
Functional Networking for Millions of Docker Desktops

Anil Madhavapeddy (speaker), David J. Scott,
Patrick Ferris, Ryan T. Gibb, Thomas Gazagnaire

ICFP 2025, Singapore, Oct 14th 2025

With thanks to all the contributors over the years including Milas Bowman, Emmanuel Briney, Ian Campbell, Mathieu
Champlon, Justin Cormack, Frédéric Dalleau, Akim Demaille, Ilya Dmitrichenko, Simon Ferquel, Pierre Gayvallet,
Riyaz Faizullabhoy, Christiano Haesbaert, Anca Iordache, Thomas Leonard, Richard Mortier, Terry Moschou, Rolf
Neugebauer, Mindy Preston, Michael Roitzsch, Guillaume Rose, Akihiro Suda, Balraj Singh, Magnus Skjegstad, David
Sheets, Sebastiaan van Stijn, Tibor Vass, Gaetan de Villele, Ryuichi Watanabe, YAMAMOTO Takashi, Jeremy Yallop, the
original Docker project founder Solomon Hykes and the MirageOS and OCaml developer teams.

• Easy drag and drop installation, and autoupdates
to get latest Docker.

• Secure, sandboxed virtualisation architecture
without elevated privileges.

• Native networking support, with VPN and network
sharing compatibility.

• File sharing between container and host: uid
mapping, inotify events, etc.

• Released in 2016, with 100s of millions of users

Docker for Desktop
Aiming for a native macOS/Windows experience that
works with existing developer workflows.

2013 2015

Docker launches at
Pycon on Linux and
is adopted quickly

for cloud and
microservices

Panic stations as
users demand

macOS / Windows
support for Linux

development

2013 2015 2016

Docker launches at
Pycon on Linux and
is adopted quickly

for cloud and
microservices

Panic stations as
users demand

macOS / Windows
support for Linux

development

We start hacking on
HyperKit unikernels
to support macOS &
Windows in our new
Docker Desktop app

Docker Desktop
beta is popular, but

a huge influx of
bug reports about
corporate firewalls

We release the
OCaml VPNKit to fix
around 99% of the

bug reports and
growth continues

2013 2015 2016 20262017

Docker launches at
Pycon on Linux and
is adopted quickly

for cloud and
microservices

Panic stations as
users demand

macOS / Windows
support for Linux

development

We start hacking on
HyperKit unikernels
to support macOS &
Windows in our new
Docker Desktop app

Docker Desktop
beta is popular, but

a huge influx of
bug reports about
corporate firewalls

We release the
OCaml VPNKit to fix
around 99% of the

bug reports and
growth continues

Docker Desktop is
now supported by
Apple's Hypervisor
(and Virtualization)

frameworks

VPNKit is released as
open-source using

Lwt concurrency and
MirageOS's TCP/IP,

TLS & HTTP libraries

A majority of
professional software

developers report
using Docker

Desktop in their work!

2013 2015 2016 20262017

Docker launches at
Pycon on Linux and
is adopted quickly

for cloud and
microservices

Panic stations as
users demand

macOS / Windows
support for Linux

development

We start hacking on
HyperKit unikernels
to support macOS &
Windows in our new
Docker Desktop app

Docker Desktop
beta is popular, but

a huge influx of
bug reports about
corporate firewalls

We release the
OCaml VPNKit to fix
around 99% of the

bug reports and
growth continues

Docker Desktop is
now supported by
Apple's Hypervisor
(and Virtualization)

frameworks

VPNKit is released as
open-source using

Lwt concurrency and
MirageOS's TCP/IP,

TLS & HTTP libraries

A majority of
professional software

developers report
using Docker

Desktop in their work!

VPNKit is sped up by
using OCaml 5's
shiny new effect

handlers via our Eio
direct-style library

• The problem: users need to run Linux containers on macOS and
Windows desktops without doing any extra configuration or
changing their workflows.

• Our idea: link a library Virtual Machine Monitor to a native macOS
application, and make Linux itself an implementation detail!

• The benefits: users have an "app experience" without the gory
details of virtual machine management.

Hypervisor
framework

Linux
/dev/kvm

FreeBSD
bHyve

xHyveHyperKit

kvmtool

novm

Docker for Mac MirageOS

ukvm

firecracker

• The problem: users need to run Linux containers on macOS and
Windows desktops without doing any extra configuration or
changing their workflows.

• Our idea: link a library Virtual Machine Monitor to a native macOS
application, and make Linux itself an implementation detail!

• The benefits: users have an "app experience" without the gory
details of virtual machine management.

kernel/cpu

library

app

container run

$ docker run debian
curl ocaml.org

Linux Container

Linux Userspace

Docker container
engine and API

Linux container runtime
interface

Linux socket bindings 
(connect/bind/etc)

curl accesses
network

<html>I'm a
camel...</html>

Linux connect

container run

$ docker run debian
curl ocaml.org

Linux Container

Linux Userspace

Docker container
engine and API

Linux container runtime
interface

Linux socket bindings 
(connect/bind/etc)

curl accesses
network

<html>I'm a
camel...</html>

Linux connect

We need to make this
work on macOS and

Windows!

hypervisor (x86) or 
virt (arm64) framework macOS Kernel

Hardware CPU
virtualisation

$ docker run debian
curl ocaml.org

app launched

https://github.com/moby/hyperkit

https://github.com/moby/hyperkit

hypervisor (x86) or 
virt (arm64) framework macOS Kernel

Hardware CPU
virtualisation

$ docker run debian
curl ocaml.org

app launched

https://github.com/moby/hyperkit

static void vm_init(struct vm *vm, bool create) {
int vcpu;

if (create) callout_system_init();

vm->cookie = VM_INIT(vm);
vm->vioapic = vioapic_init(vm);
vm->vhpet = vhpet_init(vm);
vm->vatpic = vatpic_init(vm);
vm->vatpit = vatpit_init(vm);
vm->vpmtmr = vpmtmr_init(vm);

if (create) vm->vrtc = vrtc_init(vm);

CPU_ZERO(&vm->active_cpus);

vm->suspend = 0;
CPU_ZERO(&vm->suspended_cpus);

for (vcpu = 0; vcpu < VM_MAXCPU; vcpu++) {
vcpu_init(vm, vcpu, create);

}
}

HyperKit maps VM operations
into single-threaded C library
function calls in userspace

https://github.com/moby/hyperkit

hypervisor (x86) or 
virt (arm64) framework macOS Kernel

Hardware CPU
virtualisation

$ docker run debian
curl ocaml.org

app launched

static void
ocaml_mirage_block_preadv(const int handle, const struct iovec *iov,
 int iovcnt, off_t ofs, ssize_t *out, int *err) {
CAMLparam0();
CAMLlocal4(ocaml_handle, ocaml_bufs, ocaml_ofs, ocaml_result);
ocaml_handle = Val_int(handle);
ocaml_bufs = caml_alloc_tuple((mlsize_t)iovcnt);
ocaml_ofs = Val_int(ofs);
for (int i = 0; i < iovcnt; i++){
Store_field(ocaml_bufs, (mlsize_t)i, caml_ba_alloc_dims(CAML_BA_CHAR | CAML_BA_C_LAYOUT,
1, (*(iov+i)).iov_base, (*(iov+i)).iov_len));

}
OCAML_NAMED_FUNCTION("mirage_block_preadv")
ocaml_result = caml_callback3_exn(*fn, ocaml_handle, ocaml_bufs, ocaml_ofs);
if (Is_exception_result(ocaml_result)) {
*err = 1;

} else {
*err = 0;
*out = Int_val(ocaml_result);

}
CAMLreturn0;

}

OCaml is also linked as a library
and uses its standard callback

FFI to call into OCaml code

https://github.com/moby/hyperkit

Standard C library linking
conventions + OCaml FFI

Lets us shift to higher level
functional programming!

https://github.com/moby/hyperkit

macOS Kernel

Hardware CPU
virtualisation

$ docker run debian
curl ocaml.org

app launched

Hyperkit QCow storage  
OCaml libraries macOS Userspace

Docker Desktop
native applicationhypervisor (x86) or 

virt (arm64) framework

storage init

https://github.com/mirage/ocaml-qcow

https://github.com/mirage/ocaml-qcow

macOS Kernel

Hardware CPU
virtualisation

$ docker run debian
curl ocaml.org

app launched

Hyperkit QCow storage  
OCaml libraries macOS Userspace

Docker Desktop
native applicationhypervisor (x86) or 

virt (arm64) framework

storage init

 module Request = struct
 type t =
 | Connect of Block.Config.t * Qcow.Config.t
 | Get_info of int
 | Disconnect of int
 | Read of int * int * (Cstruct.t list)
 | Write of int * int * (Cstruct.t list)
 | Delete of int * int64 * int64
 | Flush of int
 end

 module Response = struct
 type ok =
 | Connect of int
 | Get_info of bool * int * int64 * bool
 | Disconnect
 | Read of int | Write of int
 | Delete
 | Flush
 type t = (ok, Qcow.write_error) result
 end

Algebraic data types
for block storage

operations
OCaml

implementation of
the QCOW format

https://github.com/mirage/ocaml-qcow

https://github.com/mirage/ocaml-qcow

network init

Linux Kernel

Embedded
LinuxKit distribution

macOS Kernel

Hardware CPU
virtualisation

$ docker run debian
curl ocaml.org

app launched

Hyperkit QCow storage  
OCaml libraries macOS Userspace

Docker Desktop
native applicationhypervisor (x86) or 

virt (arm64) framework

storage init

Linux Userspace

Docker container
engine and APIshared memory virtio

library

https://github.com/moby/hyperkit

https://github.com/moby/hyperkit

network init

Linux Kernel

Embedded
LinuxKit distribution

macOS Kernel

Hardware CPU
virtualisation

$ docker run debian
curl ocaml.org

app launched

Hyperkit QCow storage  
OCaml libraries macOS Userspace

Docker Desktop
native applicationhypervisor (x86) or 

virt (arm64) framework

storage init

Linux Userspace

Docker container
engine and APIshared memory virtio

library

Custom immutable
Linux userspace that

boots in 1-2sShared memory
protocols establish virtual

Ethernet bridges

Every single service is run
within an isolated container

namespace

https://github.com/linuxkit/linuxkit

https://github.com/linuxkit/linuxkit

container run

network init

Linux Kernel

Embedded
LinuxKit distribution

macOS Kernel

Hardware CPU
virtualisation

$ docker run debian
curl ocaml.org

app launched

Hyperkit QCow storage  
OCaml libraries macOS Userspace

Docker Desktop
native applicationhypervisor (x86) or 

virt (arm64) framework

storage init

Linux Container

Linux Userspace

Docker container
engine and API

Linux container runtime
interface

Linux socket bindings 
(connect/bind/etc)

shared memory virtio
library

curl accesses
network

(debian)

https://github.com/linuxkit/linuxkit

https://github.com/linuxkit/linuxkit

container run

network init

Linux Kernel

Embedded
LinuxKit distribution

macOS Kernel

Hardware CPU
virtualisation

$ docker run debian
curl ocaml.org

app launched

Hyperkit QCow storage  
OCaml libraries macOS Userspace

Docker Desktop
native applicationhypervisor (x86) or 

virt (arm64) framework

storage init

Linux Container

Linux Userspace

Docker container
engine and API

Linux container runtime
interface

Linux socket bindings 
(connect/bind/etc)

shared memory virtio
library

curl accesses
network

(debian)

https://github.com/linuxkit/linuxkit

bridge
traffic

https://github.com/linuxkit/linuxkit

container run

network init

Linux Kernel

Embedded
LinuxKit distribution

macOS Kernel

Hardware CPU
virtualisation

$ docker run debian
curl ocaml.org

app launched

Hyperkit QCow storage  
OCaml libraries macOS Userspace

Docker Desktop
native applicationhypervisor (x86) or 

virt (arm64) framework

storage init

Linux Container

Linux Userspace

Docker container
engine and API

Linux container runtime
interface

Linux socket bindings 
(connect/bind/etc)

shared memory virtio
library

curl accesses
network

(debian)

A huge number of bug reports flowed into our beta
program, because VPN software and corporate
installations do not like bridged virtual machine traffic.
Virus scanners think this is a network attack!

container run

network init

Linux Kernel

Embedded
LinuxKit distribution

macOS Kernel

Hardware CPU
virtualisation

$ docker run debian
curl ocaml.org

app launched

Hyperkit QCow storage  
OCaml libraries macOS Userspace

Docker Desktop
native applicationhypervisor (x86) or 

virt (arm64) framework

storage init

Linux Container

Linux Userspace

Docker container
engine and API

Linux container runtime
interface

Linux socket bindings 
(connect/bind/etc)

shared memory virtio
library

curl accesses
network

(debian)

A huge number of bug reports flowed into our beta
program, because VPN software and corporate
installations do not like bridged virtual machine traffic.
Virus scanners think this is a network attack!

Idea: let's repurpose a 1990s protocol used by
PalmPilots called SLIRP, and translate the low-level
Ethernet network traffic into macOS socket calls.
We reconstruct network traffic into socket calls!

container run

network init

Linux Kernel

Embedded
LinuxKit distribution

macOS Kernel

Hardware CPU
virtualisation

$ docker run debian
curl ocaml.org

app launched

Hyperkit QCow storage  
OCaml libraries macOS Userspace

Docker Desktop
native applicationhypervisor (x86) or 

virt (arm64) framework

storage init

Linux Container

Linux Userspace

Docker container
engine and API

Linux container runtime
interface

Linux socket bindings 
(connect/bind/etc)

shared memory virtio
library

curl accesses
network

(debian)

A huge number of bug reports flowed into our beta
program, because VPN software and corporate
installations do not like bridged virtual machine traffic.
Virus scanners think this is a network attack!

Idea: let's repurpose a 1990s protocol used by
PalmPilots called SLIRP, and translate the low-level
Ethernet network traffic into macOS socket calls.
We reconstruct network traffic into socket calls!

We took MirageOS (our OCaml unikernel) and used
its libraries to turn every packet into "socket flows",
and then replay those in the macOS native app.
Bug reports dropped by 99% when we shipped this.

container run

network init

Linux Kernel

Embedded
LinuxKit distribution

macOS Kernel

Hardware CPU
virtualisation

$ docker run debian
curl ocaml.org

app launched

Hyperkit QCow storage  
OCaml libraries macOS Userspace

Docker Desktop
native applicationhypervisor (x86) or 

virt (arm64) framework

storage init

Linux Container

Linux Userspace

Docker container
engine and API

Linux container runtime
interface

Linux socket bindings 
(connect/bind/etc)

shared memory virtio
library

curl accesses
network

(debian)

VPNKit packet processing
library

MirageOS HTTP/TCP 
OCaml libraries

<html>I'm a
camel...</html>

macOS connect

VPNKit macOS 
socket bindings

translate traffic

Linux connect

rebuild traffic

https://github.com/moby/vpnkit

https://github.com/moby/vpnkit

Using OCaml in production: the Good Bits
module type FLOW_CLIENT = sig
 include Mirage_flow_combinators.SHUTDOWNABLE
 type address
 val connect:
 ?read_buffer_size:int ->  
 address ->
 (flow, [`Msg of string]) result Lwt.t
end

module type Connector = sig
 include FLOW_CLIENT
 val connect: unit -> flow Lwt.t
 include READ_INTO with type flow := flow
 and type error := error
end

• Complex network logic using OCaml
functors is highly modular

OCaml module signatures to
assemble our interfaces

https://github.com/moby/vpnkit

https://github.com/moby/vpnkit

Using OCaml in production: the Good Bits
module type FLOW_CLIENT = sig
 include Mirage_flow_combinators.SHUTDOWNABLE
 type address
 val connect:
 ?read_buffer_size:int ->  
 address ->
 (flow, [`Msg of string]) result Lwt.t
end

module type Connector = sig
 include FLOW_CLIENT
 val connect: unit -> flow Lwt.t
 include READ_INTO with type flow := flow
 and type error := error
end

• Complex network logic using OCaml
functors is highly modular

module Bind = Bind.Make(Host.Sockets)
module Forward_unix = Forward.Make(Mclock)(Connect.Unix)(Bind)
module Forward_hvsock = Forward.Make(Mclock)(Connect.Hvsock)(Bind)

OCaml module signatures to
assemble our interfaces

OCaml functors to compose
higher order implementations

multiple times

https://github.com/moby/vpnkit

https://github.com/moby/vpnkit

Using OCaml in production: the Good Bits
let input_ipv4 t ipv4 = match ipv4 with
| Ipv4 {src; dst; payload =
 Udp { src = src_port; dst = 53;
 payload = Payload payload; _ }; _} ->
 let udp = t.endpoint.Endpoint.udp4 in
 !dns >>= fun t ->
 Dns_forwarder.handle_udp ~t ~udp ~src ~dst
 ~src_port payload >|= lift_udp_error
| Ipv4 {src; dst;
 payload= Tcp {src=src_port; dst=dst_port;
 syn; rst; raw; payload=Payload _; _}; _} ->
 let id = Stack_tcp_wire.v ~src_port:dst_port
 ~dst:src ~src:dst ~dst_port:src_port in
 begin match !http with
 | None -> Lwt.return_ok
 | Some http ->
 let dst = dst, dst_port in
 (* HTTP proxy forwarding logic follows... *)
...

• Complex network logic using OCaml
functors is highly modular

• Pattern matching on ADTs is
awesome for network processing!

https://github.com/moby/vpnkit

https://github.com/moby/vpnkit

Using OCaml in production: the Good Bits
• Complex network logic using OCaml

functors is highly modular

• Pattern matching on ADTs is
awesome for network processing!

• A stable and predictable foreign
function interface for the systems
bindings

https://github.com/moby/vpnkit

One address space!

https://github.com/moby/vpnkit

Shifting towards direct-style effects
• Lwt is awesome, but monadic concurrency

composes poorly with other monads like
errors/options.

• Lwt uses custom operators and exposes
concurrency in the types of every function
that uses, with errors handled in the bind.

• So we're now taking advantage of OCaml
5.0's effect handlers and a new library Eio
to shift away from the classic Lwt.

https://github.com/ocaml-multicore/eio

module Make_packet_proxy
(I: Mirage_flow.S) (O: Mirage_flow.S) = struct
 let run incoming outgoing =
 let rec loop () =
 I.read incoming >>= function
 | Error err -> fail "%a" I.pp_error err
 | Ok `Eof -> Lwt.return_unit
 | Ok (`Data buf) -> begin
 O.write outgoing buf >>= function
 | Ok () -> loop ()
 | Error err -> fail "%a" O.pp_error err
 end
 in loop ()

Older monadic Lwt code with
custom binds and functors

wrapping all logic

https://github.com/ocaml-multicore/eio

Shifting towards direct-style effects
module Proxy = struct
 let run incoming outgoing =
 try
 while true do
 Eio.Flow.copy incoming outgoing
 done
 with
 | End_of_file -> ()
 | Write_error err ->
 fail "%a" pp_write_error err
 | Read_error err ->
 fail "%a" pp_read_error err
end

module Make_packet_proxy
(I: Mirage_flow.S) (O: Mirage_flow.S) = struct
 let run incoming outgoing =
 let rec loop () =
 I.read incoming >>= function
 | Error err -> fail "%a" I.pp_error err
 | Ok `Eof -> Lwt.return_unit
 | Ok (`Data buf) -> begin
 O.write outgoing buf >>= function
 | Ok () -> loop ()
 | Error err -> fail "%a" O.pp_error err
 end
 in loop ()

Newer direct-style Eio code
using native OCaml control
flow due to effect handlers

Older monadic Lwt code with
custom binds and functors

wrapping all logic

Less heap allocation and
more modern IO backends
makes throughput faster

https://github.com/ocaml-multicore/eio

https://github.com/ocaml-multicore/eio

Functional Networking for Docker worked!

• OCaml's been a solid choice through
Docker for the "invisible systems glue".

• Very little drama in production, and using
library virtual machine monitors is now a
defacto standard for similar applications on
macOS and Windows.

• The 'kernel as a library' unikernel trick could
apply to many emerging PL projects (like the
WebAssembly Linux Interface)

• Performance started to dip, so we're now
using OCaml 5.0's effect handlers and Eio.
The shift is still in progress, but is so far both
ergonomic and performant.

• It's still got a lot of dynamic lifetime
management. But on the horizon is...

https://github.com/ocaml-multicore/eio https://oxcaml.org

https://github.com/ocaml-multicore/eio
https://oxcaml.org

Functional Networking for Millions of Docker Desktops

Anil Madhavapeddy (speaker), 
David J. Scott, Patrick Ferris, Ryan T. Gibb, Thomas Gazagnaire

ICFP 2025, Singapore, Oct 14th 2025

With thanks to all the contributors over the years including Milas Bowman, Emmanuel Briney, Ian Campbell, Mathieu
Champlon, Justin Cormack, Frédéric Dalleau, Akim Demaille, Ilya Dmitrichenko, Simon Ferquel, Pierre Gayvallet,
Riyaz Faizullabhoy, Christiano Haesbaert, Anca Iordache, Thomas Leonard, Richard Mortier, Terry Moschou, Rolf
Neugebauer, Mindy Preston, Michael Roitzsch, Guillaume Rose, Akihiro Suda, Balraj Singh, Magnus Skjegstad, David
Sheets, Sebastiaan van Stijn, Tibor Vass, Gaetan de Villele, Ryuichi Watanabe, YAMAMOTO Takashi, Jeremy Yallop, the
original Docker project founder Solomon Hykes and the MirageOS and OCaml developer teams.

