Functional Networking for Millions of Docker Desktops
af-xz30

Anil Madhavapeddy (speaker), David J. Scott,
Patrick Ferris, Ryan T. Gibb, Thomas Gazagnaire

ICFP 2025, Singapore, Oct 14th 2025

With thanks to all the contributors over the years including Milas Bowman, Emmanuel Briney, Ian Campbell, Mathieu
Champlon, Justin Cormack, Frédéric Dalleau, Akim Demaille, Ilya Dmitrichenko, Stmon Ferquel, Pierre Gayvallet,
Riyaz Faizullabhoy, Christiano Haesbaert, Anca Iordache, Thomas Leonard, Richard Mortier, Terry Moschou, Rolf
Neugebauer, Mindy Preston, Michael Roitzsch, Guillaume Rose, Akihiro Suda, Balraj Singh, Magnus Skjegstad, David
Sheets, Sebastiaan van Stijn, Tibor Vass, Gaetan de Villele, Ryuichi Watanabe, YAMAMOTO Takashi, Jeremy Yallop, the

original Docker project founder Solomon Hykes and the MirageOS and OCaml developer teams.

y \ \ y N N
y A y \

A
OCaml

il

il
)

O

dcker

Docker for

Desktop

Aiming for a native macOS/Windows experience that

WOrks with existing de

* Easy drag and drop
to get latest Docker.

veloper workflows.

installation, and autoupdates

e Secure, sandboxed virtualisation architecture
without elevated privileges.

* Native networking support, with VPN and network
sharing compatibility.

* File sharing betweer

container and host: uld

mapping, Inotify eve

NS, etcC.

- Released in 2016, with 100s of millions of users

Docker launches at
Pycon on Linux and
IS adopted quickly
for cloud and
MmiCroservices

| — S

Panic stations as
users demand
macOS / Windows
support for Linux
development

g 7
docker

moby/vpnKkit

A toolkit for embedding VPN capabilities in your

application
Docker launches at We start hacking on We release the
Pycon on Linux and HyperKit unikernels OCaml VPNKIt to fix
is adopted quickly to support macOS & around 99% of the
for cloud and Windows in our new bug reports and
microservices Docker Desktop app growth continues

Panic stations as Docker Desktop
users demand beta is popular, but

macOS / Windows a huge influx of
support for Linux bug reports about
development corporate firewalls

g ¢
docker

moby/vpnkit

A toolkit for embedding VPN capabilities in your

application

Docker launches at We start hacking on We release the VPNKit is released as
Pycon on Linux and HyperKit unikernels OCaml VPNKIit to fix open-source using
is adopted quickly to support macOS & around 99% of the Lwt concurrency and
for cloud and Windows in our new bug reports and MirageOS's TCP/IP,

microservices Docker Desktop app growth continues TLS & HTTP libraries

A A A 7§
2013 2015 2016 2017 2026

Panic stations as Docker!esktop Docker Desktop is A maj!rity of
users demand beta is popular, but now supported by professional software

macOS / Windows a huge influx of Apple's Hypervisor developers report

support for Linux bug reports about (and Virtualization) using Docker
development corporate firewalls frameworks Desktop in their work!

moby/hyperkit

A toolkit for embedding hypervisor capabilities in

N ESa"N
¢
)

docker

your application

moby/vpnkit

A toolkit for embedding VPN capabilities in your
application ~r \
OCaml
Docker launches at We start hacking on We release the VPNKit is released as VPNKit is sped up by
Pycon on Linux and HyperKit unikernels OCaml VPNKit to fix open-source using using OCaml 5's
is adopted quickly to support macOS & around 99% of the Lwt concurrency and shiny new eifect
for cloud and Windows in our new bug reports and MirageOS's TCP/IP, handlers via our Eio
microservices Docker Desktop app growth continues TLS & HTTP libraries direct-style library

A A A 7§ 7 §
2013 2015 2016 2017 2026

Panic stations as Docker!esktop Docker Desktop is A maj!rity of
users demand beta is popular, but now supported by professional software

macOS / Windows a huge influx of Apple's Hypervisor developers report

support for Linux bug reports about (and Virtualization) using Docker
development corporate firewalls frameworks Desktop in their work!

= moby/hyperkit

A toolkit for embedding hypervisor capabilities in

your application

 The problem: users need to run Linux containers on macOS and
Windows desktops without doing any extra configuration or
changing their workflows.

 Ouridea: link a library Virtual Machine Monitor to a native macQOS
application, and make Linux itself an implementation detail!

 The benefits: users have an "app experience” without the gory
details of virtual machine management.

 The problem: users need to run Linux containers on macOS and
Windows desktops without doing any extra configuration or
changing their workflows.

 Ouridea: link a library Virtual Machine Monitor to a native macQOS
application, and make Linux itself an implementation detail!

 The benefits: users have an "app experience” without the gory
details of virtual machine management.

B Hypervisor FreeBSD Linux .
remelier framework oHyve /dev/kvm \ lrecracker
l N | ' novm
library HyperKit <«+— XxHyve ukvm
l i kvmtool

app Docker for Mac MirageOS

Linux Container

" curlaccesses =
Linux container runtime networx Linux socket bindings
interface Linux Userspace (connect/bind/etc)

Linux connect

container run

Docker container
engine and API

¢ docker run debian <html>I'm a
curl ocaml.org camel...</html>

Linux Container

" curlaccesses =
Linux container runtime networx Linux socket bindings
interface Linux Userspace (connect/bind/etc)

Linux connect

container run

Docker container
engine and API

We need to make this

work on macOS and
Windows!

¢ docker run debian <html>I'm a
curl ocaml.org camel...</html>

hypervisor (x86) or
virt (arm64) framework

macOS Kernel

app launched Hardware CPU

_ virtualisation
$ docker run debilan
curl ocaml.org

httos.//qgithub.com/moby/hyperkit

https://github.com/moby/hyperkit

static void vm init(struct vm *vm, bool create) {
int vcpu;

if (create) callout system init();

vm->cookie VM INIT(vm);
vm->vioaplic = vioapilc init(vm);
vmm->vhpet = vhpet init(vm);
vm->vatpic vatpic init(vm);
vm->vatpit vatpit init(vm);
vm->vpmtmr vpmtmr init(vm);

1f (create) vm->vrtc = vrtc _init(vm);
CPU_ZERO(&vm->active cpus);

vin->suspend = 0;
CPU ZERO(&vm->suspended cpus);

for (vepu = 0; vcpu < VM MAXCPU; vcpu++) {
vcpu init(vm, vcpu, create);
}
}

hypervisor (x86) or
virt (armoe4) framework

app launched

$ docker run debian
curl ocaml.org

macOS Kernel

Hardware CPU
virtualisation

https./github.com/moby/hyperkit

https://github.com/moby/hyperkit

static void
ocaml mirage block preadv(const int handle, const struct iovec *iov,
int iovent, off t ofs, ssize t *out, int *err) {
CAMLparamO () ;
CAMLlocal4 (ocaml handle, ocaml bufs, ocaml ofs, ocaml result);
ocaml handle = Val int(handle);
ocaml bufs = caml alloc tuple((mlsize t)iovcnt);
ocaml ofs = Val int(ofs);
for (int 1 = 0; 1 < iovcnt; i++){

Store field(ocaml bufs, (mlsize t)i, caml ba alloc dims(CAML BA CHAR | CAML BA C LAYOU

1, (*(iov+i)).iov base, (*(iov+i)).iov len));

}
OCAML NAMED FUNCTION('mirage block preadv')

ocaml result = caml callback3 exn(*fn, ocaml handle, ocaml bufs, ocaml ofs);

if (Is_exception result(ocaml result)) {
*err 1;

} else
*err
*out

}
CAMLreturnO;

N —~ |l

0;
Int val(ocaml result);

hypervisor (x86) or

virt (arm64) framework macOS Kernel

app launched Hardware CPU

_ virtualisation
$ docker run debian

curl ocaml.org

https./github.com/moby/hyperkit

https://github.com/moby/hyperkit

macOS Userspace

storage init

Docker Desktop
native application

hypervisor (x86) or

virt (arm64) framework macOS Kernel

app launched Hardware CPU

. virtualisation
$ docker run debilan
curl ocaml.or . |
J https://github.com/mirage/ocaml-gcow

https://github.com/mirage/ocaml-qcow

module Request =

struct

type t =

end

Connect of Block.Config.t * Qcow.Config.t
Get info of int

Disconnect of int

Read of int * int * (Cstruct.t list)
Write of int * int * (Cstruct.t list)
Delete of int * int64 * 1nté64

Flush of int

module Response =
type ok =
Connect of int

struct

Get info of bool * int * int64 * bool

Disconnect
Read of int | Write of int
Delete
Flush
type t = (ok, Qcow.write error) result
end

macOS Userspace

storage init

hypervisor (x86) or
virt (armoe4) framework

app launched

$ docker run debian
curl ocaml.org

Docker Desktop
native application

macOS Kernel

Hardware CPU
virtualisation

https./github.com/mirage/ocami-qgcow

https://github.com/mirage/ocaml-qcow

Linux Userspace

Docker container

shared memory virtio engine and API
ibrary Linux Kernel

network init

Embedded
Hyperkit QCow storage LinuxKit distribution
OCaml libraries macOS Userspace

storage init

Docker Desktop
native application

hypervisor (x86) or

virt (arm64) framework macOS Kernel

app launched Hardware CPU

virtualisation
$ docker run debilan
curl ocaml.or
J https://github.com/moby/hyperkit

https://github.com/moby/hyperkit

Linux Userspace

Docker container
engine and API

I shared memory virtio

library Linux Kernel

network init

Embedded
LinuxKit distribution

macOS Userspace

storage init
/ Docker Desktop

native application

hypervisor (x86) or

virt (arm64) framework macOS Kernel

app launched Hardware CPU

virtualisation

$ docker run debian

curl ocaml.or
J https://qithub.com/linuxkit/linuxkit

https://github.com/linuxkit/linuxkit

Linux Container

" curlaccesses =
Linux container runtime networx Linux socket bindings
interface Linux Userspace (connect/bind/etc)

container run (debian)

Docker container

shared memory virtio engine and API
ibrary Linux Kernel

network init

Embedded
Hyperkit QCow storage LinuxKit distribution
OCaml libraries macOS Userspace

storage init

Docker Desktop
native application

hypervisor (x86) or

virt (arm64) framework macOS Kernel

app launched Hardware CPU

virtualisation
$ docker run debilan
curl ocaml.or
J https://github.com/linuxkit/linuxkit

https://github.com/linuxkit/linuxkit

Linux Container

m
interface Linux Userspace (connect/bind/etc)
container runT (debian)
Docker container
shared memory virtio engine and API
library Linux Kernel

network init

bridge

Embedded traffic

Hyperkit QCow storage LinuxKit distribution
OCaml libraries macOS Userspace

storage init

Docker Desktop
native application

hypervisor (x86) or

virt (arm64) framework macOS Kernel

app launched Hardware CPU

virtualisation
$ docker run debilan
curl ocaml.or
J https://github.com/linuxkit/linuxkit

https://github.com/linuxkit/linuxkit

A huge number of bug reports flowed into our beta

orogram, because VPN software and corporate

installations do not like bridged virtual machine traffic.
Virus scanners think this is a network attack!

A huge number of bug reports flowed into our beta
orogram, because VPN software and corporate

installations do not like bridged virtual machine traffic.
Virus scanners think this is a network attack!

|[dea: let's repurpose a 1990s protocol used by
PalmPilots called SLIRP, and translate the low-level

Ethernet network traffic into macQOS socket calls.
We reconstruct network traffic into socket calls!

A huge number of bug reports tlowed into our beta
orogram, because VPN software and corporate

installations do not like bridged virtual machine traffic.
Virus scanners think this is a network attack!

|[dea: let's repurpose a 1990s protocol used by
PalmPilots called SLIRP, and translate the low-level

Ethernet network traffic into macQOS socket calls.
We reconstruct network traffic into socket calls!

We took MirageOS (our OCaml unikernel) and used
ts libraries to turn every packet into "socket flows",

and then replay those in the macOS native app.
Bug reports dropped by 99% when we shipped this.

Linux Container

" curlaccesses =
Linux container runtime networx Linux socket bindings
interface Linux Userspace (connect/bind/etc)

l Linux connect

container runT (debian)
Docker container

engine and API

shared memory virtio MirageOS HTTP/TCP
libr

ary Linux Kernel OCaml libraries
network init rebuild traffic
Embedded
Hyperkit QCow storage LinuxKit distribution VPNK:It packet processing
OCaml libraries macOS Userspace library
storage init Docker Deskt translate traffic
ocker Desktop

native application

VPNKIit macOS

socket bindings

hypervisor (x86) or
virt (arm64) framework

macOS Kernel

macOS connect

app launched Hardware CPU

virtualisation ,
$ docker run debian <html>I'm a
curl ocaml.org camel...</html>

https.//github.com/moby/vpnkit

https://github.com/moby/vpnkit

- Complex network logic using OCaml

functors is highly modular

OCaml module signatures to

httos./github.com/moby/vonkit

assemble our interfaces

Using OCaml in production: the Good Bits

module type FLOW CLIENT = sig
include Mirage flow combinators.SHUTDOWNABLE
type address
val connect:
?read buffer size:int ->
address ->
(flow, [Msg of string]) result Lwt.t
end

module type Connector = sig
include FLOW CLIENT
val connect: unit -> flow Lwt.t
include READ INTO with type flow := flow
and type error := error

end

https://github.com/moby/vpnkit

- Complex network logic using OCaml
functors is highly modular

OCaml module signatures to
assemble our interfaces

OCaml functors to compose
higher order implementations
multiple times

Using OCaml in production: the Good Bits

module type FLOW CLIENT = sig
include Mirage flow combinators.SHUTDOWNABLE
type address
val connect:
?read buffer size:int ->
address ->
(flow, [Msg of string]) result Lwt.t
end

module type Connector = sig
include FLOW CLIENT
val connect: unit -> flow Lwt.t
include READ INTO with type flow := flow
and type error := error

end

module Bind = Bind.Make(Host.Sockets)

module Forward unix
module Forward hvsock

httos./github.com/moby/vonkit

Forward.Make(Mclock) (Connect.Unix) (Bind)
= Forward.Make(Mclock) (Connect.Hvsock) (Bind)

https://github.com/moby/vpnkit

Using OCaml in production: the Good Bits

- Complex network logic using OCam| [OF Imput ipve © ABve S mateh ipve with
_ _ pvd {src; dst; payload =
functors is highly modular Udp { src = src_port; dst = 53;

payload = Payload payload; }; } =->
let udp = t.endpoint.Endpoint.udp4 in
ldns >>= fun t ->

* Pattern matChlng On ADTS |S Dns_forwarder.handle_po ~t ~udp ~src -~dst
. ~src port payload >|= 1lift udp error
awesome for network processing! | Ipvé {sre; dst; -

payload= Tcp {src=src port; dst=dst port;
syn; rst; raw; payload=Payload ; }; } =->
let 1d = Stack tcp wire.v ~src port:dst port
~dst:src ~src:dst ~dst port:src port 1in
begin match !http with
| None -> Lwt.return ok
| Some http ->
let dst = dst, dst port in
(* HTTP proxy forwarding logic follows... *)

httos./github.com/moby/vonkit

https://github.com/moby/vpnkit

- Complex network logic using OCaml
functors is highly modular

- Pattern matching on ADTs Is
awesome for network processing!

- A stable and predictable foreign
function interface for the systems

bindings

httos./github.com/moby/vonkit

Using OCaml in production: the Good Bits

sall OCaml

0 B swit

A
\

Objectiv

One address space!

https://github.com/moby/vpnkit

Shifting towards direct-style effects

module Make packet proxy
(I: Mirage flow.S) (O: Mirage flow.S) = struct
let run i1ncoming outgoing =
let rec loop () =
I.read incoming >>= function
Error err -> fail "%a" I.pp error err
Ok "Eof -> Lwt.return unit
Ok (Data buf) -> begin
O.write outgoing buf >>= function

| 0k () -> loop ()
| Error err -> fail "%a" O.pp error err
end
in loop ()

Older monadic Lwt code with
custom binds and functors
wrapping all logic

https.//github.com/ocami-multicore/eio

Lwt iIs awesome, but monadic concurrency
composes poorly with other monads like
errors/options.

Lwt uses custom operators and exposes
concurrency in the types of every function
that uses, with errors handled in the bind.

So we're now taking advantage of OCaml
5.0's effect handlers and a new library Eio
to shift away from the classic Lwit.

https://github.com/ocaml-multicore/eio

Shifting towards direct-style effects

module Make packet proxy

let run i1ncoming outgoing =
let rec loop () =
I.read incoming >>= function
Error err -> fail "%a" I.pp error err
Ok "Eof -> Lwt.return unit
Ok (Data buf) -> begin
O.write outgoing buf >>= function
| 0k () -> loop ()
| Error err -> fail
end
in loop ()

o
cxe!

(I: Mirage flow.S) (O: Mirage flow.S) = struct

O.pp error err

Older monadic Lwt code with
custom binds and functors
wrapping all logic

https.//github.com/ocami-multicore/eio

module Proxy = struct
let run incoming outgoing =
try
while true do
Eio.Flow.copy 1ncoming outgoilng
done
with
| End of file -> ()
| Write error err ->
fail "%a" pp write error err
| Read error err ->
fail "%a" pp read error err

end
Newer direct-style Eio code Less heap allocation and
using native OCaml control more modern IO backends

flow due to effect handlers makes throughput faster

https://github.com/ocaml-multicore/eio

Functional Networking for Docker worked!

OCaml's been a solid choice through
Docker for the "invisible systems glue”.

Very little drama in production, and using
library virtual machine monitors is now a
defacto standard for similar applications on
macOS and Windows.

The 'kernel as a library' unikernel trick could

apply to many emerging PL projects (like the
WebAssembly Linux Interface)

https.//github.com/ocami-multicore/eio

Performance started to dip, so we're now
using OCaml 5.0's effect handlers and Eio.
The shift is still in progress, but is so far both
ergonomic and performant.

It's still got a lot of dynamic lifetime
management. But on the horizon is...

httos.//oxcaml.org

https://github.com/ocaml-multicore/eio
https://oxcaml.org

Functional Networking for Millions of Docker Desktops
af-xz30

Anil Madhavapeddy (speaker),
David J. Scott, Patrick Ferris, Ryan 1. Gibb, Thomas Gazagnaire

ICFP 2025, Singapore, Oct 14th 2025

With thanks to all the contributors over the years including Milas Bowman, Emmanuel Briney, Ian Campbell, Mathieu
Champlon, Justin Cormack, Frédéric Dalleau, Akim Demaille, Ilya Dmitrichenko, Stmon Ferquel, Pierre Gayvallet,
Riyaz Faizullabhoy, Christiano Haesbaert, Anca Iordache, Thomas Leonard, Richard Mortier, Terry Moschou, Rolf
Neugebauer, Mindy Preston, Michael Roitzsch, Guillaume Rose, Akihiro Suda, Balraj Singh, Magnus Skjegstad, David
Sheets, Sebastiaan van Stijn, Tibor Vass, Gaetan de Villele, Ryuichi Watanabe, YAMAMOTO Takashi, Jeremy Yallop, the

original Docker project founder Solomon Hykes and the MirageOS and OCaml developer teams.

y \ \ y N N
y A y \

A
OCaml

il

il
)

O

dcker

