop = function
| 0 -> Lwt.return unit

let start ()
Eio main.run @@ fun env ->
for 1 = 0 to 5 do
traceln "hello";
Time.sleep (Stdenv.clock env) 1.0;
traceln "world"
done

Normal OCaml

Capabilities
code. No

passed in as

functors! subtype-

friendly value

let start () =
Eio main.run @@ fun env ->
for 1 = 0 to 5 do
traceln "hello";
Time.sleep (Stdenv.clock env) 1.0;
traceln "world"
done

Direct-style

blocking! No
monadic binds!

Can use
imperative

affordances in
the language

module Main
(Console: Mirage_ types lwt.CONSOLE)
(Time: Mirage types lwt.TIME) = struct

let start c =

let rec loop = function
| -> Lwt.return unit
| n ->
Console.log ¢ "hello" >>= fun () ->
Time.sleep ns (Duration.of sec 1) >>= fun () ->
Console.log ¢ "world" >>= fun () ->
loop (pred n)
in
loop

end

OCaml 5.0 (multicore+effects)

let start ()
Eio main.run @@ fun env ->
for 1 = 0 to 5 do
traceln "hello";
Time.sleep (Stdenv.clock env) 1.0;
traceln "world"
done

We can now

implement "fork"
in OCaml

open Printf

let = run (fun
fork (fun ->
printf "[tl]
let v = xchg
printf "[tl]
fork (fun ->
printf "[t2]
let v = xchg
printf "[t2]
[tl] Sending O
[t2] Sending 1
[t2] received 0
[tl] received 1

>

Sending 0\n";

0 in

received %d\n" v);
Sending 1\n";

1 in

received %d\n" v))

And xchg for

application-specified
message passing

No monadic

concurrency
tricks required

type Effect.t += Fork : (unit -> unit) -> unit t
| Yield : unit t

let fork f = perform (Fork f)
let yield () = perform Yield
let xchg v = perform (Xchg v)

Effect is an
extensible type
with a GADT
for each effect

These helper
functions
actually raise
the effect

Fork
| Yield

type Effect.t += (unit -> unit) -> unit t

unit t

let fork f =
let yield ()
let xchg v =

perform (Fork f)
= perform Yield
perform (Xchg v)

let run (main unit -> unit) unit =

let xchger = ref None in

let enqueue k v = Queue.push (continue k v) run g in

let dequeue () =
if Queue.is empty run g then ()
else Queue.pop run g () 1in

let rec spawn f =
match £ () with

() >

exception e ->

effect Yield, k ->

dequeue ()
dequeue ()

enqueue k (dequeue ()

) 7
)

effect (Fork f), k -> enqueue k (); spawn £
effect (Xchg n), k ->
match !exchanger with
|Some (n',k') -> xchger := None; enqueue k' n;
|None -> xchger := Some (n, k); dequeue ()

in
spawn main

Effects supply
a one-shot
continuation

Effects are
handled
alongside
exceptions

continue k n'

Eio uses modern IO APIs with the new OCaml 5 effects

Things that worked well
in 20 years of OCaml happiness

No forced preemption
(either concurrency or parallelism)

Arranging libraries as functors
led to good systems hygiene

Strict execution model
made systems bindings easy

Customising runloop for
application is straightforward

Sequential OCaml performance
IS very very good.

Things to improve after
20 years of OCaml pain

Error handling mixed up
monadic+exceptions+result

Deep functor stacks are just
impenetrable to figure out

Monadic concurrency led to
high heap memory usage

Exception backtraces not
preserved with Lwt/Async

Lifetimes/cancels difficult
to track systematically

Eio looks like a DSL interpreted by the |10 backend

io0_uring has many fancy features for even more speed:
- “linked requests” and “barriers” for 10

- callback steering for responses across cores

- fixed buffers and descriptors to avoid page mapping

To take full advantage, the application must:

- submit IO requests in batches

- track a parallel data dependency graph across requests
- enforce linear buffer usage

let =
let buf = Bytes.create 4096 1in
let rec copy () =
match input stdin buf 0 4096 with
0 => ()

let =
Eio main.run @@ fun env ->
Eio. (
Flow.copy
(Stdenv.stdin env)
(Stdenv.stdout env)

| got ->
output stdout buf 0 got;
copy ()
in
copy ()

The Eio library spawns
fibres to keep the uring
filled asynchronously

eio has a “low-level” interface to each supported system.
Hard to program portably but everything is exposed to the programmer.

/ eio_js

eio_solo5

unikernel \ m

"/ "\

IIpOSiX"

eio has a “low-level” interface to each supported system.
Hard to program portably but everything is exposed to the programmer.

Linux is increasingly adding many new extensions
To take advantage of these, we do type-safe bindings to io_uring with tight
integration with the OCaml| GC

let with id full t fn datum ~extra data =
match Heap.alloc t.data datum ~extra data with
| exception (Invalid argument as ex) -> check t; raise ex
| entry ->

let ptr = Heap.ptr entry 1in

let has space = fn ptr in

if has space then Some entry

else (ignore (Heap.free t.data ptr : a);

let read t ~file offset fd buf user data =

with 1d full t (fun 1d ->
Uring.submit read t.uring fd 1d buf file offset
) user data ~extra data:buf

let fn on ring fn t =
match fn t.uring with
| Uring.Cge none -> None
| Uring.Cge some { user data 1id; res } ->
let data = Heap.free t.data user data i1d in
some { result = res; data }

eio has a “low-level” interface to each supported system.
Hard to program portably but everything is exposed to the programmer.

eio has a “high-level” portable interface for applications.
Does not expose ambient resources, but instead an (OCaml) object/class-based
interface that exposes capabilities and a functional direct style of 10

type Stdenv.t = <
stdin : Flow.source;
stdout : Flow.sink;
stderr : Flow.sink;

net : Net.t;

domain mgr : Domaln manager.t;
clock : Time.clock;

mono clock : Time.Mono.t;

fs : Fs.dir Path.t;

cwd : Fs.dir Path.t;
secure random : Flow.source;
debug : Debug.t;

stdin : <stdin : #Flow.source as 'a; ..> —->
stdout : <stdout : #Flow.sink as 'a; ..> ->
stderr : <stderr : #Flow.sink as 'a; ..> —>
secure random : <secure random : #Flow.source

(** [initialise ~ctx ~endpolint ~email priv] constructs a [t] by
looking up the directory and account of [priv] at [endpoint]. If no
account 1s registered yet, a new account 1s created with contact
information of [email]. The terms of service are agreed on. *)
initialise : < net : #Eio.Net.t; .. > -> endpoint:Uri.t -> ?email:string ->
X509.Private key.t -> (t, [> "Msg of string]) result

[sign certificate ~ctx solver t sleep csr] orders a certificate for
the names 1in the signing request [csr], and solves the requested
challenges. *)

sign certificate : < net : #Eio.Net.t; .. ->

solver -> t -> (int -> unit) ->

X509.5igning request.t ->

(X509.Certificate.t list, [> 'Msg of string]) result

let cert dir env = Stdenv.cwd env
let token dir env = Eilo.Path. (Stdenv.fs env / “tokens”)

let priv _pem = Eio.Path. (load (cert dir / priv pem)) in
let esr pem = Eio.Path. (load (cert dir / csr pem)) in
let* account key = X509.Private key.decode pem (Cstruct.of string priv pem) 1in
let* request = X509.Signing request.decode pem (Cstruct.of string csr pem) 1in
let solver =
match solver, acme dir, 1ip, key with
| , Some path, None, None ->
traceln "using http solver, writing to %s" path);
let solve challenge ~prefix: ~token ~content =
let path = Eio.Path. (token dir / path / token) in
Eio.Path.save ~create: (Or truncate 00600) path content;
Ok ()

The Wild West of post-POSIX |10

Deploying software on
modern hardware
uses shared memory
parallelism all over

What are some of
these post-POSIX
interfaces and do they
share anything in
common?

We're having a go at
supporting this in
OCaml 5 with our Eio
library using the new
effect handlers feature

' Modern runtimes need to not block:

{ - shared memory channels run throughout the stack
f - make rings safer and easier to share.

1- POSIX is anathema to concurrent, parallel 1O ,
...but POSIX is still around making trouble :

 Design for post-POSIX first in your runtime/language: |
{ - io_uring forces you to design for concurrency first |
t- macOS is an awkward blocker here with GCD

1- but Windows has the best-of-breed support
the evolution of WASI[X]/WALI are critical here :

{ eio does (https://github.com/ocaml-multicore/eio):
- zero-copy memory that can be mapped elsewhere
- programmer-controlled context switching

- lower pauses due to reduced GC activity + batching
{ - very high throughput IO by default

| - reasonable migration path from Lwt/Async ,
working backtraces and capabilities by default !

https://github.com/ocaml-multicore/eio

