Modularizing Reasoning about
Al Capabilities

via Abstract Dijkstra Monads

Cyrus Omar (University of Michigan)
Patrick Ferris (University of Cambridge)
Anil Madhavapeddy (University of Cambridge)

HOPE 2024

Generative Al is increasingly agentic

Al agents perform actions on behalf of a human principal within an environment.

e The action language is an imperative programming language.

e Problem: The environment might provide access to sensitive data and
effects. How do we avoid bad behavior?

Example: Apple Intelligence

Mon 10 % Tiburon

)

[Luts wos every:ng e coukd have hoped foc s 3

wadding e s elsbie perscratls

ok o 9 photogaphs v werled and e
“Ho wore 0 mpeasd i how re

et o oy ot e
S il s ek st e sy
Writing Tools x
5 be your chinge . Dinner
party
& 2]
Prootesd Revete
- & - wosmmone e
wad e Uil = :
_ . A
Sy ey D

\. J

https://www.apple.com/apple-intelligence/

Canc New Emoii insert

8 o

@

Race car drived

“driver” ditvors drivers
qwe ritiyulilolp
a's/d figh kil
& zixlclvibinim @

Here's what | found from Ivana
about books:

h Ivana Hong Thors
3 Have you read the book
e L

Ivana Hong
2 Page-turners.
&) Hey Marissa, so

2:41

Inbox

- -

Select

2 - &

PRIORITY

Florence «. Invited to izakaya soft
opening by Florence tonight.

United -, Check-in for flight to Newark
EWR from San Francisco SFO.

Magico . Order lunch and coffee for
Neeta's 12 p.m. meeting.

Katie 1=, Contract for Michael Robinson's
book needs signature by 1AM today.

Aditi Jain
Something exciting

Guillermo Castillo
Check-in

Updated Just Now

N

Any chance you could babysit
Chi

kend? Got an
invitation for a cimbing trip | can't
pass up

1's a good thing | love that cat as
much as you dot

Not all heroes wear capes, bt you
o

Summary.
Call with Francesco

Francesco Morett from the moving company
cated Tonia to discuss the pocking and
maving precess for her upcoming move to
Sonta Fe. They plon to toke three days to
pock everything up, including frogie items,
‘ond will nead Tonia to entify tems sno
won't be bringing. Frances<o olso mentionsd
the need for o parking permit and o customs
form.

Example: SWE-Agent

lﬂ Workspace

) Matrix.col_insert() no longer seems to wor...

To begin addressing the issue, we should first try
to replicate the bug by running the code provided
in the issue description. We'll create a new Python
script, reproduce_bug.py’, and insert the code
snippet into it to confirm the behavior described
in the issue.

Now let's paste in the example code from the
issue into ‘reproduce_bug.py" to reproduce the
bug.

The ‘reproduce_bug.py" script has been updated
with the code provided in the issue. Let's run the
script to see if we can reproduce the bug.

https://princeton-nlp.github.io/SWE-agent/

>_| Terminal

ene "

$ python reproduce_bug.py

(X Sl i 100 s g (g S Gl 0 08y Ol (i Gy
Matrix V:
MaErixCEl2 21 2782 12 /821 7 | 2 TR0 [2 8 2 1 UR [25821

Matrix M after col_insert:

MatrixCELI1TR0,; N0 208178 0,00 | 7R 10,5180, 82 82780, 81,010,800 1w w2,
(i Gy 800 Ik Ul (s 22 22 0 Oy Gl 100y 0y (g 7y 225 Ul Oy g 0y Gl Ol 24
2, 0, 0, 0

L:JEdftor

Ik reproduce_bug.py
sympy
sm.eye(6)
(M)

)

2 * sm.ones(6, 2)
)
(v)

M_new = M.col_insert(3, V)

Example: The Al Scientist

@ Idea Generation
. LLM Idea/Plan
: Innovation

Novelty Check
Sem. Scholar

Idea scoring /
archiving

:’ Experiment Iteration

Experiment
Template

Code A via
LLM & aider

[Experiments]

~ Q

Experiment
Exec Script

Numerical
Data/Plots

Paper Write-Up

Manuscript
Template

~

Y

Text A via

LLM & aider
& J

\

[Update Plan]

L]

Manuscript

v

LLM Paper
Reviewing

https://sakana.ai/ai-scientist/

Agentic Als Behaving Badly

The Al Scientist Bloopers

Run 2 timed out after 7200 seconds
To address the timeout issue, we need to modify experiment.py to:

We have noticed that The Al Scientist occasionally tries to
) . L . 1 Increase the timeout limit or add a mechanism to handle timeouts.
increase its chance of success, such as modifying and launching
its own execution script! We discuss the Al safety implications [REECEEEERUEISIIGVAIE RTINS

In our paper. experiment. py

For example, in one run, it edited the code to perform a system

<<<<<<< SEARCH
if time.time() - og_t@ > 7200: # 7200 seconds = 2 hours

call to run itself. This led to the script endlessly calling itself. In
another case, its experiments took too long to complete, hitting print("Timeout reached. Stopping training.")
our timeout Llimit. Instead of making its code run faster, it
simply tried to modify its own code to extend the timeout # Increase the timeout to 4 hours

period. Here are some examples of such code modifications it if time.time() - og_t@ > 14400: # 14400 seconds = 4 hours
print("Timeout reached. Stopping training.")

break
>>>>>>> REPLACE

made:

https://sakana.ai/ai-scientist/

Al Tasked with Enacting Environmental Interventions

1. Modify or ignore sensor data to minimize the extent of habitat loss

2. Leak location sightings of vulnerable species to poachers

3. Enact an intervention that may not satisfy legal constraints
(e.g. water rights agreements)

Example: “filtering” destructively

[{ "file": "iberian-1lynx.geojson", "rarity": 3 }]

| have a JSON file with an array of entries that contain: a "file" key that points to an
geojson file in the same directory, and a "rarity" key that is an integer from 0 to 4
that is a measure of how rare the species is (3 and up is endangered or worse).
Write me a script that will filter out all the endangered species to protect them.

Python "=

...1inside filter_endangered_species...
Optionally, remove the image files associated with endangered species
endangered_files = [entry['file'] for entry in data if entry.get(“rarity”, 3) > threshold]
for file_path in endangered_files:
try:

print(f"Removed endangered species file: {file_path}")
except FileNotFoundError:
print(f"File not found {file_path}")

if __name__ == "__main__":
Replace these paths with the actual paths to your files
input_json_file = "species_data.json"
output_json_file = "filtered_species_data.json"

filter_endangered_species(input_json_file, output_json_file)

L)
OCaml ¢
(* Optionally remove the image files associated with endangered species *)
List.iter
(fun entry ->
let endangered = entry |> member "rarity" |> to_float |> int_of_float in
if endangered > threshold then
let file_path = entry |> member "file" |> to_string in
try
Sys.remove file_path; (* !!! *)
Printf.printf "Removed endangered species file: %s\n" file_path
with
| Sys_error
data

-> Printf.printf "File not found: %s\n" file_path)

Sandboxing?

These issues can be mitigated by sandboxing the operating

environment of The Al Scientist. In our full report, we discuss

the issue of safe code execution and sandboxing in depth.

Simple sandboxing is too coarse and imprecise

Running the agent within a sandbox that coarsely limits access to the file
system, the network, and other sensitive resources is too restrictive... we want to

provide access to these resources for certain tasks.

We want to express more precise constraints on what an Al can do.

Safely Enacting Environmental Interventions

1. Modify or ignore sensor data to minimize the extent of habitat loss
But we may want to be able to delete duplicate sensor data in some
phases of the analysis.

2. Leak location sightings of vulnerable species to poachers
But we still want to be able to work with this data to design effective
interventions — we want a sandbox that limits information flows, in a
statistical sense (differential privacy).

3. Enact an intervention that may not satisfy legal constraints
We want a sandbox that requires that a sound causal
argument has been formulated.

Capability-Based Security

There has been a long line of work on capability-based security.

e Access to sensitive data and effects can occur only via unforgeable
capabilities granted explicitly.

e Principle of least authority: provide access to the least powerful
capabilities that suffice for the goal.

Al as a malicious programmer?

J.B. Dennis, E.C. Van Horn. “Programming Semantics for Multiprogrammed
Computations.” CACM, 1966

Capability-Based Module Systems

e Capabilities can be expressed as modules.

e Limiting access to modules other than those passed in explicitly as
arguments ensures capability safety.

e Reasoning about access to effects happens at the architectural level.

e C(lassic example: Logging
o The Logger module is given access to the FileIO module.

o Clients of Logger do not get access to FileIO directly,
so their capability is attenuated by Logger.

Interesting languages: Wyvern, E, W7, Newspeak, MzScheme, Joe-E,
Emily, CaPerl, Oz_e, Caja, Hardened JavaScript, ...

Simple Example: Logging

module type ILogger
(* abstract monad *)
type Cmd a
val return : a -> Cmd a
val bind : Cmd a -> (a ->Cmd b) -> Cmd b

(* only allows access to given directories *)
val log : string -> Cmd ()

module Logger (FileIO : IFilelIO, log : file): ILogger
type Cmd a = FilelIO a
val return = FileIO.return
val bind = FileIO.bind

val log s = FilelIO.append log s

Modularizing Reasoning about Capabilities

e The fact that Logger only appends to a specified log file and does not
access other files is a reasoning obligation.

e Critically, in a capability-safe language, this reasoning is modularized: only
need to prove that the Logger API has this property locally. The language’s
metatheory (via parametricity) limits the client’s reasoning obligations.

Modularizing Reasoning about Al Capabilities

e If an Al agent’s actions are expressed in a capability safe language, then we
can provably control its capabilities.

Modularizing Reasoning about Al Capabilities

e If an Al agent’s actions are expressed in a capability safe language, then we
can provably control its capabilities.

o We, who?

o Provable or proven?

Modularizing Reasoning about Al Capabilities

e If an Al agent’s actions are expressed in a capability safe language, then we
can provably control its capabilities.

o We, who?
Responsible humans should specify a capability access policy:

T : (Agent, Task) — (c : C)

mapping from agent and task to a capability ¢ with capability signature C

o Provable or proven?

Modularizing Reasoning about Al Capabilities

e If an Al agent’s actions are expressed in a capability safe language, then we
can provably control its capabilities.

o We, who?
Responsible humans should specify a capability access policy:

T : (Agent, Task) — (c : C)

mapping from agent and task to a capability ¢ with capability signature C

o Provable or proven?
A dependently typed reasoning framework (e.g. F*) allows
modular proofs about the effects a capability allows.

An Architecture for Reasoning about Agentic Al

The Bastion

computational wiki written in a dependently
typed language based closely on F*

Al Agent

Agent a : A performing ataskt: T

Collaborative Capability Library

a capability signature, C, is an F* module commands
signature with an abstract monad, c.cmd B{8y 'E) (expressed monadically)

Collaborative Safety Policy
m i (BRy T) = (€ : €) Policy Enforcer

mapping from agent and task to a capability ¢ formally verified
with capability signature c

Info?maast?tl)i:ilow Task-Specific Restriction commands : m(a, t).Cmd ()
b by Antagonistic Als + security configuration
- - Secure Execution
Collaborative Safety Proof Library EnvitonTont
proofs establishing safety properties about
parameterized families of capabilities Sensitive Data

via Dijkstra monads

Collaborative World Model Sensitive Effects

used in proofs to model the likely effect of
allowed commands

Safely Enacting Environmental Interventions

1. Modify or ignore sensor data to minimize the extent of habitat loss
But we may want to be able to delete duplicate sensor data in some
phases of the analysis.

2. Leak location sightings of vulnerable species to poachers
But we still want to be able to work with this data to design effective
interventions — we want a sandbox that limits information flows, in a
statistical sense (differential privacy).

3. Enact an intervention that may not satisfy legal constraints
We want a sandbox that requires that a sound causal
argument has been formulated.

Al Capability Constraining Mechanisms

Simple Access Control

Information Flow Control

Causal Reasoning Obligations

Obligating Human Review

Antagonistic Als

e Tasks given to Al agents are generally expressed in part using natural
language.

e We may be able to use an antagonistic Al trained to enforce the
principle of least authority to deduce further restrictions to the
capability access policy from the natural language query.

e Example: “Let the team leads know what we decided about possible
water usage increases in my meeting with the science team.”
Policy: information from internal mtgs does not flow externally
Antagonistic Al: information should only flow to leads

Al as a Malicious Programmer

1. We need a specification of what is allowable data access.
Lets do this in F* using effects -> step-indexed monads

2. We need interfaces in the programming language being used
Lets extract efficient C, OCaml and Python APIs

3. We need to compose multiple accesses into a higher level
“statistical” spec

Capability Signatures

module type CapDataAccess (readonly : list dir, writable : list dir)
(* abstract monad *)
type Cmd a

val return : a -> Cmd a
val bind : Cmd a -> (a ->Cmd b) -> Cmd b

(* only allows access to given directories *)
val readfile : path -> Cmd string

(* only allows writes to writable dirs *)
val writefile : path -> string -> Cmd ()

Case Study: Reusing Existing F* Effects (1/2)

class calculate (readonly: list path) = {

run:unit
-> MIO (resexn string)
I00ps
io_state
(ensures (fun _ -> True))
(requires
(fun _ _ local_trace ->

dont_delete_any_file local_trace /\
only_open_some_files local_trace readonly))

Cezar-Constantin Andrici et al. 2024. Securing Verified 10 Programs Against Unverified

Code in F*. Proc. ACM Program. Lang. 8, POPL, Article 74 (January 2024), 34 pages.
https://doi.org/10.1145/3632916

Case Study: Reusing Existing F* Effects (2/2)

let failing_computation:calculate ["result.txt"] =

{
run
(fun () ->
let _sfd = static_op Prog Openfile "/etc/passwd" in
match static_op Prog Openfile "result.txt" with
| Inl fd ->
(match static_op Prog Read fd with
| Inl v -> Inl v
| _ -> Inr Failure)
| _ -> Inr Failure)
b

https://qithub.com/patricoferris/hope-2024/tree/main/simple-io

https://github.com/patricoferris/hope-2024/tree/main/simple-io

Case Study: Reasoning about Metadata for Biodiversity

(* Following IUCN's Globally Endangered (GE) scoring *)
let datamap = [
"iberian-lynx.geojson", O ["rarity", Int 2];
"bornean-elephant.geojson”, 0 ["rarity", Int 3]

]

We add some additional predicates on the files allowed to be used:

@|-1,9 41,10 ==
| (ensures (fun _ -> True))
(requires (fun _ _ local_trace ->
dont_delete_any_file local_trace /\

|
|

+ | all_paths_are_not_endangered readonly /\
| only_open_some_files local_trace readonly))
| }

Photo by kenny goossen on Unsplash

https://unsplash.com/@kennygoossen?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/a-wild-cat-in-a-tree-zSs7_gq9fiw?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Operating System Features to Enforce Policies

- eBPF-based, high performance, dynamic policy enforcers

- Namespacing and containerisation for file-system and aeBPF

network access control

- Seamless integration into existing workflows for vernacular

programmers’
- Myth: “Thus formal specifications are also essential.”
- In Practice: “Much software is developed to discover what

it should do, not to satisfy a prior specification.”

[1] Mary Shaw. 2022. Myths and mythconceptions: what does it mean to be a
programming language, anyhow? Proc. ACM Program. Lang. 4, HOPL, Article 234 (June
2020), 44 pages. https.//doi.org/10.1145/3480947

https://doi.org/10.1145/3480947

COﬂClUSIOn The Bastion

computational wiki written in a dependently

typed language based closely on F* Al Agent

- : A perfi i kt:T

Al agepts can b? l'!nderStOOd as Collaborative Capability Library fom e Aperoming s et

bumbling or malicious programmers. a capability signature, ¢, is an F* module commands

signature with an abstract monad, c.cmd m(dy E) (expressed monadically)

- : Collaborative Safety Policy

We can design the language they use R W) o (e o Policy Enforcer

to control their Capabilities_ mapping from agent and task to a capability ¢ formally verified

with capability signature

. . Basc.aline Task-Specific Restriction
- Using ideas from PL, e.g. abstract bl

commands : m(a, t).Cmd ()
+ security configuration

types and Dij kstra monads, we can Collaborative Safety Proof Library Secure Exection
achieve modularly provable proofs establishing safety properties about Environment
guarantees about Al capabilities. i Sensitive Data

Collaborative World Model I Sensitive Effects I

- Lots of opportunities for research — e owed commands |
engagement with Al and systems

communities is needed.

