
Modularizing Reasoning about
AI Capabilities
via Abstract Dijkstra Monads

Cyrus Omar (University of Michigan)
Patrick Ferris (University of Cambridge)
Anil Madhavapeddy (University of Cambridge)

HOPE 2024

Generative AI is increasingly agentic

AI agents perform actions on behalf of a human principal within an environment.

● The action language is an imperative programming language.

● Problem: The environment might provide access to sensitive data and
effects. How do we avoid bad behavior?

Example: Apple Intelligence

https://www.apple.com/apple-intelligence/

Example: SWE-Agent

https://princeton-nlp.github.io/SWE-agent/

Example: The AI Scientist

https://sakana.ai/ai-scientist/

Agentic AIs Behaving Badly

https://sakana.ai/ai-scientist/

AI Tasked with Enacting Environmental Interventions

1. Modify or ignore sensor data to minimize the extent of habitat loss

2. Leak location sightings of vulnerable species to poachers

3. Enact an intervention that may not satisfy legal constraints
(e.g. water rights agreements)

Example: “filtering” destructively

[{ "file": "iberian-lynx.geojson", "rarity": 3 }]

I have a JSON file with an array of entries that contain: a "file" key that points to an
geojson file in the same directory, and a "rarity" key that is an integer from 0 to 4
that is a measure of how rare the species is (3 and up is endangered or worse).
Write me a script that will filter out all the endangered species to protect them.

Python 🐍
 ...inside filter_endangered_species...
 # Optionally, remove the image files associated with endangered species
 endangered_files = [entry['file'] for entry in data if entry.get(“rarity”, 3) > threshold]
 for file_path in endangered_files:
 try:
 os.remove(file_path) # !!!!!
 print(f"Removed endangered species file: {file_path}")
 except FileNotFoundError:
 print(f"File not found {file_path}")

if __name__ == "__main__":
 # Replace these paths with the actual paths to your files
 input_json_file = "species_data.json"
 output_json_file = "filtered_species_data.json"

 filter_endangered_species(input_json_file, output_json_file)

OCaml 🐫
 (* Optionally remove the image files associated with endangered species *)
 List.iter
 (fun entry ->
 let endangered = entry |> member "rarity" |> to_float |> int_of_float in
 if endangered > threshold then
 let file_path = entry |> member "file" |> to_string in
 try
 Sys.remove file_path; (* !!! *)
 Printf.printf "Removed endangered species file: %s\n" file_path
 with
 | Sys_error _ -> Printf.printf "File not found: %s\n" file_path)
 data

Sandboxing?

Simple sandboxing is too coarse and imprecise
Running the agent within a sandbox that coarsely limits access to the file
system, the network, and other sensitive resources is too restrictive… we want to
provide access to these resources for certain tasks.

We want to express more precise constraints on what an AI can do.

Safely Enacting Environmental Interventions

1. Modify or ignore sensor data to minimize the extent of habitat loss
But we may want to be able to delete duplicate sensor data in some
phases of the analysis.

2. Leak location sightings of vulnerable species to poachers
But we still want to be able to work with this data to design effective
interventions — we want a sandbox that limits information flows, in a
statistical sense (differential privacy).

3. Enact an intervention that may not satisfy legal constraints
We want a sandbox that requires that a sound causal
argument has been formulated.

Capability-Based Security

There has been a long line of work on capability-based security.

● Access to sensitive data and effects can occur only via unforgeable
capabilities granted explicitly.

● Principle of least authority: provide access to the least powerful
capabilities that suffice for the goal.

AI as a malicious programmer?

J.B. Dennis, E.C. Van Horn. “Programming Semantics for Multiprogrammed
Computations.” CACM, 1966

Capability-Based Module Systems
● Capabilities can be expressed as modules.

● Limiting access to modules other than those passed in explicitly as
arguments ensures capability safety.

● Reasoning about access to effects happens at the architectural level.

● Classic example: Logging
○ The Logger module is given access to the FileIO module.
○ Clients of Logger do not get access to FileIO directly,

so their capability is attenuated by Logger.

Interesting languages: Wyvern, E, W7, Newspeak, MzScheme, Joe-E,
Emily, CaPerl, Oz_e, Caja, Hardened JavaScript, …

Simple Example: Logging
module type ILogger
 (* abstract monad *)
 type Cmd a
 val return : a -> Cmd a
 val bind : Cmd a -> (a -> Cmd b) -> Cmd b

 (* only allows access to given directories *)
 val log : string -> Cmd ()

module Logger (FileIO : IFileIO, log : file): ILogger
 type Cmd a = FileIO a
 val return = FileIO.return
 val bind = FileIO.bind
 val log s = FileIO.append log s

Modularizing Reasoning about Capabilities
● The fact that Logger only appends to a specified log file and does not

access other files is a reasoning obligation.

● Critically, in a capability-safe language, this reasoning is modularized: only
need to prove that the Logger API has this property locally. The language’s
metatheory (via parametricity) limits the client’s reasoning obligations.

Modularizing Reasoning about AI Capabilities
● If an AI agent’s actions are expressed in a capability safe language, then we

can provably control its capabilities.
about the effects a capability allows.

Modularizing Reasoning about AI Capabilities
● If an AI agent’s actions are expressed in a capability safe language, then we

can provably control its capabilities.

○ We, who?
An organization should be able to specify a capability access policy:

π : (Agent, Task) → (c : C)
mapping from agent and task to a capability c with capability signature C

○ Provable or proven?
A dependently typed reasoning framework could allow
modular proofs about the effects a capability allows.

Modularizing Reasoning about AI Capabilities
● If an AI agent’s actions are expressed in a capability safe language, then we

can provably control its capabilities.

○ We, who?
Responsible humans should specify a capability access policy:

π : (Agent, Task) → (c : C)
mapping from agent and task to a capability c with capability signature C

○ Provable or proven?
A dependently typed reasoning framework could allow
modular proofs about the effects a capability allows.

Modularizing Reasoning about AI Capabilities
● If an AI agent’s actions are expressed in a capability safe language, then we

can provably control its capabilities.

○ We, who?
Responsible humans should specify a capability access policy:

π : (Agent, Task) → (c : C)
mapping from agent and task to a capability c with capability signature C

○ Provable or proven?
A dependently typed reasoning framework (e.g. F*) allows
modular proofs about the effects a capability allows.

An Architecture for Reasoning about Agentic AI

Safely Enacting Environmental Interventions

1. Modify or ignore sensor data to minimize the extent of habitat loss
But we may want to be able to delete duplicate sensor data in some
phases of the analysis.

2. Leak location sightings of vulnerable species to poachers
But we still want to be able to work with this data to design effective
interventions — we want a sandbox that limits information flows, in a
statistical sense (differential privacy).

3. Enact an intervention that may not satisfy legal constraints
We want a sandbox that requires that a sound causal
argument has been formulated.

AI Capability Constraining Mechanisms

- Simple Access Control

- Information Flow Control

- Causal Reasoning Obligations

- Obligating Human Review

Antagonistic AIs
● Tasks given to AI agents are generally expressed in part using natural

language.

● We may be able to use an antagonistic AI trained to enforce the
principle of least authority to deduce further restrictions to the
capability access policy from the natural language query.

● Example: “Let the team leads know what we decided about possible
water usage increases in my meeting with the science team.”
Policy: information from internal mtgs does not flow externally
Antagonistic AI: information should only flow to leads

1. We need a specification of what is allowable data access.
Lets do this in F* using effects -> step-indexed monads

2. We need interfaces in the programming language being used
Lets extract efficient C, OCaml and Python APIs

3. We need to compose multiple accesses into a higher level
“statistical” spec

AI as a Malicious Programmer

Capability Signatures
module type CapDataAccess (readonly : list dir, writable : list dir)
 (* abstract monad *)
 type Cmd a

 val return : a -> Cmd a
 val bind : Cmd a -> (a -> Cmd b) -> Cmd b

 (* only allows access to given directories *)
 val readfile : path -> Cmd string

 (* only allows writes to writable dirs *)
 val writefile : path -> string -> Cmd ()

Case Study: Reusing Existing F* Effects (1/2)
class calculate (readonly: list path) = {
 run:unit
 -> MIO (resexn string)
 IOOps
 io_state
 (ensures (fun _ -> True))
 (requires
 (fun _ _ local_trace ->
 dont_delete_any_file local_trace /\
 only_open_some_files local_trace readonly))
}

Cezar-Constantin Andrici et al. 2024. Securing Verified IO Programs Against Unverified
Code in F*. Proc. ACM Program. Lang. 8, POPL, Article 74 (January 2024), 34 pages.
https://doi.org/10.1145/3632916

Case Study: Reusing Existing F* Effects (2/2)
let failing_computation:calculate ["result.txt"] =
 {

run
=
(fun () ->

 let _sfd = static_op Prog Openfile "/etc/passwd" in
 match static_op Prog Openfile "result.txt" with
 | Inl fd ->
 (match static_op Prog Read fd with
 | Inl v -> Inl v
 | _ -> Inr Failure)
 | _ -> Inr Failure)
 }

https://github.com/patricoferris/hope-2024/tree/main/simple-io

https://github.com/patricoferris/hope-2024/tree/main/simple-io

Case Study: Reasoning about Metadata for Biodiversity
(* Following IUCN's Globally Endangered (GE) scoring *)
let datamap = [
 "iberian-lynx.geojson", O ["rarity", Int 2];
 "bornean-elephant.geojson", O ["rarity", Int 3]
]

We add some additional predicates on the files allowed to be used:

@|-1,9 +1,10 ==
 | (ensures (fun _ -> True))
 | (requires (fun _ _ local_trace ->
 | dont_delete_any_file local_trace /\
+| all_paths_are_not_endangered readonly /\
 | only_open_some_files local_trace readonly))
 |}

 Photo by kenny goossen on Unsplash

https://unsplash.com/@kennygoossen?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/a-wild-cat-in-a-tree-zSs7_gq9fiw?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Operating System Features to Enforce Policies

- eBPF-based, high performance, dynamic policy enforcers

- Namespacing and containerisation for file-system and
network access control

- Seamless integration into existing workflows for vernacular
programmers1

- Myth: “Thus formal specifications are also essential.”
- In Practice: “Much software is developed to discover what

it should do, not to satisfy a prior specification.”

[1] Mary Shaw. 2022. Myths and mythconceptions: what does it mean to be a
programming language, anyhow? Proc. ACM Program. Lang. 4, HOPL, Article 234 (June
2020), 44 pages. https://doi.org/10.1145/3480947

https://doi.org/10.1145/3480947

Conclusion
- AI agents can be understood as

bumbling or malicious programmers.

- We can design the language they use
to control their capabilities.

- Using ideas from PL, e.g. abstract
types and Dijkstra monads, we can
achieve modularly provable
guarantees about AI capabilities.

- Lots of opportunities for research –
engagement with AI and systems
communities is needed.

