
Creating High-Performance

Statically Type-Safe

Network Applications

Anil Madhavapeddy Venkata Sesha

Robinson College

This dissertation is submitted for the degree of

Doctor of Philosophy
at the

University of Cambridge

Copyright c© April 2006 Anil Madhavapeddy Venkata Sesha

Declaration

The dissertation is not substantially the same as any I have submitted for a degree or
diploma or any other qualification at any other university. Further, no part of the disser-
tation has already been or is being concurrently submitted for any such degree, diploma
or other qualification.

This dissertation is the result of my own work and includes nothing which is the outcome
of work done in collaboration except where specifically indicated in the text. The section
“Author Publications” lists all publications sharing ideas with this thesis along with au-
thorship. This dissertation contains less than 45,000 words including appendices, tables,
footnotes, equations and bibliography. It contains 45 figures.

This work was supported by financial grants from Network Appliance, Inc. and Intel
Research Cambridge.

Anil Madhavapeddy Venkata Sesha, April 2006.

i

Author Publications

The research presented in this thesis has also been published in the following peer-
reviewed papers (in reverse chronological order):

ANIL MADHAVAPEDDY, ALEX HO, TIM DEEGAN, DAVID SCOTT AND RIPDUMAN

SOHAN. Melange: Creating a “Functional” Internet, in the European Conference on

Computer Systems (EuroSys), March 2007. Received Best Student Paper award.

ANIL MADHAVAPEDDY AND DAVID SCOTT AND RICHARD SHARP. SPLAT: A Tool
for Model-Checking and Dynamically-Enforcing Abstractions, in the 12th International

SPIN Workshop on the Model Checking of Software, Lecture Notes on Computer Science
(vol. 3639), 2005, page 277–282, Springer.

ANIL MADHAVAPEDDY AND DAVID SCOTT. On the Challenge of Delivering High-
Performance, Dependable, Model-Checked Internet Servers, in the First Workshop on

Hot Topics in System Dependability (HotDep) (2005), IEEE.

ANIL MADHAVAPEDDY, ALAN MYCROFT, DAVID SCOTT AND RICHARD SHARP. The
Case for Abstracting Security Policies, in the International Conference on Security and

Management (SAM), June 2003.

Other selected work published during the course of the PhD research includes:

ELEANOR TOYE, RICHARD SHARP, ANIL MADHAVAPEDDY, DAVID SCOTT, EBEN

UPTON AND ALAN BLACKWELL. Interacting with Mobile Services: An Evaluation of
Camera-Phones and Visual Tags, in Personal and Ubiquitous Computing Journal, vol. 10
(2006).

ANIL MADHAVAPEDDY AND ALASTAIR TSE. A Study of Bluetooth Propagation Us-

ii

ing Accurate Indoor Location Mapping, in 7th International Conference on Ubiquitous

Computing (UbiComp), Lecture Notes on Computer Science vol. 3660, page 105–122,
Springer.

ELEANOR TOYE, RICHARD SHARP, ANIL MADHAVAPEDDY AND DAVID SCOTT. Us-
ing Smart Phones to Access Site-Specific Services, in IEEE Pervasive Computing vol.
4(2), pages 60–66, April 2005.

DAVID SCOTT, RICHARD SHARP, ANIL MADHAVAPEDDY AND EBEN UPTON. Using
Visual Tags to Bypass Bluetooth Device Discovery, in ACM Mobile Computer Commu-

nications Review vol. 9(1), pages 41–53, January 2005.

ANIL MADHAVAPEDDY, RICHARD SHARP, DAVID SCOTT AND ALASTAIR TSE. Audio
Networking: The Forgotten Wireless Technology, in IEEE Pervasive 4(3), page 55–60,
2005.

KIERAN MANSLEY, DAVID SCOTT, ALASTAIR TSE AND ANIL MADHAVAPEDDY.
Feedback, Latency, Accuracy: Exploring Tradeoffs in Location-aware Gaming, in pro-

ceedings of the 3rd ACM SIGCOMM Workshop on Network and System Support for

Games (NetGames), pages 93–97, 2004.

ANIL MADHAVAPEDDY, RICHARD SHARP AND DAVID SCOTT. Context-Aware Com-
puting with Sound, in the Fifth International Conference on Ubiquitous Computing (Ubi-
Comp), Lecture Notes on Computer Science (vol. 2864), page 315–332, Springer.

iii

Abstract

A typical Internet server finds itself in the middle of a virtual battleground, under constant
threat from worms, viruses and other malware seeking to subvert the original intentions
of the programmer. In particular, critical Internet servers such as OpenSSH, BIND and
Sendmail have had numerous security issues ranging from low-level buffer overflows to
subtle protocol logic errors. These problems have cost billions of dollars as the growth of
the Internet exposes increasing numbers of computers to electronic malware. Despite the
decades of research on techniques such as model-checking, type-safety and other forms
of formal analysis, the vast majority of server implementations continue to be written
unsafely and informally in C/C++.

In this dissertation we propose an architecture for constructing new implementa-
tions of standard Internet protocols which integrates mature formal methods not cur-
rently used in deployed servers: (i) static type systems from the ML family of functional
languages; (ii) model checking to verify safety properties exhaustively about aspects of
the servers; and (iii) generative meta-programming to express high-level constraints for
the domain-specific tasks of packet parsing and constructing non-deterministic state ma-
chines. Our architecture—dubbed MELANGE—is based on Objective Caml and con-
tributes two domain-specific languages: (i) the Meta Packet Language (MPL), a data
description language used to describe the wire format of a protocol and output statically
type-safe code to handle network traffic using high-level functional data structures; and
(ii) the Statecall Policy Language (SPL) for constructing non-deterministic finite state
automata which are embedded into applications and dynamically enforced, or translated
into PROMELA and statically model-checked.

Our research emphasises the importance of delivering efficient, portable code which is
feasible to deploy across the Internet. We implemented two complex protocols—SSH and
DNS—to verify our claims, and our evaluation shows that they perform faster than their
standard counterparts OpenSSH and BIND, in addition to providing static guarantees
against some classes of errors that are currently a major source of security problems.

iv

Acknowledgements

Most of the ideas in this dissertation can be traced back to a steaming cup of coffee in the
famous “collaboration corner” in the Computer Lab, so many thanks to Andy Hopper for
creating such a great environment. The idea of writing an SSH server in OCaml emerged
after a particularly long session of procrastination with David Scott in early 2004, and I
am grateful to him for subsequent advice and evangelism of the “OCaml way” ever since!

I was privileged to have the best office in Cambridge, shared with Evangelia Kaly-
vianaki, Alex Ho and Christian Kreibich, the bust of Volta and an inflatable green alien.
Thanks to them and regular visitors Andrew Warfield, Euan Harris and Jon Crowcroft
for making it such wacky fun. Upstairs in the LCE, I owe a great debt to Kieran Mans-
ley, Alastair Beresford, David Scott, Alastair Tse, Ripduman Sohan and Andrew Rice
for providing me with easy Quake target practice, and Richard Sharp and Rob Ennals for
their contribution to the quest for free Intel-cinos. Away from the lab, Nick Ludlam and
Subhashis and Sheree Biswas always provided a sympathetic ear from the mysterious
“real world”.

I have had several supervisors through my research, and I am very grateful to Ian
Pratt, Tim Harris, Andy Hopper, Alan Mycroft, Steven Hand, Jon Crowcroft and Derek
Macauley for their valuable time and conversations. David Greaves drove me to the
PhD finish line, and his advice and guidance (notably on what the word “thesis” meant)
has been invaluable in delivering this weighty tome. Tim Deegan, Sriram Srinivasan,
Jon Crowcroft, David Scott and Richard Sharp also proof-read it and patched up my
“international” use of language. I am also grateful to Nawaf Bitar and Nick Thurlow
from Network Appliance who gave me the initial funding and encouragement to return
to academia, and Derek Macauley from Intel Research who funded the final years.

This dissertation is dedicated to my parents, my brother Naganand and sister-in-law
Jyothsna, who supported me throughout the roller-coaster ride and continue to do so.
Thanks!

v

CONTENTS

Contents

1 Introduction 1
1.1 Internet Growth . 2

1.1.1 Security and Reliability Concerns 3

1.1.2 Firewalls Prove Insufficient . 3

1.1.3 The Internet Server Monoculture 4

1.2 Motivation for Rewriting Internet Servers 5

1.3 Contributions . 6

2 Background 9
2.1 Internet Security . 9

2.1.1 History . 9

2.1.2 Language Issues . 12

2.1.3 The Rise of the Worm . 14

2.1.4 Defences Against Internet Attacks 16

2.2 Functional Programming . 18

2.2.1 History . 18

2.2.2 Type Systems . 21

2.2.3 Features . 23

2.2.4 Evolution . 26

2.3 Objective Caml . 27

2.3.1 Strong Abstraction . 28

2.3.2 Polymorphic Variants . 30

2.3.3 Mutable Data and References 32

2.3.4 Bounds Checking . 33

vi

CONTENTS

2.4 Model Checking . 34
2.4.1 SPIN and PROMELA . 35
2.4.2 System Verification using SPIN 38
2.4.3 Model Creation and Extraction 40

2.5 Summary . 41

3 Related Work 42
3.1 Control Plane . 44

3.1.1 Formal Models of Concurrency 44
3.1.2 Model Extraction . 45
3.1.3 Dynamic Enforcement and Instrumentation 47

3.2 Data Plane . 48
3.2.1 Data Description Languages . 48
3.2.2 Active Networks . 51
3.2.3 The View-Update Problem . 52

3.3 General Purpose Languages . 53
3.3.1 Software Engineering . 53
3.3.2 Meta-Programming . 54
3.3.3 Functional Languages for Networking 55

3.4 Summary . 57

4 Architecture 58
4.1 Goals . 58

4.1.1 Data Abstractions . 59
4.1.2 Language Support . 60

4.2 The MELANGE Architecture . 64
4.2.1 Meta Packet Language (MPL) 64
4.2.2 Statecall Specification Language (SPL) 65

4.3 Threat Model . 68
4.4 Summary . 71

5 Meta Packet Language 72
5.1 Language . 74

5.1.1 Parsing IPv4: An Example . 74
5.1.2 Theoretical Space . 79
5.1.3 Syntax . 81

vii

CONTENTS

5.1.4 Semantics . 81

5.2 Basis Library . 85

5.2.1 Packet Environments . 86

5.2.2 Basic Types . 87

5.2.3 Custom Types . 90

5.3 OCaml Interface . 90

5.3.1 Packet Sinks . 91

5.3.2 Packet Sources . 93

5.3.3 Packet Proxies . 94

5.4 Evaluation . 95

5.4.1 Experimental Setup . 95

5.4.2 Experiments and Results . 98

5.5 Discussion . 100

5.6 Summary . 101

6 Statecall Policy Language 102
6.1 Statecall Policy Language . 104

6.1.1 A Case Study using ping . 104

6.1.2 Syntax . 108

6.1.3 Typing Rules . 108

6.2 Intermediate Representation . 112

6.2.1 Control Flow Automaton . 112

6.2.2 Multiple Automata . 114

6.2.3 Optimisation . 117

6.3 Outputs . 117

6.3.1 OCaml . 118

6.3.2 PROMELA . 122

6.3.3 HTML and Javascript . 124

6.4 Summary . 126

7 Case Studies 127
7.1 Secure Shell (SSH) . 128

7.1.1 Performance . 131

7.1.2 SSH Packet Format . 135

7.1.3 SSH State Machines . 136

viii

CONTENTS

7.1.4 AJAX Debugger . 137
7.1.5 Model Checking . 138

7.2 Domain Name System . 143
7.2.1 DNS Packet Format . 143
7.2.2 An Authoritative Deens Server 146
7.2.3 Performance . 147

7.3 Code Size . 150
7.4 Summary . 151

8 Conclusions 152
8.1 Future Work . 154

A Sample Application: ping 189

B MPL User Manual 193
B.1 Well-Formed Specifications . 193
B.2 Semantics . 197

C MPL Protocol Listings 199
C.1 Ethernet . 199
C.2 IPv4 . 199
C.3 ICMP . 200
C.4 DNS . 201
C.5 SSH . 204

D SPL Specifications 207
D.1 SSH Transport and Authentication . 207
D.2 SSH Channels . 210

ix

CHAPTER 1

Introduction

”Oh wait, you’re serious. Let me laugh even harder.”

BENDER THE ROBOT (FUTURAMA)

The last half-century has seen the growth of the Internet: a global computer network
connecting hundreds of millions of computers. Global culture has been transformed by
e-mail and the Web, and the value of electronic commerce has grown to hundreds of
billions of dollars [153]. However, this interconnectivity has brought its own share of
problems with it. An application exposed to the Internet finds itself under constant threat
from malware seeking to subvert it and take control. In particular, servers providing
critical Internet infrastructure have been found to have numerous security vulnerabilities
over recent years, costing millions of dollars in recovery costs [266] and denting global
consumer confidence in the Internet [183].

In this dissertation, we argue the thesis that:

Applications which communicate via standard Internet protocols must be
rewritten to take advantage of developments in formal methods to increase
their security and reliability, but still be high-performance, portable and prac-
tical in order to make continued deployment on the Internet feasible.

For the remainder of this introduction we justify the importance of this thesis, starting
with the rapid rate of Internet growth (§1.1), the security and reliability concerns clouding

1

Chapter 1. Introduction

the modern Internet (§1.1.1), how conventional network defences have been insufficient
to allay the problems (§1.1.2), and the software monoculture that has developed around
critical Internet infrastructure (§1.1.3). We then present the argument for software recon-
struction (§1.2), and finally define our contributions and the structure of the remainder of
this dissertation (§1.3).

1.1 Internet Growth
In his 2003 analysis of Internet growth [217], Andrew Odlyzko notes that “Internet traffic

continues to grow vigorously, approximately doubling each year, as it has done every

year since 1997”. The types of hosts connected are also changing—from computers on
fixed links to mobile personal devices such as laptops, PDAs or mobile phones. The
trend towards mobility has led to a surge in “wireless hotspots” where high-bandwidth
connectivity is available for laptop computers in metropolitan areas. GSM and third
generation (3G) mobile networks offer roaming Internet connectivity almost anywhere in
the world. Broadband uptake at home has increased, recently surpassing modem usage in
the United Kingdom [26]. Consumers have taken advantage of this improved connectivity
by spending an increasing amount of time and money on-line. Forrester Research notes
that online retail sales1 will grow from $172 billion in 2005 to $329 billion in 2010, with
an expected compound annual growth rate of 14%.

Remarkably, the Internet has sustained this growth while still remaining a decen-
tralised, globally-accessible body, consisting of many industrial, academic, domestic and
national networks. Hosts and networks communicate with each other via openly specified
protocols, freely available from the not-for-profit Internet Society (ISOC). Development
of new protocols is typically a community process centred around working groups in the
Internet Engineering Task Force (IETF).

The end-to-end principle [239] states that whenever possible, communication proto-
col state should occur at the end-points of a communications system. This is central to
the design philosophy of the Internet, which places much of the complexity of higher-
level protocols inside the software stacks running on operating systems, and requires a
relatively simple core network which can route datagrams. This has permited rapid ex-
perimentation with new protocol designs (such as Jacobson’s famous congestion control
algorithm [149]) without requiring the replacement of established network infrastructure.
A downside to this approach is the extra complexity imposed on host software, which has
led to security and reliability problems described in the next section.

1Online retail sales are defined as business-to-consumer sales of goods including auctions and travel.

2

1.1. Internet Growth

1.1.1 Security and Reliability Concerns

The rapid evolution of the Internet has led to some growing pains, particularly in the areas
of security and reliability (§2.1). In the early days, networks and hosts were largely aca-
demic organisations which trusted each other. As commercial and domestic interest grew
in the fledgling network, malicious attacks and electronic crime began to necessitate ad-
ditional security measures. Rather than rewriting existing applications, additional layers
of cryptography were introduced in 1994 to encapsulate the traffic such as SNP [286] and
the now-ubiquitous Secure Sockets Layer (SSL) [93]. This approach typifies the evolu-
tionary methodology followed by the IETF, which rarely radically changes protocols and
encourages post-hoc, experience- and deployment-driven specifications of them (§2.1.1).

The phenomenon of viruses and worms has been one of the biggest causes for concern
on the modern Internet (§2.1.3). Worms are self-propagating code—often malicious—
which use the Internet as a transmission medium to look for hosts running vulnerable
software with security holes due to poorly written software (§2.1.2) and “infect” them.
The Sapphire Worm was one of the fastest in history; it infected 90% of vulnerable hosts
on the Internet within 10 minutes [210], and caused disruption in airlines, banking and
even nuclear power plants [228].

1.1.2 Firewalls Prove Insufficient

As the levels of malware on the Internet grew, so-called firewalls were deployed to apply
security polices to data traffic passing between networks. Firewalls operate on different
levels, from the low-level inspection of packets to high-level application-level protec-
tion [245]. However, firewalls are increasingly easy to bypass; popular applications such
as Skype [253] specifically tunnel past them to provide a more consistent user experience.
The increase of web services has led to a “port 80” culture of tunnelling traffic through
the well-known HTTP port, negating much of the benefit of simple packet-level filters.

The insecurity of host software is also increasing, as the number of vulnerabilities
and incidents reported continue to grow yearly (§2.1.3). The insecurity is generally not
due to fundamental deficiencies in the network protocols used to communicate (although
this does also happen), but rather due to errors in the implementation of the protocol.
Traditionally, applications have been written using low-level systems languages such as
C or C++ which can allow bugs to propagate with serious consequences—particularly
in network applications where remote attackers can often end up taking over complete
control of a host due to these software errors (§2.1.2).

3

Chapter 1. Introduction

Figure 1.1: Breakdown of SSH servers on the Internet (source: www.openssh.com)

1.1.3 The Internet Server Monoculture

A remarkable number of Internet services are based around a software monoculture; typ-
ically due to a reference implementation of the protocol which is integrated into widely-
deployed operating system distributions. Common examples include:

HTTP: Apache [10] is deployed on over 70% of Internet web servers, and when com-
bined with Microsoft Internet Information Server (ISS), consists of over 92% of
the market.

DNS: BIND [4] serves over 70% of DNS second-level .com domains, according to Bern-
stein’s 2002 survey [32] and later confirmed by Moore in 2004 [209].

SSH: OpenSSH [262] powers nearly 90% of SSH servers, as recorded by Provos and
Honeymoon [231] and illustrated in Figure 1.1. These servers range from general-
purpose computers to Cisco, Nokia and Alcatel routers [263].

SMTP: In Credentia’s 2003 survey of 21258 random e-mail servers [84], over 90% of
them are written using C or C++. The main contender is Sendmail [249] with a
38% share among the e-mail servers.

4

1.2. Motivation for Rewriting Internet Servers

A lack of diversity is well known to be dangerous to a large network [137], and
each of the implementations described above has had a steady history of serious security
flaws which have allowed attackers to take complete control of hosts from across the
Internet. Alternative software has emerged in response to these insecurities, notably Dan
Bernstein’s qmail (SMTP) and djbdns (DNS) [33]. These alternatives have been much
more robust but are still written in C, and thus very hard for other parties to modify
without the risk of creating security holes. There have been no large-scale deployments
of infrastructure servers constructed in alternative languages to C/C++. This is largely
due to the unique blend of flexibility, performance, and portability enjoyed by C due to
its adoption as the de facto systems programming language, and the ready availability of
free tool-chains to compile C code (e.g. gcc).

1.2 Motivation for Rewriting Internet Servers

In our thesis we state the importance of constructing new implementations of Internet
applications, instead of simply improving existing software. In this section we explain
the reasons for this argument.

Systems research has long been concerned with the preservation of compatibility with
existing code, especially conformance with specifications such as POSIX. This has driven
much of the research into containment, which seeks to protect the operating system from
unsafe code [23, 164, 229, 80]. Another popular alternative is code evolution and re-
factoring, such as Cyclone [152] or Ivy [48] which provides a migration path away from
existing C code. However, we argue that this compatibility with existing code is not
essential for Internet applications, due to the ready availability of RFCs which specify
the precise communication mechanisms between hosts (§2.1.1). Hence the restriction
of our reconstruction thesis to the domain of Internet applications and not the general
domain of code found in the wider world where the only specifications are often the
applications themselves.

Research into formal methods has made great advances in recent decades, with the
development of functional languages which provide a means to write expressive, elegant
and safe code (§2.2) and software model checkers which can exhaustively and efficiently
verify safety properties about abstract models of complex systems (§2.4). In particu-
lar, we use the Objective Caml language (§2.3) which combines elements of imperative,
functional and object-oriented styles in a statically type-safe language, while retaining the
portability and high-performance code output so prized by C programmers. We argue that
authoring applications which leverage these techniques is a better approach than labori-

5

Chapter 1. Introduction

ously mapping existing code—which was not designed with these high-level abstractions
in mind—into them.

To date, functional languages have had little impact on the Internet, instead being pop-
ular in research circles to solve academic problems. The pioneering FoxNet [38] project
was an attempt to break out of this state of affairs by demonstrating that a functional
language could elegantly express network protocol abstractions. FoxNet succeeded in
demonstrating this by constructing a modular TCP/IP stack, but was short of the perfor-
mance required to make it a serious replacement for existing software stacks written in C.
Other projects such as the Ensemble distributed communication toolkit [131, 271] have
shifted to using functional languages with great success (discussed further in §3.3.3).

Many systems researchers have discarded the notion of using high-level languages
to rewrite servers due to the perceived performance hit. For example, in their work on
dynamic information flow tracking [258], Suh et al. claim that “[..] safe languages are

often less flexible and result in slower code compared to C”. Similarly Qin et al. note
in their work on memory corruption detection [232] that “[..] type-safe languages typ-

ically introduce significant overhead, and do not allowed fine-grained manipulation of

data structures”. High-level languages undoubtedly do introduce additional overhead in
return for safe execution of code, but it is far from clear that this overhead will result in
significant observable performance loss for carefully constructed network applications.
Our research focusses especially on static type safety which further places the burden
of authoring correct code on the developer of the original application, and not on the
operating system to enforce dynamically.

1.3 Contributions

The primary observation this dissertation makes is to highlight the importance of a strong
distinction between a “data plane” and “control plane” when constructing network ap-
plications in a high-level language. This abstraction has been used in the construction
of high-performance network routers for many decades, normally for low-level protocols
such as IPv4 [125]. Our work demonstrates that the distinction holds even for complex
software network applications such as SSH or DNS servers, and that with suitable tool-
chain support there is no necessary intrinsic performance cost to using statically type-safe
languages such as OCaml. We claim the following specific contributions:

Meta Packet Language (MPL): A data-description language and compiler for Inter-
net Protocols—analogous to yacc for language grammars—that outputs code to

6

1.3. Contributions

transmit and receive network packets in a type-safe fashion with minimal over-
head and data copying. MPL is the first data description language to output high-
performance, statically type-safe ML code and the associated interfaces to parse
packets. The language also has custom parsing actions which permits a greatly
simpler core grammar for typical Internet protocols than alternative packet parsing
languages.

Statecall Policy Language (SPL): A language and compiler which describes program-
defined state-machines using an intuitive, imperative syntax, and outputs both PROMELA

code for model-checking and ML code which is linked with the application code to
dynamically enforce the state-machine. Most current uses of model-checking rely
on extracting models from existing source code, which makes the maintenance of
high-level constraints against changing source code a complex task. SPL is novel
in that it permits developers to author both complex ML source code and simpler
non-deterministic state machines (e.g. by reading RFCs) which can be efficiently
dynamically enforced against the main ML server. A normal testing cycle reveals
common bugs, and rarer errors not caught during testing result in dynamic termi-
nation of the server rather than potential security violations.

The MELANGE Architecture: We combine MPL and SPL into a practical architecture
for constructing complete, statically type-safe network applications in OCaml, and
demonstrate its feasibility by detailing our implementations of the SSH and DNS
protocols which have equal or better performance and latency characteristics than
their standard alternatives written in C. The implementations are available under
a BSD-style open source code license at http://melange.recoil.org/ to
ensure that the ideas described in this dissertation can continue to be developed.

We continue this dissertation in Chapter 2 with the necessary technical background in
formal methods such as functional languages (in particular OCaml) and model checking,
as well as justifying our statement that “Applications which communicate via standard

Internet protocols must be rewritten . . .” by examining the past and current Internet se-
curity situation. In Chapter 3 we examine the large body of related work in the area of
constructing network application software. Chapter 4 qualifies the next portion of our
thesis statement that “... must be rewritten to take advantage of developments in formal

methods ...” by deciding on a set of design goals, a concrete system architecture and
threat model we protect against. Chapters 5 and 6 define our two domain-specific lan-

7

http://melange.recoil.org/

Chapter 1. Introduction

guages MPL and SPL which enable our architecture to be “... high-performance, portable

and practical ...”. Finally we evaluate two complex network applications (SSH and DNS
servers) in Chapter 7 to confirm our assertions about the high performance and stable
latency characteristics of applications written in our architecture.

8

CHAPTER 2

Background

Well-typed programs never go wrong.

ROBIN MILNER

This chapter provides the technical background on the concepts used in the rest of
this dissertation. We being by discussing the current state of Internet security (§2.1),
the area of functional languages which promotes a safer and higher-level programming
style than the currently dominant C (§2.2), the Objective Caml language which we use
extensively through this dissertation (§2.3), and finally the technique of model checking
to exhaustively verify properties about an abstract model of reactive systems (§2.4).

2.1 Internet Security

The Internet has had a poor security record in recent years and the exploitation of software
errors on hosts has resulted in millions of dollars of damage to individuals and businesses.
In this section we first describe the history of the network (§2.1.1), the prevalence of
applications written in unsafe languages (§2.1.2), the proliferation of networked malware
(§2.1.3) and finally the current situation with defending against these attacks (§2.1.4).

2.1.1 History

In the 1960s the US Department of Defence research agency DARPA funded ARPANET,
a pioneering effort that resulted in the world’s first operational packet switching network.

9

Chapter 2. Background

Ethernet
Header

Ethernet
Payload

IP Header IP Payload

TCP
Header TCP Payload

Application Data

Figure 2.1: Illustrating how packet payloads are embedded in TCP/IP

Previously data communications was based upon the idea of circuit switching, which
required the network to dedicate resources (or a “circuit”) for each call, and only allowed
point-to-point communication between parties. After the success of ARPANET, Robert
Kahn and Vint Cerf developed the first two protocols for the fledgling Internet: IP, an
unreliable, best-effort, datagram protocol [224] and TCP, a stream-based protocol which
makes reliability and in-order guarantees to the receiver [225].

Packet switching (nowadays the dominant basis for data communications) takes ad-
vantage of the memory and computation resources available to networked host machines.
A packet switched network is a best-effort relay for simple data packets which are routed
independently and multiplexed over a single communication channel. The end hosts re-
assemble the data packets into the original message—this requires more complexity than
the circuit switching model, but permits far more flexibility since many protocol changes
are possible by simply modifying the software running on end-hosts.

The Internet protocols can be seen as analogous with the OSI model1; although the
complete OSI specification is widely considered too complicated to be practically im-
plemented, the concept of protocol layers is useful to describe various portions of the
Internet protocol suite. Figure 2.1 shows how a payload is embedded in a typical TCP/IP
packet running over an Ethernet link layer. Each of the protocol stacks typically consists
of a packet header and a variable length payload determined from the header. The host
parsing the network traffic must inspect the packet header, classify the payload according
to some header fields, and repeat until the application data has all been retrieved.

1The OSI model is a 7-level representation of network stacks documented in “The Basic Reference
Model for Open Systems Interconnection”, published as a standard in ISO 7498 and CCITT X.200

10

2.1. Internet Security

Request for Comments

Since the development of IP and TCP, the Internet community has developed a number
of other protocols to solve various network- and application-level problems. In 1986,
the regular meetings of the government-funded researchers were formed into the Internet
Engineering Task Force (IETF). The IETF is a mostly-volunteer organisation responsible
for the development and promotion of Internet standards, and there are no formal mem-
bership requirements. As it grew rapidly, there was a pressing need for a more formal
corporate structure to manage financial and legal issues. In 1992, the Internet Society (or
ISOC) was formed as a non-profit educational organisation dedicated to the promotion
of Internet use and access. At the same time, a committee was appointed to oversee the
technical and engineering development of the Internet, known as the Internet Architecture
Board (IAB).

Internet development occurs primarily through the Request For Comments (RFCs)
process; a series of numbered documents copyrighted and published by the ISOC, and
freely available for use by anyone. All of the basic protocols such as IP and TCP are
specified in RFCs, as well as more experimental protocols, informational notes, or best
current practices. RFCs are never depublished; rather they are superseded by a new pub-
lication which marks the previous as obsolete or acts as errata. The “Internet Standard”
(or STD) series of documents are regularly re-published with the latest RFCs for their
respective protocols. The RFC process is notably different from more established stan-
dards organisations such as ANSI or the IEEE. The IETF encourages a more pragmatic,
experience-driven and post-hoc standardisation of protocols, in recognition of the value
that wide-scale Internet deployment brings to building robust systems [44]. However,
this approach poses some challenges to protocol implementors.

Firstly, RFCs are written in English, with special keywords such as “MUST” or
“SHOULD” indicating the level of importance of statements [45]. The IETF places
guidelines on the use of formal languages to specify protocols [147], requiring that (i)
the formal language itself be specified according to IETF standards [44]; (ii) the lan-
guage must be used as specified (i.e. not pseudo-code); (iii) the specification must be
complete and verifiable using automated tools; and (iv) the specification must be rea-
sonably architecture independent (e.g. not depending on the size of integers or character
set in use). Because of these restrictions, and the general lack of a widely-accepted lan-
guage for protocol formalisation, the majority of RFCs only specify protocols informally
in English. This makes it difficult to verify that a protocol implementation is compliant

11

Chapter 2. Background

without extensive and ongoing interoperability testing, either in controlled conditions or
“in the wild” on the Internet.

Secondly, although the RFCs conform to a general structure, the actual method of
specification is entirely up to the individuals in the working group that authored the RFC.
Thus a developer implementing, for example, a protocol pretty-printer across a wide
variety of protocols must cope with numerous styles and a large bodies of text to extract
the information that they need.

Finally, the observation that RFCs are never de-published is matched by the fact that
old implementations also do not simply disappear. As protocols evolve, the older im-
plementations will still attempt to communicate, and it is generally important to support
as many of these older versions as is practical. Jon Postel, the first RFC Editor, stated
in RFC793 [225] (the TCP specification): “Be conservative in what you do, be liberal

in what you accept from others.” The problem with being liberal in accepting network
traffic is, of course, ensuring that supporting the extra complexity does not introduce new
security flaws in applications.

2.1.2 Language Issues

The Internet was not originally designed to be a highly secure network; instead, the first
links were between trusted institutions and hosts. As it rapidly grew in scale, security
issues began to emerge, ranging from protocol-level problems such as lack of encryption
or strong authentication, to application-level issues in the implementations of network
software running on the hosts. In this section, we focus on the programming language
issues and the growth of viruses and worms as a result.

Most of the software running on hosts and routers connected to the Internet is cur-
rently written in the C language. C is an imperative programming language originally de-
veloped in the 1970s by Ken Thompson and Dennis Ritchie for use on the fledgling UNIX
operating system [166]. Since then C has been ported to almost every general-purpose
processor architecture in existence and is one of the most widely used programming lan-
guages in the world. Due to this it is often referred to as “portable assembly language”
since it allows programmers to compile programs on different processor architectures
without knowing the underlying assembly language.

Although this flexibility and efficiency has made C popular, it also exposes programs
to serious security and stability issues if they are not carefully designed. For example,
consider this simple example of a C program which accepts a single command-line argu-
ment, and echoes it back out to the standard terminal output.

12

2.1. Internet Security

1 int main (int argc, char **argv)

2 {

3 char buf[64];

4 if (argc < 2) {

5 fprintf(stderr, "Usage: %s <string>\n", argv[0]);

6 return 1;

7 }

8 strcpy (buf, argv[1]);

9 printf("%s\n", buf);

10 return 0;

11 }

In line 3, we allocate a 64-byte buffer called buf on the stack. After checking that
an argument has been supplied, in line 8 we copy the contents of the argument into buf

and then print it out again. This program will appear to work fine as long as the user only
supplies a command-line argument which is less than 64 bytes long. If a longer argument
is supplied, then the strcpy(3) function on line 8 will cause a buffer overflow as it copies
the additional data past the buffer, overwriting internal program information on the stack
and causing corruption. Problems can be more subtle than just buffer overflows:

1 char *bufread (int len)

2 {

3 char *buf;

4 int i;

5 if (len > 1024)

6 errx(1, "length too large");

7 buf = malloc(len);

8 read (fd, buf, len);

9 return buf;

10 }

At first glance, this code appears to be a safe way of reading in a network buffer by
allocating up to 1024 bytes of memory, reading into that memory, and then returning a
pointer to the new memory. However, the function accepts a signed integer as its input
(i.e. it can be negative), while malloc(3) accepts an unsigned integer (i.e. only a positive
number) as input. This means that if a negative number is passed to this function, the
check on line 5 will pass as it is indeed less than 1024, but the subsequent conversion of
the number to an unsigned integer on line 7 results in it becoming a very large value, po-
tentially causing the machine to allocate gigabytes of memory and attempting to read into
it. These are called integer overflows and can result in security vulnerabilities (§2.1.4).

13

Chapter 2. Background

2.1.3 The Rise of the Worm

Given the immense and ongoing popularity of languages such as C in the present day, it
is easy to imagine that the programming errors described above are merely academic, and
do not pose a threat to the safety of hosts connected to the Internet. Unfortunately, this is
not the case; consider a buffer overflow present in a web server listening to traffic from
the Internet. By crafting appropriate traffic, a malicious attacker could overwrite data
on the server that would allow them to execute arbitrary code on the machine, resulting
in a security breach. Although the mechanisms for doing this are highly architecture
and operating system dependent [5], numerous so-called “root-kits” are now available
that make the process much more automated [221]. Takanen et al. have summarised the
literature on buffer overflows in their survey paper [261].

In 1988, Robert Morris wrote a simple program which was intended to gauge the
size of the Internet at the time. It exploited a buffer overflow in servers (or “daemons”)
present in the BSD UNIX distribution—in widespread use at the time—to execute code
on a remote host. The program was intended to be self-replicating; when it invaded a
host, it would use that host as a base to infect further targets. The mistake that the au-
thor made was to insert a degree of randomisation into the program which would cause
it to attack a machine even if the target reported that it was already infected (in order to
prevent system administrators from “innoculating” their systems by claiming they were
already infected). Unfortunately, this aggressive approach turned the worm from a po-
tentially harmless exercise into one of the first denial of service attacks on the Internet,
as network bandwidth was overloaded by hosts attempting to send the program’s traffic
to each other [255].

This class of self-replicating programs was termed a “computer worm” [281], and has
since become one of the major security threats on the Internet. In recent years, hundreds
of millions of hosts have connected to the Internet, and adoption of high-speed broadband
access has been on the increase. Many of these hosts are home or office users running
Microsoft Windows [199] which has been been demonstrated to have buffer or integer
overflows in every version released to date. Staniford, Paxson and Weaver analyzed the
danger posed by so-called flash worms [256] to take over millions of hosts on the Internet,
and concluded that they could potentially infect all vulnerable sites with high-bandwidth
links to the Internet in less than thirty seconds!

After the attack by the Morris worm in 1988 revealed just how susceptible the In-
ternet was to being attacked through exploiting software errors, DARPA established

14

2.1. Internet Security
N

um
be

r
of

 in
ci

de
nt

s
re

po
rt

ed

0

20000

40000

60000

80000

100000

120000

140000

160000

Year
’88 ’89 ’90 ’91 ’92 ’93 ’94 ’95 ’96 ’97 ’98 ’99 ’00 ’01 ’02 ’03

Figure 2.2: Number of CERT incidents since 1988. CERT stopped reporting incident
statistics after 2003 since “attacks against Internet-connected systems have become so
commonplace.” (source: cert.org)

CERT/CC [60], an organisation dedicated to tracking security emergencies and co-ordinating
responses among vendors and network providers to deal with the problems. As part of its
duties, CERT maintains detailed statistics of serious vulnerabilities reported on the Inter-
net which have resulted in exploitation “in the wild”. Since its inception, CERT/CC has
received over 19,600 vulnerability reports, and dealt with over 315,000 incidents, some
involving thousands of hosts. These vulnerabilities are summarised in the CERT Knowl-
edge Base [61], and assigned various metrics such as their severity, impact, references,
and any solutions or workarounds known. Every vulnerability is assigned a “vulnerability
id” (VU#) which uniquely tracks that particular security issue.

Figure 2.2 shows how rapidly attacks against Internet connected systems have in-
creased over recent years. The Distributed Intrusion Detection System (DShield) [96]
tracks virus activity over the Internet, and reports on the “most probed ports” across its
sensor system. The results for one day in December 2005, summarised in Table 2.1,
show that 9 out the 10 top probes were attempts to exploit buffer overflows in the ser-
vices involved (the exception at number 8 were HTTP probes, which are a broader class
of attacks not covered in this thesis [245]).

15

Chapter 2. Background

Table 2.1: Most Probed Ports on the Internet (source: DShield.org, 5/12/2005 1645 UTC)

Service Name Port Description
1 win-rpc 1026 Windows RPC
2 microsoft-ds 445 Windows 2000 Server Message Block
3 netbios-ssn 139 NETBIOS Session Service
4 epmap 135 DCE Endpoint Resolution
5 auth 113 ident tap Authentication Service
6 gnutella-svc 6346 gnutella-svc
7 win-rpc 1025 Windows RPC
8 www 80 World Wide Web HTTP
9 netbios-ns 137 NETBIOS Name Service
10 AnalogX 6588 AnalogX Proxy Server

2.1.4 Defences Against Internet Attacks

The increasing insecurity of the Internet (illustrated in Figure 2.2) has led to a lot of
research focusing on finding effective solutions. A common assumption is that host op-
erating systems and software will always have bugs and thus network-level approaches
are required to contain worms. This approach is proving difficult as any containment
procedure must be faster than the propagation rate of the network worms2. Vigilante [78]
allows untrusted hosts to broadcast Self Certifying Alerts (SCAs) to each other when
they detect a worm; the SCAs are automatically-generated machine-verifiable proofs of
vulnerability which can be independently and inexpensively verified by any other hosts.
Weaver et al. take a different approach by attempting to throttle the scanning rate of
worms [282] to give other defences more time to react.

Modern operating systems attempt to protect the integrity of binaries which were
written in unsafe language such as C. Examples of protections include C compiler modi-
fications to instrument binaries with “canary” values to detect buffer overflows [105, 81],
virtual address space protection via the “non-executable bit” flag present in modern
processors [9], hardened memory allocation functions [182], and system call monitor-
ing to ensure that only valid system calls are permitted to be executed by an applica-
tion [80, 164, 229, 184]. Despite their sophistication, none of these mechanisms guar-
antee protection against malicious attackers executing code on a host running vulnerable
software. Kuperman et al. recently summarised these efforts [172] and observed that

2Recall that flash worms can propagate across a majority of Internet hosts in 30 seconds [256]

16

2.1. Internet Security

“no silver bullet is available for solving the problem of attacks against stored return ad-

dresses, and attackers have a long history of learning how to circumvent detection and

prevention mechanisms”. Wagner and Soto also noted attackers can easily bypass system
call monitoring by executing an observationally equivalent program which still performs
malicious activities [279].

This “Internet arms race” continues to the modern day as we now show with a recent
case study. Skype [253] is a popular application used by millions of users for making
peer-to-peer voice calls over the Internet. It uses a custom protocol [24] and a variety
of firewall-punching techniques to ensure that users can connect to each other despite
the presence of packet filtering or Network Address Translation routers. The protocol
uses a number of sub-formats, each of which has a custom parser in the Skype client.
In October 2005, security researchers at EDAS/CRC observed [98] that specially crafted
packets sent to a Skype client could cause it to crash with a memory exception. Analysis
of the suspect packets narrowed down the bug to the “Variable Length Data” (VLD)
portion of the packet parsing code. The VLD packet (see Figure 2.3) consists of an initial
counter which indicates the length of the remaining objects.

Counter
(Value=n) Object 1 Object 2 Object n...

Figure 2.3: A sample Variable Length Data packet from Skype

The Skype client parses the counter, reads its value V , and allocates 4V bytes to hold
the rest of the objects. However, the parsing code fails to verify that the maximum value
of V is less than 0x4000000, since any greater value than that will result in the integer
overflowing and wrapping around to a small number when multiplied by 4. For example,
an attacker could send a value V = 0x40000010, which will result in 4V = 0x40 bytes
being allocated, but the full 0x40000010 objects being read into this small buffer.

Since the attacker is free to craft any value V and the subsequent object contents, they
can overwrite the heap with chosen values and modify the control flow of the program.
This heap overflow is normally caught by address-space randomisation protections built
into modern operating systems [250]. Unfortunately another quirk of Skype’s design
(its use of function pointers on the heap) means that attackers can bypass this protection
and execute arbitrary code on the host. This error is particularly dangerous in view of
the fact that Skype is specifically designed to bypass firewalls by using application-level
tunnelling mechanisms (e.g. HTTP proxies). A worm written to propagate over the Skype

17

Chapter 2. Background

network is therefore extremely difficult to stop by conventional network defences which
block ranges of TCP and UDP ports.

This recent security hole is a perfect illustration of the difficulties encountered by ef-
forts to contain vulnerabilities at the host or network level. Despite the sophisticated OS-
level protection provided by (for example) Windows XP SP2, it is not a perfect protection
and the nature of the coding style used by Skype meant that arbitrary code execution was
still possible (although certainly more difficult than in earlier versions of Windows). Sim-
ilarly, the Skype application is specifically designed to circumvent firewalls in an effort to
make the application easier to use for end-users, and this means that a single security hole
allows attackers to use this application-level tunnelling as an easy attack vector to attack
other hosts also running Skype—without ever triggering an intrusion detection system
since all the data is encrypted by Skype!

2.2 Functional Programming
Broadly speaking, functional programming is “a style of programming that emphasizes

the evaluation of expressions, rather than execution of commands” [145]. Functional pro-
gramming is often considered more analagous to evaluating mathematical equations than
to the conventional sequences of commands found in an imperative programming lan-
guage. The treatment of a program as mathematics has great significance when formally
reasoning and analysing programs—for example, multiple calls to a function known to
be idempotent can be safely evaluated a single time and the result re-used.

2.2.1 History

In 1932, Church conceived the λ-calculus to describe the behaviour of functions mathe-
matically; it was not originally intended to be a programming language. It also turned out
to be a remarkable basis for expressing computation, as Kleene [168] and Turing [268]
later proved. Most modern functional languages are considered as non-trivial exten-
sions to the original λ-calculus. Henk Barendregt summarises the relation neatly in his
book [22] which describes the λ-calculus in more technical detail:

Lambda calculus is a formal language capable of expressing arbitrary com-
putable functions. In combination with types it forms a compact way to
denote on the one hand functional programs and on the other hand mathe-
matical proofs.

In the 1950s, John McCarthy developed the Lisp programming language [191, 192],
which featured Church’s λ-notation for expressing anonymous functions. Lisp developed

18

2.2. Functional Programming

a number of important contributions which influenced functional languages: (i) the con-
ditional expression as a mechanism to express generation recursion; (ii) lists and higher-
order operations on them such as map; and (iii) the introduction of automatic garbage
collection and cons cells as an atom of allocation. In addition, Lisp was a very pragmatic
language and featured imperative features such as sequencing, assignment and other side-
effecting statements.

By his own account [193], McCarthy was not greatly influenced by the λ-calculus
beyond the adoption of the nomenclature for anonymous functions in LISP. In the 1960s,
Peter Landin introduced the Iswim3 language which attempted to move away from LISP
towards a smaller language core which could form the basis for “the next 700 program-
ming languages” [173]. Iswim developed syntactic innovations such as the use of infix
operators, simultaneous and mutually recursive definitions, and indentation-based pars-
ing (recently popularised by Python [272]). Semantically, Iswim emphasised generality
and equational reasoning, which resulted in a very small language core on which more
complex programs could be built. Landin was the first to make the argument that the
denotational (or “declarative”) style of programming permitted by Iswim was superior to
the prevalent imperative style.

In 1978, John Backus delivered a powerful encomium for functional programming
in his Turing Award lecture [15]. Backus described imperative programming as “word-
at-a-time programming”, and argued that this was insufficient to meet the demands of
large, complex software engineering projects. Ironically, Backus was given the Turing
Award for his pioneering work in developing FORTRAN (the major imperative language
in use at the time), and as a result his argument for the functional style of programming
was highly influential. Backus also noted that basing languages on the λ-calculus would
lead to problems due to the difficulty of handling complex data structures; the realm
of efficient and purely functional data structures is understood better today [218]. In
his language FP, Backus introduced higher order functions as a useful abstraction for
programming but the language itself was not popular.

During the 1970s, researchers at Edinburgh were developing the LCF theorem prover
for analysing recursive functions. The command language developed for LCF—dubbed
Meta Language (ML)—proved to be extremely popular and was developed as a stand-
alone functional language [122]. ML deviated from the pure equational reasoning advo-
cated by Backus and Landin and introduced the notion of references and side-effects, all

3short for If You See What I Mean

19

Chapter 2. Background

encapsulated in a type system based on work by Hindley [135] and Milner [203]. Al-
though this eliminated referential transparency and thus “pure” functional programming,
the language still encouraged programming in a functional style. ML featured an ad-
vanced module system, I/O facilities, exceptions, and a novel type system characterised
by: (i) type checking performed statically at compilation time; (ii) types automatically
inferred from the program source (including a limited form of polymorphism)4; and (iii)
user-definable algebraic data structures (added after the initial specification). As the pop-
ularity of the language grew into the 1980s, it integrate ideas such as pattern matching
from other languages such as Hope [54], and was standardised as Standard ML [206].

At the same time as ML was being developed, David Turner was a powerful proponent
for the purely functional approach to languages [269]. The most notable language was
Miranda [270], which is still popular today as a teaching language. Miranda used the
Hindley-Milner type inference algorithm and algebraic data-types, but was one of the first
languages to adopt lazy evaluation semantics. Lazy evaluation delays the computation of
expression until the results are actually required, which enables constructions such as
infinite data structures and the minimisation of redundant calculations. However, it does
make reasoning about the space and performance properties of a program much more
difficult, as Ennals notes [103].

Throughout the 1980s, functional programming was extremely popular as a research
topic, and a number of alternative implementations and languages emerged [39]. Since
the semantic and formal underpinnings of these languages was remarkably similar, a
committee of researchers proposed a more unified approach, and thus a new purely func-
tional programming language named Haskell was born [143]. Haskell, much like ML, is
a very complete programming language, and combines many of the concepts discussed
earlier such as higher order functions, static typing, lazy evaluation and pattern matching.
It also includes a module system, I/O and a large standard library of functions to make it
easier to program with. The language continues to be developed and standardised (e.g.
Haskell 98 [157]) and is generally regarded as the most mainstream lazy functional lan-
guage available today.

Until the late 1980s, functional programming had failed to make an impact on “real”
systems, until the Swedish telecommunications company Ericsson began to investigate
better mechanisms to program telephone exchanges. Until then, development of these
systems primarily used low-level imperative languages such as C, and Ericsson sought

4A good practical discussion of the ML type-checking algorithm is available on-line [159] in the now
out-of-print book by Simon Peyton Jones.

20

2.2. Functional Programming

a language with primitives for concurrency and error recovery, but without the back-
tracking execution model used in Lisp and Parlog [70]. In 1986, Erlang emerged as
a functional language featuring strict evaluation, assignment and dynamic type check-
ing [11]. It focussed on concurrent programming to help construct distributed, fault-
tolerant, soft-real-time applications which needed high levels of up-time (e.g. portions of
a running application can be upgraded in-place without restarting it). Erlang has many
functional features, such as higher order functions and list comprehensions, and is no-
table for its fast message passing and fast task switching between thousands of parallel
processes. The language rapidly gained popularity within Ericsson and by 1993 was be-
ing used by several other telecommunications companies such as Bellcore in a variety of
real products [284]. It is still actively developed and is available as open-source software.

This history is not intended to be exhaustive; the reader interested in a more details
is referred to our sources [145, 142, 79, 11], especially Hudak’s excellent ACM sur-
vey [142]. We seek to convey to the reader a sense of the rich theoretical foundations that
have led to modern functional programming.

2.2.2 Type Systems

Functional languages are characterised by their well-defined type systems. In program-
ming languages, a type is a name for a set of values, and operations over that set of values.
Types are either implicitly or explicitly supported by languages and may be statically ver-
ified at compilation time or dynamically enforced at run-time. In his book “Types and
Programming Languages” [223], Pierce defines:

A type system is a tractable syntactic method for proving the absence of
certain program behaviours by classifying phrases according to the kinds of
values they compute.

Type systems impose extra restrictions on the language to ensure that programs cannot
be written which violate some properties—these restrictions must be carefully chosen
to balance the conflicting requirements for language flexibility and safety. All modern
useful type systems provide a basic type safety guarantee that no valid program can ever
assign a value to a variable of type τ if that value is not a valid member of τ . This
guarantee is not provided by C or C++ since type casts between incompatible values (e.g.
integers and memory pointers) are permitted which can corrupt the underlying memory
representations. Most functional languages provide automatic memory management to
ensure that all memory accesses are guaranteed to be safe, and require run-time garbage
collection [156, 234] to prevent space leaks.

21

Chapter 2. Background

Static type systems have proven to be very effective for specifying basic interface
specifications; a well-known example is the Hindley-Milner algorithm used by ML [203,
206]. The creation of more powerful static type systems has been encumbered by the
requirement that they must be statically decidable. Areas of active research into more
expressive static type systems include type-and-effect systems [216] which describe the
side-effects of a program (e.g. I/O) by capturing aspects of the language semantics, linear
types to guarantee the single ownership of variables [46, 170, 104], and dependent types
which are types that depend on a variable value [7, 287].

Dynamic type systems remove the static decidability constraints and add run-time
checks enforced during the execution of the program. The guarantees offered by these
systems are weaker than static type systems; they offer partial correctness proofs, en-
suring programs either comply with the type system or experience a type exception at
run-time. In some languages, these dynamic type errors can be caught and action taken
to resolve the problem, but the most common result is to terminate the program.

Despite this weaker type discipline, dynamic contracts can be much more precise
and easier to specify than their static equivalents. Some languages, such as the object-
oriented Eiffel [196] are designed specifically with this model in mind [197], in order to
encourage the “top-down programming” style5. Dynamic contracts can also be applied to
higher-order languages; for example, Findler and Felleisen proposed extending ML with
contracts [108]. This allowed the parameters and results of arguments to be restricted in
certain domains such as the range of integer arguments. A “blaming” mechanism also
exists, similar to exceptions but reserved for contract violations. Some other examples of
dynamic contracts include ordering (e.g. sorting an integer array in ascending order), size
(e.g. two lists passed as function arguments are the same size), or range (e.g. an integer
argument must be non-zero).

Most programming languages adopt a varied combination of static and dynamic check-
ing. Statically typed functional languages such as ML still require run-time bounds
checking, unless extended with dependent types which can eliminate some of them. Java
maintains run-time type information to allow type casting but also statically verifies them
where possible. The dividing line between the static and dynamic checking is an arbitrary
one; Cormac Flanaghan recently proposed hybrid type checking [111] where specifica-
tions are checked statically where possible and dynamically enforced otherwise, which
he is argues is more practical than requiring the rigour of proof-carrying code [214].

5We discuss the top-down programming style further in §3.3.1.

22

2.2. Functional Programming

2.2.3 Features

The majority of functional languages treats functions as first class values, meaning that
functions can act as arguments as to other functions, and the return value of a function
can be another function. This allows a language to define abstract higher order functions

which accept other functions as their arguments. An example is the map used in ML and
Haskell, which applies a supplied function to every element of a list and returns the results
of that function as a new list. Higher order functions are a powerful notion originating
from the λ-calculus, and are now a central feature in most functional languages.

Functional languages also allow these functions to either be created anonymously (a
so-called λ-function), or bound to a variable name. Generally, the scoping rules for names
are statically determined from the program source—a system known as lexical scoping.
Lexical scoping greatly simplifies the problem of reasoning about the values of variables
while writing code (by making it into a simple substitution). The alternative—dynamic
scoping—is used in some languages such as Common LISP, but significantly increases
the complexity and run-time overhead of a program.

Functions can also be partially applied by not supplying all of the function’s argu-
ments. This returns a curried function which has the provided arguments fixed as con-
stants, and the unknown arguments remaining as parameters which must be passed to the
new function. As Hughes points out [144], the combination of higher-order functions
and currying enables a safe modular style, since it allows programs to be constructed by
the composition of higher-order functions in an unrestricted way (within the limits of the
type system in use). For example, consider the following fragment of OCaml:

let rec fold fn acc = function OCAML

| [] → acc
| x::xs → fold fn (fn acc x) xs ;;

val fold : (α → β → α) → α → β list → α = <fun>
let sum = fold add 0 ;;
- : int list → int = <fun>
let prod = fold mul 1 ;;
- : int list → int = <fun>
sum [1;2;3;4];;
- : int = 10
prod [1;2;3;4];;
- : int = 24

In this fragment, we first define fold, which is an abstraction for applying a function
over a list and returning the result. We can then specialise this abstraction (via currying)
into the functions sum and prod which return the sum and product of integer lists. Ob-

23

Chapter 2. Background

serve that the type of fold contains two polymorphic type variables α (representing the
type of the argument list) and β (representing the type of the return value). These type
variables are resolved into concrete types in sum and fold during type inference.

Lazy Evaluation

Although support for higher-order functions is ubiquitous among functional languages,
the question of the evaluation order of arguments has been controversial. The λ-calculus
encourages the use of normal order reduction rules which simultaneously reduce argu-
ments and permit recursion to be performed via the Y-Combinator. Unfortunately, when
normal order reduction is applied to computing expressions, it can result in a lot of re-
dundant computation as expressions are re-evaluated multiple times. For this reason,
languages such as Lisp, ML and Hope adopted applicative order semantics which evalu-
ate expressions in a particular order, and which can exploit the call-by-value conventions
used by imperative language compilers.

In 1971, Wadsworth proposed a mechanism to efficiently implement normal order re-
duction semantics much more efficiently via graph reduction [278]. In graph reduction,
the results of computed expressions are shared via pointers, guaranteeing that arguments
to functions are at most evaluated only once, and only when they are needed. This strat-
egy is dubbed lazy evaluation or call-by-need evaluation, and is the approach adopted by
some modern functional languages such as Haskell. In addition to being closer to math-
ematical reasoning, lazy evaluation enables a number of novel data structures such as
infinite lists (a comprehensive survey is available by Okasaki [218]). However, as Simon
Peyton Jones points out in his Haskell retrospective “Wearing the Hair Shirt”6, lazy eval-
uation comes with a significant implementation cost as it make reasoning about program
performance and space usage very difficult [158, 103].

Polymorphism and Pattern Matching

Programming languages which provide support for strong abstraction of data improve
the quality of programs for several reasons: (i) modularity is improved as the represen-
tation of a program is separate from its implementation; (ii) reliability is increased since
cross-interface violations are prohibited; and (iii) clarity is improved since the conflict-
ing concerns of different implementations can be hidden from a programmer analysing a
program. Over the years, functional languages have steadily improved their support for
expressive abstractions. Starting with Hope [54] and subsequently integrated into ML

6This slightly bizarre title presumably refers to the old Catholic practise of wearing uncomfortable
garments made from goat’s hair as a form of penance.

24

2.2. Functional Programming

and Haskell, user-defined algebraic data types and pattern matching are effective mech-
anisms for performing symbolic manipulation and manipulating data structures. These
data types work particularly well when combined with strong static type systems which
exhaustively verify at compilation time that the algebraic data types are used consistently
and correctly in all cases. Once the type correctness has been verified, the compiler can
discard all type information, which means that no run-time overhead is incurred by using
these abstractions.

type α tree = OCAML

| Leaf of α
| Node of (α tree × α tree) ;;

type α tree = Leaf of α | Node of (α tree × α tree)
let rec map fn = function
| Leaf a → Leaf (fn a)
| Node (a,b) → Node(map fn a, map fn b) ;;

val map : (α → β) → α tree → α tree = <fun>
let x = Node (Leaf 1, Node (Leaf 2, Leaf 3)) ;;
val x : int tree = Node (Leaf 1, Node (Leaf 2, Leaf 3))
map (fun x → x + 10) x ;;
- : int tree = Node (Leaf 11, Node (Leaf 12, Leaf 13))

In the above fragment, we define a binary tree which can contain either a single Leaf
value or Node branch, and a map which applies a function across every Leaf and returns
the result. The definition of this data structure is remarkably succint; notice in particular
the use of pattern matching in the map to recursively iterate over the data structure. The
main definition of tree is polymorphic since the actual data contained in the tree can be
of any valid type (represented by α). A specialised int tree variable is declared and run
through the mapping function, which adds 10 to the contents of every leaf and returns
the new tree. An attempt to (for example) concatenate a string to a value in an int tree

would result in a type error, since the type is no longer polymorphic.

type α tree = OCAML

| Leaf of α
| BigLeaf of (α × α)
| Node of (α tree × α tree) ;;

type α tree = Leaf of α | BigLeaf of α | Node of (α tree × α tree)
let rec map fn = function
| Leaf a → Leaf (fn a)
| Node (a,b) → Node(map fn a, map fn b) ;;

Warning P: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
BigLeaf
val map : (α → β) → α tree → α tree = <fun>

25

Chapter 2. Background

We extend our binary tree with a BigLeaf which can hold two values instead of just
one. If we then re-use the map function declared previously, the compiler can statically
determine that we have not pattern-matched all cases of the data structure, and will emit a
warning with a counter-example (in this case BigLeaf). This is immensely useful when
developing and refactoring large applications written using static typing, as the compiler
helps the programmer flag regions of the code which may need to be modified once the
data structure definition has been updated.

The example above illustrates the ML approach to data abstraction. Haskell adopts
different ways of declaring algebraic data types, but has the same pattern matching facility
with exhaustiveness checks. Erlang [11] extends pattern matching with a bit-matching
syntax designed for implementing low-level protocols [128]. Of course, these facilities
for static typing can also be available in an imperative language; functional languages
just choose to offer greater flexibility via polymorphism and automatic type inference,
just as they do with higher-order functions.

Formal Semantics

Earlier, we described the history of functional programming (§2.2.1), and the mathemat-
ical foundations from which it emerged. This tradition has continued to recent times,
and the development of type systems and extensions to functional languages are based on
rigorous proofs. In contrast, the development of imperative languages is often rather ad-
hoc, with the formal foundations following after the language has been developed (e.g.
the “Theory of Objects” [1] was published well after C++ and Java popularised the con-
cept). Standard ML is one of the few languages which has been rigourously defined using
operational semantics, both in terms of its static type checking rules and its dynamic exe-
cution rules [206]. This definition provided a solid foundation for future implementation
and extensions to the language [273].

2.2.4 Evolution

Functional languages have never been popular in industrial circles, being primarily used
by academics to solve research-oriented problems. Recently however, things have be-
gun to change somewhat, as platforms such as Java and .NET have begun to integrate
features such as generics [165]. So-called scripting languages such as Python [272] and
Ruby [188] have also gained popularity as rapid prototyping tools to “glue” disparate
components together, particularly on complex web sites. Both Python and Ruby have
adopted functional features such as anonymous lambda functions and statements which
return values. The vague definition of the term “functional languages” extends even to

26

2.3. Objective Caml

languages conventionally considered to be “functional”, such as ML and Haskell, which
have very different semantics regarding purity and evaluation order.

When we refer to “functional programming” in this thesis, we do not restrict the
term to mean pure, lazily evaluated languages such as Haskell. Rather, we focus on
languages which encourage programming in a functional style, and seek to relate this
style to constructing practical, high-performance network applications. The current trend
of integration of functional features into more conventional platforms such as Java or
.NET is a strong validation of our research, as it means that the techniques we describe in
later chapters will apply beyond the narrow set of functional languages used in academic
circles today.

2.3 Objective Caml
Our earlier description of functional languages (§2.2) revealed a large variety of imple-
mentations with varying levels of flexibility, maturity and safety. We chose Objective
Caml (OCaml) [181] as our language for constructing network applications since:

Static Typing: OCaml is based on ML and so provides a mature static type system with
strong support for abstraction, but with the pragmatic facility for side-effects.

Flexibility: OCaml provides many useful extensions to ML (e.g. an object system), and
has been described as an “object-oriented, imperative, functional programming
language”—instead of imposing one programming style, it allows them to be mixed
in as required by the problem at hand. This is important to network programming,
which requires both low-level octet and high-level data structure manipulation.

Native Compilation and Portability: OCaml offers support for native compilation di-
rectly to multiple host architectures such as Alpha, Sparc, x86, MIPS, HPPA, Pow-
erPC, ARM, Itanium and AMD64. For architectures which are not supported,
OCaml can also compile into a machine-independent byte-code.

Fast Garbage Collection: The OCaml garbage collector is a fast modern hybrid gen-
erational and incremental collector. It allows extremely fast memory allocation
(a simple pointer increment), and separates data into two separate heaps: a minor

heap for small, short-lived objects and the major heap for longer-lived data struc-
tures. Data structures in OCaml have less overhead than in languages such as Java
(due to the lack of run-time type information and use of 31-bit integers), leading to
a level of memory usage comparable to C/C++.

27

Chapter 2. Background

System Integration: Due to the simplicity of the OCaml heap layout, it is relatively
simple to safely bind foreign functions into OCaml. This is essential to provide full
access to the range of kernel system calls often required by network applications7,
and integration with external system libraries.

A full description of OCaml is beyond the scope of this thesis and can be found in
the literature [79, 181, 63]. However, we briefly discuss below some key features and
extensions which we refer back to later in the thesis.

2.3.1 Strong Abstraction

C programs are generally split up into multiple object files, with shared header files which
declare the types of common functions between the object files. Although the compiler
performs some consistency checking, the object files themselves do not contain type in-
formation (only a list of symbolic names), and thus linking an object file with an incorrect
prototype will result in memory corruption. This problem is accentuated when multiple
object files are linked into shared libraries used between multiple applications, as there
is no way to ensure binary compatibility between the applications linking to this library
beyond careful versioning and code management.

In contrast, an OCaml program with type inference results in shorter source code
with less redundancy than the C equivalents (since there is no need to declare external
prototypes which duplicate the function definitions themselves). An external interface file
can still be specified and auto-generated from the source code itself if desired. Including
this interface file allows the exported types of a library to be opaque types—types which
are manipulated by functions within the library, but are exposed in the external interface
as an abstract name. The utility of this can be demonstrated by an implementation of
Church numerals (from the λ-calculus), where integers are represented by repeated calls
to a successor function.

type num = OCAML

| Zero
| Succ of num

let zero = Zero
let succ x = Succ x
let rec to int = function
| Zero → 0
| Succ x → to int x + 1

type num OCAML

val zero : num
val succ : num → num
val to int : num → int

7System calls such as sendfile(2) or kqueue(2) are not part of POSIX standards, but often used by
applications to increase scalability and throughput.

28

2.3. Objective Caml

The example above shows the implementation (left) and the associated interface (right).
Church numerals are represented by a variant type num, and the functions zero, succ and
to int manipulate the numerals. However, notice that in the interface, the exact type of
num is left abstract. This means that the only way to create values of type num is to use
the zero function from that library.

type num = int OCAML

let zero = 0
let succ x = x + 1
let to int x = x

type num OCAML

val zero : num
val succ : num → num
val to int : num → int

In the fragment above, we have replaced the implementation of Church numerals
with one which takes advantage of native OCaml integers8. However the external in-
terface is precisely the same, and programs which used the old library will not require
modification. Notice that the to int function in this representation is simply the identity
function x = x. The identity function is optimised away at compilation time, and the
entire opaque typing procedure imposes no run-time overhead in the application as type
information is discarded early. Opaque types also provide a simple mechanism to enforce
API sequencing to statically ensure that functions are applied in the correct order.

type one = string OCAML

type two = string
type three = string
let first () = “one”
let second x = x ∧ “two”
let third x = x ∧ “three”
let final x = x

type one OCAML

type two
type three
val first : unit → one
val second : one → two
val third : two → three
val final : three → string

In the above example, the implementation (left) defines the functions first, second,
third and final, which perform simple operations upon strings. first returns a new
string, and second and third concatenate a value to it. Now we wish to enforce that
the functions can only be called in the order they are defined. The interface (right),
simply replaces the function arguments with the opaque types one, two, and three. This
ensures that, for example, second can only be called with the return value of first as
an argument. As we noted before, all of these opaque types only exist during the type-
checking phase, and are optimised away in the final binary. In Chapter 7, we show how
useful this technique is to enforce the correct ordering of cryptographic operations in our
SSH implementation.

8This version is not precisely a Church numeral representation since native integers are modulo the
architecture word-size, and will thus wrap around.

29

Chapter 2. Background

2.3.2 Polymorphic Variants

One of the most useful features of ML-style functional languages are their user-defined
algebraic data-types (also known as variants). These data types are generally defined
once, and then re-used through the program. A classic example is the list construct:

type α list = | Nil | Cons of α × α list ;; OCAML

type α list = Nil | Cons of α × α list
let x = Cons (1, Cons (2, Cons (3, Nil))) ;;
val x : int list
let rec length = function
| Nil → 0
| Cons (hd, tl) → 1 + length tl ;;

val length : α list → int

This defines two constructors—Nil to represent the empty list, and Cons to hold a
value and the rest of the list. The type of the list is parameterised over the type of the
value stored in the list. We can then define a list of integers x, which is of the specialised
type int list. To illustrate how functions can be written to manipulate this custom data
type, we have the length function to calculate the number of elements.

Variant types are used extensively in most functional languages as a safe alternative
to the pre-processed #define constructs used in C. Pattern matches using variant data
types are checked for exhaustiveness and a warning output if a case has not been checked.
However, these data types can also be a drawback when creating large applications—to
re-use the length function defined above in a different application, the associated type
definition must also be duplicated (normally via textually copying the source code).

Jacques Garrigue introduced polymorphic variants [118] into OCaml to support more
flexible use of variant types [119]. Syntactically they are distinguished from normal
variants by placing a back-tick in front of the name, and type definitions enclosed in
square brackets. Unlike conventional variants they do not need to be explicitly declared
before being used. The example below defines an int list x and length function, but this
time uses polymorphic variants and does not depend on a commonly defined data type.

let x = ‘Cons (1, ‘Cons (2, ‘Nil)) ;; OCAML

val x : [> ‘Cons of int × [> ‘Cons of int × [> ‘Nil]]]
let rec length = function
| ‘Nil → 0
| ‘Cons (hd, tl) → 1 + length tl ;;

val length : ([< ‘Cons of β × α | ‘Nil] as α) → int = <fun>
length x ;;
- : int = 2
type (α,β) t = [‘Cons of α × β | ‘Nil] ;;
type (α, β) t = [‘Cons of α × β | ‘Nil]

30

2.3. Objective Caml

In the example above, x is defined as list using polymorphic variants. The returned
type is of the form [> ‘Foo] which can be refined by adding more variants to the type (but
not removed, so any pattern match against this type must contain at least every variant
in the type). Conversely, the definition of the length function has a type of the form
[< ‘Foo] which may be refined by removing variants from it (since the length function
uses the variable in a pattern match, this is safe). Our example then demonstrates how
the variable x can be applied to the length function despite the lack of a common type
definition between them. Finally, we define an explicit polymorphic variant which lacks
the refinement symbols of the previous definitions; by explicitly annotating the type all
ambiguity regarding its use can be eliminated.

OCaml, like other ML variants, features a sophisticated module system which is use-
ful for creating distinct name-spaces in ML programs. A drawback to using a lot of nested
modules is that the module name must be prefixed to any variant types used elsewhere:

module Foo = struct OCAML

type t =
| One
| Two
| Three

end
let a = Foo.One ;;
val a : Foo.t = Foo.One
let b = ‘One;;
val b : [> ‘One] = ‘One

The module Foo defines a variant type t. To use any of the variants outside the
module, Foo must be prefixed to the name of the variant. In practise, this can lead to
some very verbose code if a lot of modules are used (as we show later in Chapter 5,
our generated code does exactly this). Polymorphic variants provide an effective work-
around, as they can be used as-is without a module prefix, and the type checker will
ensure their correct and consistent use.

Polymorphic variants do also come with some drawbacks. The compiler has fewer
chances to perform static optimisation, leading to a larger representation (although this is
only apparent on large data structures). More importantly, the polymorphic variants result
in a weaker type discipline since the safety net of a pre-declared data type is no longer
present. A simple typographic error can result in an incorrect inference which silently
slips through the type checker (it would still be type safe, but have different semantics
from the programmer’s original intention). This can be avoided by adding explicit type

31

Chapter 2. Background

annotations which precisely define the valid set of polymorphic types when using them
in a function. In practice, we find these annotations are extremely useful, since without
them the OCaml type checker can output long and hard to deceipher type errors when
programs fail type checking.

Polymorphic variants proved to be particularly useful when used in automatically

generated OCaml code as we do extensively in both our SPL language (§6) and MPL
packet specifications (§5). The translator generating the OCaml code can reliably insert
explicit type annotations, and ensure that all uses of polymorphic variants are “closed”
(i.e. cannot be further refined). This is normally the most error-prone aspect of using
polymorphic variants if defining them by hand, as typographic errors can have serious
consequences. Once the code has been output, the polymorphic variants can be used
from other components, such as the main network application code, extremely easily.
Polymorphic variants are used extensively in the interfaces output by the MPL packet
description language described in Chapter 5.

2.3.3 Mutable Data and References

OCaml supports destructive data update through: (i) mutable data which can be modified
in-place; and (ii) references which are mutable pointers to other data structures. The use
of both mutable data and references is type-safe9, so for example a reference to an integer
could not be assigned to point at a string without causing a type error at compile-time.

In OCaml, string types are mutable arrays of characters, meaning that the underlying
buffer can be modified in-place by library functions such as String.put. They can be
considered analogous to (char ∗) pointers in C/C++, with the contents of the pointer
being safely bounds-checked and managed by the garbage collector. Any field in an
OCaml record can be marked as mutable which allows it to be changed, or as a reference

to a data structure instead of directly storing it in the record. The difference between
mutable record types and references is best illustrated with a simple example.

type t = { mutable a: int; b: int ref; c: int } ;; OCAML

let x = { a=1; b=(ref 2); c=3} ;;
val x : t = {a = 1; b = {contents = 2}; c = 3}
let y = { x with c=30 } ;;
val y : t = {a = 1; b = {contents = 2}; c = 30}

We have defined a record type t, a record value x of this type, and created a copy of it
using the with operator. This copy is called y, and we set the field c to a different value

9ML imposes a so-called value restriction to make references compatible with its polymorphic type
inference. More details are available from Smith and Volpano’s paper [254].

32

2.3. Objective Caml

while performing this copy.

y.a ← 10 ;; OCAML

val x : t = {a = 1; b = {contents = 2}; c = 3}
val y : t = {a = 10; b = {contents = 2}; c = 30}
x.b := 500 ;;
val x : t = {a = 1; b = {contents = 500}; c = 3}
val y : t = {a = 10; b = {contents = 500}; c = 30}

In the code fragment above, we perform two different operations. Firstly, we changed
the value of the mutable field y.a, but the value of the field in x.a does not change.
Secondly, we modified the contents of the reference field x.b, which had the effect of
also changing the contents of y.b. Thus, we can create record data types which have both
shared and independent variables, which are all updated in a strongly type-safe fashion.
As an example of the type safety, any attempt to change the value of the immutable field
c will result in a type error, and similarly the actual reference in field b cannot be pointed
elsewhere since it is immutable (only the location to which it points can be altered).

y.c ← 100 ;; OCAML

The record field label c is not mutable
y.b ← (ref 10) ;;
The record field label b is not mutable

It is important to clearly understand the different semantics between mutable and
reference variables, as we take advantage of it to efficiently implement packet handling
routines in our MPL data description language (§5.2.1).

2.3.4 Bounds Checking

OCaml dynamically bounds checks all array and string accesses to guarantee that pro-
gram execution will never result in memory corruption. This can be a drawback if extra
bounds checks are introduced which unnecessarily slow the program down.

let x = “hello” in OCAML

for i = 0 to String.length x - 1 do
output (String.get x i)

done

let x = “hello” in OCAML

for i = 0 to String.length x - 1 do
output (String.unsafe get x i)
done

The first example above (left) iterates over a string and outputs it, performing a bounds
check for every access. The second version (right) is faster since it uses the unsafe get

function to retrieve each character. The unsafe version disables the type safety guarantees
of ML and can potentially return garbage data (or even worse, unsafe put can cause
memory corruption). However, the above code can be restructured somewhat:

33

Chapter 2. Background

let iter fn x = OCAML

for i = 0 to String.length x - 1 do
fn (String.unsafe get x i)

done ;;
val iter : (char → α) → string → unit = <fun>
iter output “hello”;;
hello
- : unit = ()

In this version, we have defined iter, which accepts a function and a string, and
applies that function to every character in the string. By providing a theorem that iter
is safe under all circumstances (either axiomatically or by using a proof assistant), we
can write OCaml code which iterates over a string as fast as the C equivalent, but with
the “danger” encapsulated into a single function. As we will see later (§5.4), this ability
to turn off bounds checking is particularly useful in the automatically generated OCaml
code we use for packet parsing.

2.4 Model Checking

A well-constructed system can provably meet its design specification. Actually delivering
rigorous proofs of real systems is extremely difficult; attempting manual proofs will only
work for small-scale problems, and in 1936 Turing demonstrated the impossibility of a
general proof procedure for arbitrary software (the halting problem [267]). One solution
is to adopt more modest requirements, and construct a simplified model of the underlying
software which accurately represents the properties we wish to test, while avoiding the
complexity of the software itself. This model can be exhaustively model checked by
automated tools to find errors, which can be fixed in the original program, and the model
updated accordingly.

Model checking works especially well for concurrent applications, which have a large
number of possible execution traces arising from interleaving the execution of parallel
components. The model checker can efficiently cover all possible interactions between
these components and apply safety constraints over this state space. This allows it to
locate unreachable code or identify common protocol bugs such as deadlocks which only
occur rarely in practice and are hard to track down by more conventional debugging.

We use the popular SPIN [138] model checker, originally developed at Bell Labs in
the 1980s. SPIN is freely available and is one of the most widely used model checkers
in the world in both academia and industry10. SPIN models are specified using a spe-

10SPIN received the prestigious 2001 ACM Software System Award in recognition of its contributions
to software reliability.

34

2.4. Model Checking

cial language—the Process Metalanguage (or PROMELA)—which we describe in §2.4.1.
Next we describe how to verify safety properties about these abstract models (§2.4.2).
Finally we will discuss the issues surrounding the creation of PROMELA models, either
manually or via extraction from existing source code (§2.4.3).

2.4.1 SPIN and PROMELA

SPIN models capture the co-ordination and synchronisation aspects of complex software
and replace the computation portion with non-determinism. This enables the size of the
model to be decreased and made suitable for exhaustive state-space checking. Models are
a labelled, directed graph of a Kripke structure [72] represented by the tuple (S, Si, R, L)

where S is a finite set of states with initial states (Si ⊆ S), the transition relation (R ⊆
S × S) such that (∀α ∈ S(∃β ∈ S((α, β) ∈ R))) and a labelling function (L : S →
2AP) where AP is a set of atomic propositions (i.e. boolean expressions over variables
and constants). Infinite paths can be constructed through the Kripke structure (essential
for modelling practical reactive systems). Model checkers optimise this representation
through different techniques such as partial order state space reduction [139] or symbolic
representation of Kripke structures [51, 50], with varying degrees of success in different
problem areas [74]. In this dissertation we focus on the use of the SPIN model checker,
which uses partial order reduction and explicit model checking of the state space.

The PROMELA language includes primitives for process creation, interprocess com-
munication, and non-deterministic choice, but lacks other familiar programming lan-
guage constructs such as function calls (it only provides procedures with no return value)
or side-effecting statements. A PROMELA model consists of a finite set of processes

which communicate across shared message channels using data objects. Processes are
defined using a proctype declaration and consist of data declarations and a sequence of
statements. Multiple statements can be grouped into atomic blocks via the atomic key-
word. SPIN can switch between processes and arbitrarily interleave non-atomic statement
blocks when performing model checking.

Data Objects

Variables in PROMELA are scoped either locally to a process or globally across all pro-
cesses, and must be declared before use. Table 2.2 summarises the type declarations avail-
able; the unsigned type is notable for allowing a variable range of bits (1 ≤ n ≤ 32).
The mtype declaration permits the limited use of enumerations, and the typedef key-
word can construct structured records, as shown below:

35

Chapter 2. Background

mtype = { Alpha, Beta, Gamma }; PROMELA

mtype x = Beta;
typedef Foo {

unsigned m : 5;
chan p;
byte flags[3];

};

In the above example, we have defined the enumeration Alpha/Beta/Gamma and de-
clared a global variable x using the enumeration. We also define a record Foo which
consists of a 5-bit value m, a message channel p, and an array declaration of a 3-byte
value flags. PROMELA strictly enforces the range of values of variables, and so m can
have range 25 = 0 . . . 31. Unlike algebraic data types in ML, multiple mtype declarations
are not treated distinctly; instead all enumerations are combined into a single type, and
only 255 distinct names can be used in a PROMELA model (we show later in §6.3.2 how
we bypass this limitation).

Message Channels

Processes can transmit messages to each other via channels (normally represented by
global variables). Channels are declared as a list of fields and a message queue size:

chan c = [4] of { short, byte, bool } PROMELA

c ! expr1,expr2,expr3
c ? var1,var2,var3

The channel c accepts three variables for each message, and can buffer up to 4 mes-
sages before the channel blocks. The variable types can include records or other channels,
providing a mechanism for passing channels between processes. A succinct syntax is pro-
vided for transmitting and receiving messages on a channel— the ! operator transmits the
three expression arguments across the channel c, and the ? operator receives messages

Table 2.2: Basic Data Types in PROMELA (source: The SPIN Model Checker [138])

Type Range
bool false,true
byte 0 . . . 255
chan 1 . . . 255
short −215 . . . 215 − 1
int −231 . . . 231 − 1

unsigned 0 . . . 2n − 1

36

2.4. Model Checking

into the provided variables. Message receipt is non-executable11 if the channel buffer
is empty, and attempts to write to a full channel will either block or drop the message
(depending on how SPIN is configured). Unbuffered channels are useful to permit syn-
chronous (or rendezvous) communication between processes. By defining a channel of
size 0, a single sender and receiver can communicate with tight synchronism.

Control Flow

PROMELA provides support for labels to mark statements, and jumping to them via the
goto statement. Unlike most normal programming languages, it also supports a non-
deterministic choice construct (in the spirit of Occam’s ALT [155]):

chan ch = [1] of { bit } PROMELA

int count = 0;
if
:: ch!1 → count–
:: ch!0 → count++
:: count++
fi

We define a channel ch and an integer counter. The non-deterministic choices then
allow either a 1 or 0 message to be transmitted down the channel, with the counter being
decremented or incremented respectively. As a final alternative, a message might never
be transmitted, but the counter incremented anyway. SPIN explores all possible execution
paths non-deterministically until no further execution is possible (e.g. if the channel c is
full then the choices to transmit a message would not be selected).

Processes and Executability

Processes in PROMELA consist of a proctype declaration consisting of a set of variables
and the statements which make up the process. There are two ways of instantiating
processes: (i) adding the active keyword to a declaration with an optional numeric
argument indicating the number of processes to start; and (ii) the run statement to spawn
a new process. Every process is assigned a unique process identifier which is a non-zero
integer. Since a PROMELA model can only express finite state machines12, an infinite
number of processes cannot be spawned; by default SPIN supports up to 255 processes.

Depending on the state of the system, every statement in PROMELA is either ex-

11PROMELA defines precise semantics for when a statement can be executed for a process to make
progress. The model checker exhaustively interleaves all possible executable statements, and can detect
situations where no further progress is possible due to all processes being non-executable.

12There do exist infinite state model checking algorithms which lazily evaluate an unbounded model on
demand, but SPIN does not support this, nor do we require it.

37

Chapter 2. Background

ecutable or blocked. Some statements, such as assignments are unconditionally exe-
cutable, while others such as channel communications can block until the channel be-
comes free. If a process has a choice of valid executable statements, SPIN can non-
deterministically choose one (or all) of the options to execute. If all of the processes are
blocked, then the system is said to be in deadlock, and an error is issued with a message
trace which triggers the deadlock.

2.4.2 System Verification using SPIN

The manual verification of PROMELA models is impractical for non-trivial models of
real systems. Instead, SPIN can mechanically verify safety properties such as liveness (a
system does not deadlock), progress (a system does not remain in an infinite loop) and
the validity of assertions (a proposition is never violated). If a verification reveals an
error, SPIN produces a guided backtrace which simulates the shortest sequence of events
required to trigger the error in the model. Figure 2.4 shows a simulation of a simple
DHCP client/server running over a delay-free network, and Figure 2.5 shows the more
complex executions possible when delays are introduced. These examples were produced
by SPIN running in a simulation mode which randomly selects non-deterministic choices.

SPIN also supports higher-level safety checks through Linear Temporal Logic (LTL)
constraints, by translating them into so-called never claims which specify system be-
haviour that should never happen. Never claims can also be constructed manually (since
they are strictly more expressive than LTL) but care must be taken to ensure that they
are stutter-invariant [90] or the partial order reduction algorithms used by SPIN cannot
be safely applied. Table 2.3 lists some commonly uses LTL formulae and their informal
meanings.

Table 2.3: Frequently used LTL formulae (source: The SPIN Model Checker [138])

Formula Template Meaning
�p invariance always p
♦p guarantee eventually p

p→ ♦q response p implies eventually q

p→ q ∪ r precendence p implies q until r
�♦p recurrence always eventually p

♦�p stability eventually always p
♦p→ ♦q correlation eventually p implies eventually q

The variables in the LTL formulae represent atomic propositions over system state.

38

2.4. Model Checking

Client:0

1

Server:1

2

1!Discover

3

4

1!Offer

5

6

1!Request

7

8

1!Ack

Client:0

1

Server:1

2

1!Discover

3

4

1!Offer

5

6

1!Request

7

8

1!Nak

Figure 2.4: Guided trace from SPIN showing two alternative execution paths for a simple
DHCP [95, 177] client and server model

Client:0

1

Server:1

2

1!Discover

4

7

9

2!Offer

11

13

2!Offer

16

17

2!Offer

19

1!Request

20

21

2!Ack

23

23

Client:0

1

Server:1

2

1!Discover

4

8

2!Offer

10

11

14

16

2!Offer

18

1!Request

19

20

2!Offer

21

22

2!Ack

24

Client:0

1

Server:1

2

1!Discover

4

6

2!Offer

10

13

14

16

2!Offer

17

2!Offer

19

1!Request

20

22

2!Ack

23

23

Figure 2.5: Possible execution paths for a more complicated DHCP example with net-
work buffering delays.

39

Chapter 2. Background

This means boolean expressions over global variables and constants and SPIN also sup-
ports “remote references” which permits the inspection of process-local variables. The
use of remote references, although convenient when manually creating PROMELA mod-
els, is not compatible with partial order reduction and can thus significantly increase the
resource requirements for model verification.

2.4.3 Model Creation and Extraction

PROMELA is a difficult language to manually construct large, complex models with since
it lacks the high-level type system which makes the functional languages described earlier
(§2.2) so easy to program with. Although it offers limited symbolic data types via mtype,
this does not scale beyond 255 labels and enumerations cannot be held distinct from
each other. Even if such a model were manually constructed, the problem of proving its
equivalence to the underlying source code it represents is difficult. In this case, a proof of
the model’s correctness is essential to prevent the executing program diverging from the
model. One solution is to automatically extract models from a program’s source code, a
process known as model extraction.

Model extraction is a popular method for verifying safety properties of large systems
written in C. Holzmann developed MODEX to extract PROMELA models from ANSI-C
code [140]. Chen and Wagner created MOPS [65] to test an entire Linux distribution for
security property violations such as race conditions [244, 64]. Engler has applied model
checking techniques to test operating system kernel code for concurrency [100] and file-
system [289] bugs, finding some serious errors in Linux and OpenBSD. BLAST [133],
SLAM [20], Java PathFinder [130, 275] and Bandera [75] all rely on model-extraction
techniques to prove temporal properties about their respective systems.

SPIN also plays a role in the verification of specifications, by compiling elements of
the specifications automatically into PROMELA models. Kaloxylos developed a compiler
which translates Estelle [52] specifications directly into PROMELA [162]. Chen and Cui
convert the Unified Modelling Language (UML) into PROMELA to check the validity
of programs communicating using CORBA-based middleware [66]. As we explain later
in Chapter 6, we adopt a similar approach by using a simpler language to specify non-
deterministic state machines and automatically output PROMELA.

Model extraction normally involves iterative predicate abstraction [19, 124] where
portions of an application are replaced with simpler (often boolean) abstractions. This
process, while effective for creating an equivalent and tractable model from source code,
is difficult to maintain over a long period of time as the code-base evolves. A seemingly

40

2.5. Summary

small change to the main application can result in a large variance in the extracted ab-
stract model, and safety properties over the model may require rewriting. Conversely,
the approach of generating source code stubs automatically from an abstract specifica-
tion (and resolving the non-determinism through those stubs) works well initially, but
can require re-writing source code if the specification changes. As we discuss later (4.1),
one of the key goals of our research is to investigate a practical middle-ground between
model extraction and specification while ensuring that the equivalence between model
and application is always preserved.

2.5 Summary
This chapter has explained the technical background of the concepts used in the rest of
this dissertation. We began by motivating our thesis statement that “Applications which

communicate via standard Internet protocols must be rewritten . . .” by examining the
past and current Internet security situation (§2.1). Next we introduced functional pro-
gramming as a mature programming style with well-specified type systems which help
write reliable network applications (§2.2), and in particular Objective Caml (OCaml)
as a mature language which encourages programming in a functional, imperative or
object-oriented style and produces high-performance native code (§2.3). We use OCaml
throughout this disseration and demonstrate through our case studies (§7) that secure ap-
plications can be constructed with equal or better performance and latency than their C
counterparts by using it. Finally we introduced the SPIN model checker which can ex-
haustively verify safety properties of abstract models of complex, concurrent software
(§2.4). We use SPIN as part of our SPL state machine language (§6) to apply temporal
logic assertions against protocols, for example in our OCaml SSH server (§7.1.5).

41

Chapter 3. Related Work

CHAPTER 3

Related Work

Blank... BLANK?! You’re not looking at the bigger picture!

80S GUY (FUTURAMA)

The construction of reliable, secure and high-performance distributed applications
has been a staple research topic for many decades. In order to analyse the considerable
body of related work, we first split network application architectures along two lines: (i)
the “data plane” which processes a high volume of low-level information (e.g. bytes from
a network connection); and (ii) the “control plane” which determines the behaviour of the
data plane. The control plane is normally more abstract and complex than the data plane
which, due to performance requirements, can only perform simple processing on data
passing through it. The interaction between the two planes is rather arbitrary—e.g. they
can run asynchronously in separate hardware configurations, as often happens in network
routing architectures [125], the control plane can be “reactive” to events coming from
the data plane [186], or they can be completely integrated as in most general-purpose
programming languages. In this dissertation we are primarily concerned with software
applications, and do not cover the literature of hardware generation languages unless
relevant to software architectures.

Figure 3.1 illustrates the design space graphically by plotting techniques on two axes:
(i) their operation on the control or data plane (or both, in the middle); and (ii) the degree
of mathematical rigour applied to the technique. At the top of the graph are techniques

42

formal informal

control

data

ASN.1
PADS

C

Process Calculi

C++
JavaMLHaskell

CORBA
Awk

Perl
Python

Sed

Promela

Lex/Yacc

Petri Nets

C#

Occam

Prolac

PSL

BLAST
SLAM Dtrace

systrace

PacketTypes

Figure 3.1: Broad categorisation of the design space for constructing network applica-
tions, in terms of formality and the level of abstraction

ranging from the formal Petri nets or process calculi which deal with highly abstract mod-
els of a system, to software model checking systems such as SLAM or BLAST which
verify simplified models of a complex system, and finally the more ad-hoc but very prac-
tical dynamic instrumentation techniques such as systrace that enforce control flow at
run-time (§3.1). At the bottom of the graph are the “data manipulation languages” which
specify the nature of data being transmitted across a network, either formally in terms of
ASN.1 or CORBA IDL, as grammars of varying power (e.g. yacc) or very ad-hoc but
easy-to-use text processing languages such as Awk (§3.2). In the middle lie the general-
purpose programming languages (e.g. ML, Java or C) which deal with both control and
data planes with varying degrees of formal rigour (§3.3).

This classification is rather fuzzy, for example some languages such as Python or
Perl overlap between data processing and general-purpose languages, and Occam and
PROMELA are general-purpose languages oriented towards control systems. Neverthe-
less, it is a useful guide to categorise the literature on constructing network applications.

43

Chapter 3. Related Work

3.1 Control Plane
In this section we survey the literature on control plane manipulation, ranging from very
formal systems such as process calculi and Petri nets (§3.1.1) to the recent advances in
software model checking and extraction (§3.1.2), and finally the very flexible low-level
instrumentation techniques used to enforce policies against untrusted binaries (§3.1.3).

3.1.1 Formal Models of Concurrency

Process Calculi are a family of related algebras to formally model concurrent systems,
as opposed to the sequential computation modelled by (for example) the Turing Ma-
chine [267]. They provide a high-level view of communication and synchronisation be-
tween independent processes, and laws to allow mathematical reasoning about equiva-
lences between processes. Two influental early examples include Communicating Se-
quential Processes (CSP) first described in 1978 by Hoare [136], and the Calculus of
Communicating Systems (CCS) developed in 1982 by Milner [204]. Both are labelled
transition systems and use the notion of bisimilarity to define an equivalence relation
between systems (intuitively systems are bisimilar if they match each other’s transitions).

The development of process calculi is still active, with major improvements including
the π-calculus which extends CCS to model distributed processes [205] and the ambient
calculus which models physical mobility [59]. The ideas behind process calculi have
been heavily influential in the development of concurrent programming languages such as
Occam [155]. The reader of our previous introduction to PROMELA (§2.4.1) will recog-
nise many of its features are derived from Occam’s syntax which includes SEQ blocks
for sequential execution, PAR blocks for concurrent execution and ALT blocks for non-
deterministic guarded execution. As we will see in Chapter 6 Occam was also influential
in the development of our SPL state machine language.

Petri nets (also knows as place/transition or P/T nets [235, 213]) are a formal rep-
resentation of a distributed system first invented in 1962 by Carl Adam Petri [222]. A
Petri net consists of a set of places and transitions, and directed arcs which run between
them. The input and output places of a transition are the places from and to which an arc
runs respectively. Places contain a finite number of tokens which are either consumed
or created by transitions “firing”. Transitions fire when they are enabled by having a to-
ken in every input place. Petri nets execute non-deterministically which means that: (i)
multiple transitions can be simultaneously fired; and (ii) transitions need not fire if they
are enabled; the interleaving of firing is arbitrary and so verification tools must test all
possible combinations to verify safety properties of a Petri net.

44

3.1. Control Plane

Petri nets have been extended in many directions, such as coloured Petri nets which
assign values to tokens with optional type restrictions [151], hierarchical Petri nets with
support for refinement, abstraction and object models [2], and even an XML-based markup
language to support generic data exchange between different Petri net models [67]. The
CPN/Tools project [233] is a mature tool-chain for editing, simulating and analysing
coloured Petri nets. It uses OpenGL to provide advanced interaction techniques such as
marking menus and tool-glasses rather than the more conventional WIMP approach [27].
The tool has a number of commercial licensees1 and is primarily used for modelling ex-
isting systems rather than constructing them from scratch. Rather than inventing a new
language to capture the computation during transitions firing, CPN/Tools uses a subset
of Standard ML, although care must be taken to restrict the complexity of such code or a
state explosion makes the analysis of the resulting model difficult.

3.1.2 Model Extraction

Petri nets and process calculi are elegant and precise ways of specifying concurrency, but
are rarely used directly in real systems. A more common approach to formal verification
is to extract abstract models directly from more complex application source code, and
verify properties about the simpler model. The Bandera tool-chain [75] is a collection of
components designed to ease the model-checking of Java source code. The components
include components for program analysis and slicing, transformation, and visualisation.
Bandera accepts Java source code as input and a set of requirements written in the Ban-
dera Specification Language (BSL) [77]. A key design goal of BSL is to hide the intri-
cacies of temporal logic by placing emphasis on common specification coding patterns
(e.g. pre- and post-conditions to functions). BSL is also strongly tied to the source pro-
gram code via references to variables and methods names, which takes advantage of the
javadoc comment extraction system to explain the BSL specifications as well. Much of
Bandera’s utility arises from its mechanisms for model construction which provide tools
to eliminate redundant components from a model [76], simplifying the eventual output to
a model checking language such as PROMELA.

The BLAST [133] project introduced the lazy abstraction paradigm for verifying
safety properties about systems code. Lazy abstractions follows the following steps: (i)
an abstraction is extracted from the source code; (ii) the abstraction is model-checked;
and (iii) the model is then refined using counter-example analysis. The process is re-
peated until the model is sufficiently refined, and the resulting proof certificates are based

1A list is available at http://www.daimi.au.dk/CPnets/intro/example indu.html.

45

http://www.daimi.au.dk/CPnets/intro/example_indu.html

Chapter 3. Related Work

on Proof Carrying Code [214]. This mechanism helps make the model extraction process
more scalable by reducing the amount of time and effort required to create abstractions of
systems code. In contrast to the conventional abtract-verify-refine loop, lazy abstraction
builds abstract models on demand from the original source code. This results in a non-
uniformedly detailed model which contains just enough detail to show a counter-example
to the developer. When combined with a temporal safety automata, the tool either gener-
ates a small, quickly verifiable proof certificate, or an error trace indicating the location
of the error otherwise. BLAST was applied to low-level systems code, such as Windows
and Linux device drivers, discovered several errors and generated automated and small
proofs of correctness for these drivers.

In order to specify observer automata, BLAST adopts a set of patterns which, when
matched against the execution point of the program, trigger a state change in the observer
automata. BLAST specifies events which are tied to C function calls in the original source
code. CCured [215] is a tool which instruments C code with run-time checks to make it
memory safe. BLAST was used to remove as many of these run-time checks as possible
in order to narrow the performance gap between the safe and unsafe versions, and also
generate execution traces for code that could potentially fail [36].

SLAM2 is a large project aiming to integrate software model extraction and checking
directly into the Windows development kits. SLAM seeks to check whether or not a C
application obeys “API usage rules” which specify temporal constraints on sequences of
API calls. The toolkit does not require annotation of the source code and infers many in-
variants automatically. Like BLAST, it simplifies model extraction and slicing through a
process dubbed “counterexample-driven refinement” [71, 238]. The SLAM process uses
predicate abstraction [19, 124] to create boolean programs (which have all the control-
flow constructs of normal C code but with only boolean variables). These abstractions
are iteratively analysed and refined until the system is satisfied that no further refinement
is necessary. The main practical use of SLAM within Microsoft has been the static verifi-
cation of hardware device drivers in Windows, and in practice the refinement process has
terminated within 20 iterations [18]. The authors of SLAM report that the technique works
best for programs whose behaviour is governed by an underlying finite state machine—
device drivers clearly fall into this category, as do most network applications which are
implementing Internet protocols.

The temporal interface language used in SLAM—dubbed SLIC [21]—is similar to the

2See http://research.microsoft.com/slam/.

46

http://research.microsoft.com/slam/

3.1. Control Plane

Bandera Specification Language described earlier, and indeed has much in common with
other automaton specification languages in the literature which are concrete versions of
Schneider’s formalisation of security automata for software [242]. The Property Specifi-
cation Language (PSL) is a language designed for expressing constraints about hardware
designs constructed in Verilog or VHDL. The properties specified create assertions which
are passed to hardware verification tools and either dynamically monitored by simulation
tools or statically proven by model checkers. PSL, although geared towards hardware
model checking, is a concise language for expressing temporal properties in a friendlier
manner than LTL, and could also be used to construct never claims for software model
checkers such as SPIN (§2.4.2). PSL is currently being standardised by the IEEE P1850
Working Group, and is summarised along with other hardware verification languages in
the Bunker et al. survey on the topic [53].

Alur and Wang have tackled the problem of model checking real-world protocols by
extracting a specification from RFCs and using symbolic refinement checking to verify
the model against protocol implementations written in C [8]. They evaluate their tech-
nique by creating and verifying models of DHCP and PPP, and conclude that “[manual

model extraction] is unavoidable for extracting specification models since RFC docu-

ments typically describe the protocols in a tabular, but informal, format”.

Researchers at the University of Cambridge have completed a 9 man-year project to
rigourously specify the semantics of TCP/IP stacks [40]. They recognise the difficulty of
the post-hoc specification style, and use a combination of manual extraction from RFCs
and books (such as Stevens [257]) as well as extensive testing of the specification against
concrete implementations such as FreeBSD and Linux (a reversal of the usual testing
of implementations against specifications). The work required significant advances in
mechanised theorem proving, ranging from instrumenting operating systems to authoring
an appropriate specification language for HOL and managing the demands of distributed
theorem proving. However, this is still an area of active research and much work remains
before it is practical for the myriad of real-world Internet protocols.

3.1.3 Dynamic Enforcement and Instrumentation

The model extraction techniques described above require access to application source
code; we now discuss systems which can monitor an application from the binary itself.

Sun Microsystems developed DTrace [57] as part of their Solaris operating system
as a facility for dynamically instrumenting kernel- and user-level components of produc-
tion systems without modifying their behaviour. DTrace has thousands of “hooks” into

47

Chapter 3. Related Work

the operating system to allow developers to decide where to instrument their program,
and features a C-like automaton language to control when the instrumentation is active.
DTrace does not require modification to the source code and can operate on binaries.

Another dynamic enforcement system which operates on binaries is systrace [229]
which monitors the sequences of system calls to the kernel and can accept, deny or pass
the request to a userland policy daemon for verification. The systrace policy language
is not stateful3 and it can be difficult to keep applications binaries in synchronisation with
the low-level system call policies required by systrace.

The Model-Carrying Code (MCC) project led by Sekar combines the model-extraction
techniques described earlier with system call interception to provide a platform for the
safe execution of untrusted binaries [248]. Untrusted code is bundled with a model of its
security-relevant behaviour which can be formally verified against a local security policy
by a model checker. The execution of the binary is dynamically verified by system call
interception to fit the model and the application terminated if a violation occurs.

As Wagner and Soto point out [279], the low-level nature of system call interception
does make it easy for attackers to launch an observationally equivalent attack by crafting
a valid sequence of syscalls, and so this technique is only really useful as a last-resort if
more formal and reliable verification techniques against the source code cannot be ap-
plied. We have drawn inspiration from the work described above, in particular the MCC
approach of providing static models and dynamic enforcement, but our work operates at
a higher level with explicit support from the application source code.

3.2 Data Plane

The data plane is primarily concerned with processing the bulk of network data with low-
overhead and resource requirements. In this section, we describe formal data description
languages which map raw network data to higher level structures (§3.2.1), active networks
which execute mobile code to process data (§3.2.2), and the view-update problem which
relates to converting to and from concrete and abstract representations of data (§3.2.3).

3.2.1 Data Description Languages

One of the early innovations in language research was Yacc (or “Yet Another Compiler-
Compiler”) tool [154]. Stephen Johnson recognised that the inputs to computer programs
generally have some structure, and created Yacc as a way of simplifying the tedious and
error-prone task of checking all input tokens for validity. Yacc accepts a specification

3We proposed using the systrace kernel interface with stateful policies in previous work [184].

48

3.2. Data Plane

of a grammar and outputs a table-driven automaton which is driven by inputs of lexical
tokens and outputs an abstract syntax tree of the language. Although Yacc cannot handle
the complete set of context-free grammars [252] as it uses a Look Ahead LR (LALR)
parser, it strikes a good middle ground between the set of grammars it can handle and
the size of the resulting automata. It has been used to specify the grammars of many
languages since, including ANSI C [175], and has been ported to other languages such
as Scheme and OCaml.

Analogous specification languages for transmitting network data also exist. Abstract
Syntax Notation One (ASN.1) is a formal notation used for describing data structures
transmitted by communications protocols, independently of the underlying transmission
medium or implementation language. An ASN.1 specification can express low-level
fields such as integers, booleans or strings, as well as higher level constructs such as
sequences, lists, choices, etc. Sub-typing constraints and versioning information may
also be added, and specific encoding rules applied which define transmission format—
popular rules include the Basic Encoding Rules (BER), and the Packed Encoding Rules
(PER) optimised for low-bandwidth channels. ASN.1 was first standardised in 1984 by
the CCITT, and subsequently chosen by the ISO as standard notation4. However de-
spite the standardisation and a high degree of acceptance from other industry sections,
ASN.1 was not adopted as the encoding format for many of the original Internet pro-
tocols such as IP, UDP and TCP. This is a historical choice, as it was difficult of fit a
complete ASN.1 parser on the embedded IP routers at the time the protocols were be-
ing developed. The requirements for integration with external data sources has meant
that ASN.1 is often mentioned in RFCs, notably in directory protocols [121, 290, 296],
Voice-over-IP [55, 41], and security mechanisms such as SSL/TLS [93, 56].

CORBA is another method for safely exchanging data structures over the network, de-
veloped in the early 1990s as the Object-Oriented (OO) programming model was gaining
popularity (§3.3.1). CORBA uses an Interface Description Language (IDL) to precisely
specify the external interfaces exposed by object components. A mapping is also defined
between this IDL and the target language (e.g. C/C++/Java) which defines how CORBA
data types translate into structures in the implementation language. The first version
of CORBA was released in 1991, and was relatively simple (it defined the core set of
APIs for remote invocation and included a single language mapping for C). However, as
CORBA evolved to provide a language and platform-neutral specification for perform-

4In 1987, ISO published ASN.1 and BER as documents 8824 and 8825.

49

Chapter 3. Related Work

ing Remote Procedure Calls (RPCs), it grew to include aspects of security, transactions
and real-time guarantees. Today CORBA is an extremely feature-rich (albeit complex)
mechanism to create applications which require distribution component communication.

CORBA and ASN.1 are not suitable for the task of Internet protocol processing, since
although they can specify data structures to match those used by Internet data structures,
it is more difficult to match the wire formats used by those protocols without defining a
new encoding format per protocol. Data Description Languages (DDLs) are often used
to perform the opposite function of converting a physical representation into a logical

structure. DDLs tend to be specialised for a particular task; e.g. PACKETTYPES [189]
and DATASCRIPT [12] are specialised to parsing protocols and Java jar-files respectively.

PADS [109] aims to cope with truly ad-hoc data by providing mechanisms for error
recovery and support for non-binary data. Typically, consumers and producers of ad-hoc
data formats create bespoke tools to manipulate these formats, and a lot of time is spent
parsing the data instead of concentrating on the information it contains. PADS provides
a declarative data description language language which is error-aware by maintaining an
association with a data stream and a description of the errors in that stream. More recently
in 2006, Fisher et al. have defined a formal semantics for DDLs [110].

An early stub compiler was USC [219], which provided an extended form of ANSI
C to succinctly describe low-level header formats and generate near-optimal C code to
parse them. McCann and Chandra proposed PACKETTYPES as a language for specifying
network protocol messages [189]. A PACKETTYPES specification consists of a series
of named fields and types, and packet constraints are declaratively specified separately.
The specification is translated into C code which can be used as a library to receive
and transmit well-formed packets with respect to the PACKETTYPES specification for
that protocol. USC, PACKETTYPES and most data description languages output C code,
unlike our MPL compiler which outputs efficient, high-level code directly in statically
type-safe ML.

Prolac is a statically-typed, object-oriented language used to create readable, extensi-
ble and practical protocol implementations [171]. Kohler et al. also report on a modular
TCP implementation derived from the 4.4BSD stack and split up into minimally interact-
ing components. The Prolac compiler performs whole program optimisation to eliminate
cross-module dynamic dispatch, and the TCP implementation was found to have similar
end-to-end performance to a Linux 2.2 stack. However the code is no longer maintained
and no other protocols aside from TCP appear to have been implemented using Prolac.

Dabbous et al. implemented a compiler which converts a specification written in Es-

50

3.2. Data Plane

terel5 into highly optimised C code [88]. The compiler optimises the common code paths
for performance, and uncommon code paths for smaller size. Remarkably, their evalua-
tion of a subset of TCP compiled using their system versus a similar subset of the stan-
dard BSD stack led to code which was 25% faster and only 25% larger in code size. They
conclude that “there is no intrinsic performance penalty incurred when compiling from a

high level protocol description”. However as the Ensemble authors also note [131], this
approach does not scale to more complex higher-level protocol stacks due to the difficulty
of creating and maintaining large specifications.

3.2.2 Active Networks

The Packet Language for Active Networks (PLAN) [134] is a language intended for pro-
grams running over a programmable network. Rather than parsing existing protocols,
PLAN seeks to replace packet headers with programs with limited functionality. PLAN
also has a foreign-function interface (known as service routines) which can be invoked
when a PLAN program needs greater expressivity and power. PLAN is based on the
simply-typed λ-calculus, is strongly statically type checked, and can guarantee that the
execution of a PLAN program uses a bounded amount of network resource. The draw-
back is that a PLAN system requires network level support and thus cannot interoperate
with existing protocols over the Internet.

SafetyNet [280] is a language designed to safely implement a best-effort distributed
network, and uses a strong type system to enforce network policy such as resource usage,
webs of trust and security. It uses advanced static type systems such as linear types [170]
to move beyond the memory safety guarantees provided by traditional static type systems.

Menage developed the Resource Controlled Active Node Environment (RCANE) [195]
to facilitate executing untrusted code in a network. RCANE supports scheduling, re-
source (I/O and CPU) accounting and garbage collection on a network node, and was
implemented using an early version of OCaml. Menage notes OCaml had a number of
deficiencies when used as an active networking node. Many of these have since been
corrected in more recent versions, such as dynamic byte-code loading, just-in-time com-
pilation of byte-code and a well-documented foreign-function interface.

In their analysis of the cost of security across multiple active networking implemen-
tations [6], Alexander et al. describe several low-level applications such as the “active
ping”. It is interesting to note that despite their use of advanced programming languages
and type systems, active networking research tries to remain compatible with low-level

5Esterel is language designed for reactive systems, with excellent support for hardware synthesis [34].

51

Chapter 3. Related Work

packet formats such as IPv4, but does not seek to recreate more complex application-level
protocols such as DNS or SSH.

3.2.3 The View-Update Problem

The view-update problem expresses the difficulty of representing a data structure in an
abstract form in such a way that any changes made to the view will be reflected back
to the original structure. Although this is a classical topic in the database literature,
programming language research is only recently beginning to tackle the problem. A
popular area is the two-way manipulation of tree structured data (e.g. XML) using strong
static typing to eliminate run-time type errors, and ensuring that output is always valid
with respect to an XML schema.

Two examples of this work are XDuce [141] and CDuce [30]. XDuce (pronounced
“transduce”) features (i) regular-expression types, similar to XML Document Type Defi-
nitions (DTDs); (ii) powerful subtyping over regular-expressions; and (iii) regular expres-
sion pattern matching over the tree structure, combining conditional guards, tag checks
and extraction and iteration over sub-nodes. CDuce, inspired by XDuce, added several
features familiar to functional languages such as (i) a richer semantic definition of sub-
typing, allowing the integration of first-class functions, boolean connectives, and open or
closed record types; (ii) a backtrack-free sub-typing algorithm; and (iii) ML-style pattern
matching for XML [31] with efficient code output driven by type information [114].

Although similar, XDuce and CDuce have since developed in different directions.
XDuce has added mixed attribute-element types and powerful filtering operations. CDuce
was integrated directly into OCaml, allowing normal OCaml programs to be augmented
with “x-types” representing XML types, pattern matching across them, and converting
back and forth between OCaml types and x-types.

Foster et al. developed the notion of bi-directional tree-structured synchronization as
part of the Harmony [112] project. Harmony is a framework for reconciling disconnected
updates to heterogeneous and replicated XML data. Examples include the synchroniza-
tion of the bookmark files for several different web browsers, allowing bookmarks to
be edited and reorganized by different users running different browser applications on
disconnected machines while maintaining their organisational structures.

A theme of Harmony is to develop the foundations of bi-directional programming

languages, in which every program denotes a pair of functions; one to create a view

of a data structure, and another to update that view in a consistent manner. They term
these two functions as the get and putback functions [113] respectively, and note that the

52

3.3. General Purpose Languages

difficulty lies in balancing the complexity of the get functions such that the complemen-
tary putback functions also exist. They discuss a combinatorial approach to ensure the
consistency and ease of specifying these function pairs.

3.3 General Purpose Languages

General-purpose languages are not specialised to either a control or data plane, but rather
act as the glue between more formal mechanisms and the operating system. In this section
we look at some related work relevant to our thesis, starting with approaches from soft-
ware engineering to construct reliable systems (§3.3.1), the emerging field of generative
meta-programming (§3.3.2) and finally the inspirational work for much of our research
by examining previous uses of functional languages for constructing networking applica-
tions (§3.3.3).

3.3.1 Software Engineering

There are two broad approaches to constructing software using a general-purpose lan-
guage: (i) the “top down” approach which emphasises planning and a complete under-
standing of the system; and (ii) the “bottom up” method which creates low-level com-
ponents and assembles them into a complete system. The top down approach requires
exact specifications, and the system can only be tested at a very late stage. Conversely,
the bottom up approach encourages low-level functional units to be created, tested and
shared between multiple components. Both of these methodologies have benefits and
drawbacks, and most pragmatic solutions are somewhere in between them.

Top down programming was a popular technique in the 1960s and 1970s. Harlan
Mills developed an influential mathematical foundation for structured programming [201,
202], and Niklaus Wirth (the designer of the Pascal programming language) described the
stepwise refinement technique [285] as a “sequence of design decisions concerning the
decomposition of tasks into subtasks and of data into data structures”. Dahl, Dijkstra
and Hoare discuss both structured and object-oriented programming in their 1972 book
“Structured Programming” [89]. However, as software engineering became more com-
monplace and complex, and time-scales for development shortened, top-down program-
ming began to lose favour. Reasons included the intolerance of top-down programming
to changes in the specification (which often require a complete re-design), and also the
difficulty of re-using code developed by a top-down project in other areas.

Object-oriented (OO) programming began to gain popularity in the late 1990s with
the rise of C++ and Java. The OO style encouraged the bottom-up style, where low-

53

Chapter 3. Related Work

level components are divided into objects which are composed together into complete
systems. This gave developers more flexibility with respect to the final specification of
the program, and also to share object libraries between applications. The associated for-
malisms to support the programming style were also rapidly developed [1, 116]. Unfor-
tunately, bottom-up design can lead to unreliable large-scale systems, as unless the object
interfaces are completely specified and understood (rarely the case), their composition in
different applications can lead to subtle, hard-to-find bugs.

Both methods are still active research areas; for example Dijkstra’s weakest precon-
dition calculus [94] has been extended into the Refinement Calculus by Ralph-Johan
Back [13, 14] and Carroll Morgan [211]. The Refinement Calculus formalises a step-
wise refinement by a series of correctness-preserving transformations into an executable
program. Formal proof assistants such as Coq [146] can transform proofs directly into
executable programs such as OCaml (including programs which are normally untypable
in ML, but are safe since they have been verified by the theorem checker). Xavier Leroy
has recently documented his experiences with constructing a certified compiler using this
technique [179].

Techniques to verify the soundness of interactions between components written in
unsafe languages such as C are a more active area since many of the critical Internet at-
tacks described earlier are due to bugs of this nature. For example, Engler has adopted
statistical model checking techniques [102] and compiler extensions [101] to find bugs in
millions of lines of C code. PSL6 is a framework for specifying the dynamic and archi-
tectural properties of component-based systems [174]. It works in a co-inductive fashion
by capturing the incompleteness of a system and specifying rules to eliminate behaviours
instead of allowing them. This means it lacks familiar constructs found in closed-world
models7 such as step operators or frame axioms (which assert that unmentioned proper-
ties remain unmodified between state transitions). PSL provides support for refinement
and generalisation to strengthen or weaken specifications, also a specialised version can
be used to inter-operate with CORBA-based middleware.

3.3.2 Meta-Programming

Meta-programming is the approach of using programs which create further programs spe-
cialised to a particular task. Meta-programming is most commonly found in compilers,
which accept a program specification (e.g. C code) and output an equivalent version in a

6Not to be confused with the Property Specification Language described earlier.
7Closed world models include most of the formalisms described so far such as process calculi or the

Kripke models used by SPIN.

54

3.3. General Purpose Languages

lower-level language (e.g. assembly language). This is also known as generative meta-
programming, but some very dynamic languages such as LISP, Python or Ruby permit
the modification of a program at run-time and thus eliminate the generation step.

Meta-programming allows code to be parameterised over various design choices at
compilation time and output code which is specialised to the task at hand, but also guaran-
teed to type check for all possible generated programs. The Fox project first investigated
extending ML with run-time code specialisation, via a subset of ML which dynamically
recompiled itself with a minimal performance cost [283, 176]. The DDLs described ear-
lier (§3.2.1) can be considered as an instance of meta-programming with very specialised
type systems dedicated to packet parsing or ad-hoc data formats. Walid Taha and his
team are developing a more general type-safe multi-stage programming solution with
MetaOCaml [260], which modifies OCaml to permit dynamic code generation via a set
of syntax extensions.

3.3.3 Functional Languages for Networking

The inspiration for much of the work in this thesis stems from the FoxNet project [38, 37],
which implemented the TCP/IP stack using Standard ML. The implementation made
good use of SML/NJ features such as parameterised modules (known as functors) to
separate out protocol elements into a series of signatures. A combination of these protocol
signatures resulted in a TCP/IP implementation. Other protocols combinations were also
possible such as TCP over Ethernet; a useful exercise which revealed layering violations
in the design of TCP/IP (e.g. the “pseudo-header” used to calculate the TCP checksum
depends on the source and destination address from the IP layer [225]). FoxNet was one
of the first attempts to apply a functional language to a low-level “systems” problem such
as network protocol implementation.

It is interesting to examine some of the issues they faced [38], and design decisions
they took versus our own. FoxNet used a modified version of the SML/NJ compiler
which supported 1-, 2- and 4-byte unsigned integers and in-lined byte arrays and the
associated logical shift operators. This modification is not necessary in modern OCaml
as it natively supports integers of 2-, 4- and 8-bytes and strings can be used to represent
byte arrays. However, the OCaml support for these types is syntactically much more
difficult to use when compared to native integers. The FoxNet code is difficult to compile
on a modern computer due to their compiler modifications and although they supply the
compiler source code, it is dated and only supports code output on Alpha and MIPS
processors (increasingly rare in the modern x86-dominated world). We discuss how we

55

Chapter 3. Related Work

avoid these problems later in our design goals (§4.1).

FoxNet also use the SML/NJ extension for first-class continuations, enabling a co-
operative threading model by regularly yielding to a Scheduler functor which dealt with
multiplexing connections. OCaml is very different from SML/NJ with regards to its
internal implementation; it is based on the ZINC machine and uses currying instead of
tuples to represent function calls [178]. As a consequence, continuations are difficult to
support efficiently in OCaml (although Xavier Leroy has created a naı̈ve bytecode-only
version which copies the entire stack [180]). In practice, we have found that fine-grained
threading or continuations are not an essential component of networked servers; we rely
instead on a high-level continuation style (by capturing connection state using a variant
data type) and asynchronous I/O to ensure that the server does not block while waiting or
transmitting data.

FoxNet primarily implemented a TCP/IP stack and a simple HTTP server to serve
web pages. Web servers are a fairly common target for implementation in functional
languages; Marlow developed one in Concurrent Haskell [187], and the SMLserver is a
AOLserver plug-in which serves dynamic web-pages written using MLKit [99]. To our
knowledge, there have been no attempts to create servers for more complex protocols
such as SSH, DNS or BGP using functional languages.

Another large networking project which used OCaml is the Ensemble network pro-
tocol architecture [271, 131, 88]. Ensemble is designed to simplify the construction of
group membership and communications protocol stacks. A system is constructed by
composing simple micro-protocol modules which can be re-arranged in different ways
depending on the exact needs of the underlying application. Some examples of micro-
protocols include sliding windows, fragmentation and re-assembly, flow control, and
message ordering. Ensemble is particularly interesting for us due to its use of OCaml,
which it switched to from using C in its previous version (known as “Horus”).

In Chapter 4 of his PhD thesis [131], Hayden discusses the impact of using OCaml
and notes that reducing memory allocation is a key concern. He also reports that using the
C interface led to hard-to-track bugs, confirming our approach of attempting to attain high
performance without resorting to using foreign-function bindings. Ensemble compared
favourably to Horus in terms of latency, lines of code, and performance, and the use of
OCaml eased the integration with the Nuprl proof system to optimise micro-protocols
automatically, formally and correctly [88].

Unlike our work, Ensemble does not seek to implement existing protocols, instead
serving as an effective testbed for research into new distributed communications proto-

56

3.4. Summary

cols. It uses the OCaml Marshal module to transmit data structures over the network,
which is not type-safe and can lead to program crashes if data is corrupted or tampered
with8. In contrast, we use MPL to precisely specify the wire format of traffic sent or
received to conform to existing Internet standards.

FoxNet and Ensemble are the two most major projects which use functional languages
to deliver elegant, secure protocol implementations. Other systems research is concen-
trating on eliminating the user/kernel divide by exporting functionality in general-purpose
operating systems into user-land. Gunawi et al. implemented icTCP which exposes key
elements of internal TCP state to user-land applications with minimal changes to kernel
code [127]. Although they acknowledge the benefits of structured protocol stacks such as
FoxNet, they do not (yet) use functional languages as a regular part of their development.

3.4 Summary
This chapter has surveyed the body of related work that is relevant to the construction of
reliable and secure network applications using both formal and informal methods. We
categorised the body of work into those techniques dealing with an abstract control plane
(§3.1), a high-bandwidth data plane (§3.2) and general-purpose programming languages
which glue them together in software architectures (§3.3).

8Shinwell et al. are working on an extension to OCaml featuring type-safe network marshalling [251].

57

Chapter 4. Architecture

CHAPTER 4

Architecture

Everything is vague to a degree you do not realize till you have tried to make it precise.

BERTRAND RUSSELL

In this chapter we describe the basic design goals behind our research (§4.1) and the
concrete architecture and research contributions which resulted from them (§4.2). The
design goals are motivated by lessons learnt from the related work described earlier (§3)
in our background survey about threats facing the modern Internet (§2.1), and our desire
to solve this problem by deploying safe yet practical applications written in high-level
languages (§2.2).

4.1 Goals

We noted earlier that the vast majority of critical Internet infrastructure hosts are running
applications written in C despite decades of research into safer programming languages
(§1.1.3) and have been vulnerable to numerous security vulnerabilities as a result (§2.1).
In this section we define the goals which our architecture must meet, firstly by discussing
the nature of data abstractions inside modern operating systems (§4.1.1) and secondly by
discussing the language support needed to construct applications in a modern high-level
language such as OCaml (§4.1.2).

58

4.1. Goals

Network
Network Card

Ethernet Stack

IP Stack

TCP Stack libc

Application

syscall

Kernel Userspace

Figure 4.1: The data flow of traffic from the physical network through the kernel and
finally into user-space where the buffers are sent to the application.

4.1.1 Data Abstractions

Modern operating systems place great emphasis on the efficient handling of network
traffic in order to enable applications to transfer data with high throughput and low la-
tency overhead. The OS can also provide other services such as process isolation and
protection, reliable storage and resource reservation guarantees. When the application
interfaces were first developed in the 1960s for early operating systems, CPU time was
a scarce resource compared to available memory. This situation has reversed in recent
years as memory bandwidth is relatively low compared to the fast CPU speeds [198].

In order to minimise the high cost of memory access most operating systems provide
abstractions which discourage the copying of data, instead modifying it in place. For
example, the BSD network stack keeps track of network packets as mbufs which represent
the payload and headers of a network packet (represented internally as a single buffer or a
chain of multiple buffers) [194]. Linux also uses a similar mechanism known as skbufs.

Figure 4.1 illustrates the flow of data from the physical network through the code
paths in a kernel and into user-space. On the receive path, data is most often copied once
from the network interface hardware into an appropriate kernel structure (e.g. mbuf or
skbuf) and passed by reference into the various levels of kernel protocol stacks. When
processing is complete the data is transferred to user-land to make it accessible to the
application (in reality, stream protocols such as TCP place the data into a buffer from
where it is later retrieved by the application).

A lot of systems research has focussed on making the data flow within the kernel
to the application a “zero-copy” process to avoid making memory bandwidth a bottle-

59

Chapter 4. Architecture

neck, for example in TCP/IP stacks [68], virtual memory management [82] or I/O sub-
systems [167]. The Berkeley Packet Filter [190] was developed to permit user-level pro-
cesses to request complex filtering policies from the kernel while avoiding the overhead
of copying every packet into user-land to inspect its contents. The filtering language is
designed around a register-based machine and recent improvements in implementation
have improved the performance of the system considerably [28].

In order to maintain performance the application must also minimise the copying of
data once it has been retrieved from the kernel. In a language such as C this is normally
accomplished by passing around pointers to structures containing the data. Unfortunately,
higher-level languages featuring automatic garbage collection tend to abstract data struc-
tures away from the programmer, and it can be difficult to know when a value has been
copied or merely referenced. Data copying is particularly pronounced in purely func-
tional languages and the effort to eliminate redundant intermediate structures is known
as “deforestation” [277]. OCaml does permit a finer control over when data is copied
or referenced, but this requires a more verbose and imperative style of programming as
opposed to the slower but more elegant functional approach it also supports (§4.1.2).

For some classes of applications which are short-lived and perform a lot of symbolic
computation (e.g. compilers) this extra copying is not important. However it is a critical
distinction for network applications which process a large number of data structures over
a long period of time. A primary goal of the research in this dissertation is to make it
easier to construct a “control and data” distinction inside network applications written in
a high-level and safe language, as we shall see later in this chapter (§4.2.1).

4.1.2 Language Support

During our survey of related work, we created a diagram of the design space in Figure 3.1
which classified techniques by their formal rigour and level of abstraction. Formal meth-
ods are a valuable tool for verifying correctness properties of complex systems, especially
with respect to security-related aspects, but are currently very under-used in real systems.

The overall goal of our research, shown in Figure 4.2, is to construct a software
architecture which integrates the more practical formal methods into a complete system

which does not sacrifice the performance and portability aspects of currently deployed
servers. In particular, there is an incorrect but widely-held belief that the use of high-
level languages with automatic garbage collection results in network applications running
more slowly and unpredictably when compared to their equivalents constructed in C. As
we will show later in our evaluation (§7) by carefully constructing applications with a

60

4.1. Goals

formal informal

control

data

ASN.1
PADS

C

Process Calculi

C++
JavaMLHaskell

CORBA
Awk

Perl
Python

Sed

Promela

Lex/Yacc

Petri Nets

C#

Occam

Prolac

PSL

BLAST
SLAM Dtrace

systrace

PacketTypes

SPL

MPL

OCaml

Figure 4.2: Diagram showing where our research fits into the design space. The red block
indicates how most existing Internet applications are constructed and the green shows the
space we are moving into.

control and data abstraction in mind, the opposite can also hold true!

Another element of our thesis is practicality—we wish to create a solution that does
not depend on a modified tool-chain which will rapidly become deprecated once the
research has been completed. We noted earlier that the code from the FoxNet project,
although freely available, is difficult to compile up and use due to its dependence on a
modified SML/NJ compiler. Thus, another design goal is that our architecture must work
with a mature and well-tested language and tool-chain. Our choice of language is OCaml,
for the reasons described in our background chapter (§2.3).

OCaml, as with most general purpose programming languages, is not ideal for ex-
pressing strict data and control plane abstractions. On the data plane, although it sup-
ports manipulation functions for variable-sized integers (essential for handling binary
protocols), it does not provide polymorphic function operators across them. OCaml dis-
tinguishes between native integers (type int, e.g. 53), 32-bit integers (type int32, e.g. 53l)
and 64-bit integers (type int64, e.g. 53L). Since these types are distinct, they must be ex-
plicitly converted via library functions to the other representations. This means that the
infix (+) operator has type (int → int → int), which will not type-check against 32- or

61

Chapter 4. Architecture

64-bit integers. Separate modules are provided which implement the equivalent functions
for other integer types; e.g. Int32.add with type (int32 → int32 → int32).

Int32.sub (Int32.add 1l 2l) 1l ;; OCAML

val z : int32 = 2l
let (++) = Int32.add ;;
val (++) : int32 → int32 → int32 = <fun>
let (–) = Int32.sub ;;
val (–) : int32 → int32 → int32 = <fun>
1l ++ 2l – 1l ;;
val z : int32 = 2l

The result is that manually constructed code to deal with network protocols is rather
verbose and cumbersome. In addition, performance requirements dictate that protocol
handling code minimises dynamic memory allocation in order to reduce the load on the
garbage collector, meaning that the code for parsing network protocols is by nature highly
imperative and vulnerable to human error.

For the control plane , we wish to deploy more formal model checking tools which can
verify safety properties about the reactive state machines which form network protocol
servers. Extracting abstract models from a functional language, although easier than
from C due to the memory safety guarantees, is still not an automatic process. As we
noted in our related work on model extraction (§3.1.2), changing the source code as an
application evolves can have drastic effects on a generated model and require re-writing
safety properties against it. This inevitably leads to the safety properties “bit-rotting” as
they are kept in synchronisation with the source code in a rapidly developing project.

Secondly, OCaml does not provide an easy way to specify complex state machines—
its native pattern matching is extremely powerful for iterating over data structures, but this
rapidly becomes confusing when dealing with complex, interconnected graphs which are
unrolled into long sequences of pattern matches. Writing these state machines in a more
concise, non-deterministic form would be preferable for readability and maintenance.

To summarise our goals, we wish to create high-performance network servers which
use OCaml to benefit from its flexibility and safety via static typing, but: (i) not require
any compiler or language modifications; (ii) avoid writing verbose, error-prone, low-level
packet parsing code; (iii) express high-level state-machines which can be fed into a model
checker; and (iv) create a mechanism for keeping the state-machines and abstract models
in synchronisation as the source code evolves.

62

4.2. The MELANGE Architecture

Network

MPL
Standard
Library

IPv4 IPv6 Ethernet

DNS BGP SSH

ARP ICMP TCP

MPL
Spec

MPL
Protocol

Code

tcpdump

MPL
Compiler

OCaml
Application

Main
Server

SSH
Transport

SPL
Spec

DNS
Cache

SSH Auth SSH
Channels

DHCP
Server

SPL
Compiler

SPIN Graphviz

Tools

Simulator

SPL
Debugger

Performance
Analysis

Figure 4.3: The MELANGE architecture for OCaml servers. The shaded boxes in the
OCaml application represent auto-generated code.

63

Chapter 4. Architecture

4.2 The MELANGE Architecture

The MELANGE network application infrastructure is illustrated in Figure 4.3, consisting
of two domain-specific languages built around OCaml. The main application consists
of several discrete components which are output by the MELANGE tool-chain. Firstly,
the MPL compiler accepts a protocol specification and outputs OCaml protocol parsing
code (§4.2.1). Secondly, the SPL compiler translates the protocol state machines into an
OCaml inline automaton (§4.2.2). Finally the main application, written in any style most
convenient to the programmer, is linked in with these components and the MPL standard
library to result in an executable.

Both the MPL and SPL compilers are instances of generative meta-programming
compilers (§3.3.2) and are both written in OCaml and output further OCaml code, thus
meeting our first goal that no compiler modifications are required to enable practical wide
deployment. By using MPL, the main application does not have to deal with details of
packet wire-formats directly, instead manipulating high-level data structures which ab-
stract the details into functional objects. The SPL compiler provides a succinct front-end
language to express non-deterministic finite state automata which can be dynamically
enforced in the main application and statically verified via a model checker.

The MELANGE architecture makes the following specific contributions: (i) the use
of a data description language which outputs type-safe, highly structured code instead of
C for the purposes of efficient and safe packet parsing in a high-level language; (ii) the
notion of specifying abstract models which are both dynamically enforced efficiently in
the main application and statically verified by formal tools1; and (iii) the development
and evaluation of complete servers for complex protocols such as SSH and DNS around
this architecture which demonstrate that these languages can have equal or higher perfor-
mance than their equivalents written in C, while also maintaining static type-safety and
the ability to model check aspects of the application.

4.2.1 Meta Packet Language (MPL)

MPL is a data description language—analogous to yacc for language grammars—which
accepts a specification for the wire format of a network protocol and outputs OCaml code
which can efficiently parse and create those protocol packets in a type-safe fashion. The
high-level OCaml data structures output by MPL are efficient and maintain only a single

1As we noted earlier (§3.1.2), tools exist which either do this at the system-call level (e.g. Model Car-
rying Code) or via model extraction (e.g. BLAST or SLAM) which make it difficult to specify a constant
abstract model. Our contribution integrates this technique directly into an application.

64

4.2. The MELANGE Architecture

copy of the packet data. At the same time, they take full advantage of OCaml language
features such as the object system and polymorphic variants to support an elegant func-
tional programming style. For example, received network traffic can be classified using
ML pattern matching, and packets can be partially created as curried functions. In order
to take full advantage of the OCaml type system, MPL generates a unique OCaml type
for each packet type in the specification, and automatically inserts values which can be
inferred from other packet fields (e.g. length fields are calculated from their associated
buffers and need not be specified when creating a packet). Developing the equivalent
OCaml code by hand would be tedious and error-prone, as the MPL specification is sig-
nificantly more succinct than its associated OCaml code.

MPL specifications can parse (or create) a packet by delimiting it into a series of
fields, and then optionally classifying further parsing behaviour based on the contents
of that field. Field definitions consist of several built-in types such as bit-fields, bytes,
16- 32- and 64-bit integers. MPL differs from many other data description languages
by permitting custom fields to be defined which allow arbitrary parsing code written in
OCaml. This enables real-world protocols with complex fields to be parsed using MPL,
such as SSH (featuring multiple-precision integers for cryptography) or DNS (with its
pointer-based parsing of strings). We cover these in our case studies in Chapter 7.

By exclusively using MPL to handle network traffic, an application guarantees that
it only sends and receives well-formed packets with respect to the packet specification;
any violations will be caught at compile-time by the ML type system. Also, the OCaml
code output by MPL does not directly communicate with the network; instead it interacts
with an MPL standard library which abstracts away the specifics of the network commu-
nication. The MPL standard library supports communication via the network, a tcpdump
format file, or directly linking in with a network simulator.

Although we focus on OCaml in this thesis, it is important to note that MPL can be
easily modified to output code in other languages. An MPL backend could be structured
as a portable C packet parsing core, with foreign function bindings to languages such as
Haskell. However, we seek to implement as much of our application in OCaml as possible
to ensure a consistent base-line of type safety. MPL is further defined in Chapter 5.

4.2.2 Statecall Specification Language (SPL)

There is no clear choice of programming styles when deciding how to express a protocol
state machine in OCaml. Programmers familiar with C may elect to implement an im-
perative if/then/else-style machine. Functional programmers may use a continuation

65

Chapter 4. Architecture

passing-style, and those who prefer an object-oriented approach might elect to use ob-
ject design patterns [116]. Conversely, programmers more familiar with theorem proving
could convert formal specifications into executable code using a proof assistant [179].
Each of these mechanisms has benefits and drawbacks; the ideal solution varies between
applications and how critical the correctness of the final program is.

Regardless of the mechanism chosen, programming in OCaml does not automatically
result in an application for which formal reasoning is easier beyond the type system
guarantees; indeed, tracking down protocol bugs can be more difficult due to the presence
of higher order functions into which control flow can “escape”. There are two broad
approaches to formal verification of the application: (i) begin with a formal specification
and convert it into executable form using a proof assistant such as Coq [146]; and (ii)
write the application as normal, and perform model or theorem extraction from the source
code. Both of these options are currently active research topics and certainly not ready
for the casual programmer who is not familiar with the usage of theorem provers.

However, for a large class of network applications, we do not wish to formalise the
entire application; rather, there are certain key aspects which, if verified, are sufficient
for the purposes of eliminating a large class of bugs. To allow this, we define a state ma-
chine specification language—dubbed SPL—which allows developers to specify mod-
els in terms of allowable program events (e.g. sequences of network packets). A com-
piler translates SPL into a non-deterministic model checking language (e.g. PROMELA),
and executable code (e.g. OCaml). The generated PROMELA can be used with a model
checker such as SPIN to verify safety properties of the automaton. The OCaml code pro-
vides a safety monitor which, when linked in with a program, ensures that the application
behaviour does not deviate from the specified model.

Our approach offers a number of benefits: (i) the entire application does not need
to be formally specified beyond being written in OCaml, as the critical portions can be
abstracted out into separate automata; (ii) the models being verified are guaranteed to be
dynamically enforced in the application2; and (iii) the executable models embedded in the
application permit high-level debugging at run-time. Conventionally, safety monitors for
applications written in unsafe languages must execute in a separate process to guarantee
isolation from the main application [230]. This introduces a performance penalty due
to the overhead of inter-process communication, as well as additional complexity. In
contrast, the OCaml safety monitors output by SPL use the static type system to guarantee

2Thus overcoming the model equivalence problem described in §2.4.3

66

4.2. The MELANGE Architecture

that the main application cannot interfere with the internal state of the safety monitor.
This means that it can execute in the same process as the main application, reducing the
task of monitoring program events to simple function calls. Thus, we dub the OCaml
safety monitor an inline automaton which enforces the SPL specification with very little
additional overhead.

The use of SPL is not without drawbacks however. Firstly, the safety monitor termi-
nates the application by raising a software exception if it enters a bad state. Although
this clearly not appropriate for some applications—nuclear control plants or aircraft
systems—we judge it suitable for the network applications we are creating, since the
protocols they communicate with are generally very tolerant to failure (e.g. due to link
failure). It is certainly better to terminate the application rather than let it transition into
an undefined state which possibly leads to a security compromise or incorrect data being
transmitted. Since the error raised is a normal OCaml exception, it can also be caught
by the application and dealt with appropriately (e.g. terminate a particular connection
instead of all sessions).

Secondly, the main application needs to drive the safety monitor with messages (dubbed
statecalls) to allow it to progress. If the application does not reliably transmit these mes-
sages, then the inline automata will be dormant. The MELANGE architecture in Figure 4.3
provides integration between MPL and SPL for this reason. As packets are transmitted
and received via the auto-generated MPL interface, they can automatically trigger the ap-
propriate statecall into the SPL automaton. All the programmer needs to do is to provide a
simple higher-order function which performs the “statecall routing” into the application.
As we show later in our evaluation of an SSH server (§7.1), this integration is sufficient
to capture a number of important security properties of an application.

Finally, although the inline automata will enforce the SPL specification, the program-
mer needs to ensure that the SPL and the actual application code express the same state
machine, or violations will occur. The use of SPL guarantees that the application will fol-
low the specification or terminate, but does not make any assertions regarding the quality

of the application (i.e. it could always just terminate). Xavier Leroy makes a similar dis-
tinction between implementation quality and correctness in his work on constructing a
certified compiler [179]. This is largely solved by following standard testing methodolo-
gies; the main value of SPL automata are in catching rare edge cases (e.g. resulting from
network timeouts) not detected through testing.

Although not immediately interesting from a research angle, the SPL compiler also
offers useful visualisation functionality by: (i) outputting DOT code which can be graph-

67

Chapter 4. Architecture

ically visualised by tools such as Graphviz [161]; (ii) an SPL debugger can attach to a
running MELANGE program and obtain a variety of statistics and correlate its current state
to the SPL source specification (a screen-shot is shown in §7.1.4). This is a much higher
level of debugging than the usual function-trace information obtained from conventional
debuggers such as gdb, and is particularly important when using OCaml which supports
anonymous lambda functions which can make the use of normal debuggers harder than
when using C.

The SPL language syntax is intended to be more imperative than other model-checking
languages, although this is primarily a matter of style. For example, below is a locking
automaton specified in the BLAST query language [35] (§3.1.2) and in SPL.

1 GLOBAL int locked;

2 EVENT {

3 PATTERN { $? = init(); }

4 ACTION { locked = 0; }

5 }

6 EVENT {

7 PATTERN { $? = lock(); }

8 ASSERT { locked == 0 }

9 ACTION { locked = 1; }

10 }

11 EVENT {

12 PATTERN { $? = unlock(); }

13 ASSERT { locked == 1 }

14 ACTION { locked = 0; }

15 }

1 automaton lock (bool locked)

2 {

3 multiple {

4 either {

5 Init;

6 locked = false;

7 } or (locked) {

8 Unlock;

9 locked = false;

10 } or (!locked) {

11 Lock;

12 locked = true;

13 }

14 }

15 }

For full details on SPL, please refer to Chapter 6.

4.3 Threat Model
It is essential to define a threat model to understand the security risks which our new
architecture protects hosts from. For example, writing applications in OCaml will not
prevent a malicious attacker from physically assaulting a computer to shut it down3. In
this section we classify several attacks from the literature with respect to the MELANGE

architecture.

Buffer Overflows: These result from a lack of dynamic bounds checking over blocks of
3It has been argued that there is a higher chance of being physically assaulted as an OCaml programmer

due to the smug attitude shown towards their less fortunate colleagues still coding in C.

68

4.3. Threat Model

memory and can result in arbitrary code execution (§2.1). All pure OCaml code is
guaranteed to be safe from buffer overflows as long as certain unsafe features are
not used, specifically the −unsafe compiler option, the unsafe put function for
strings and the Obj.magic function which bypasses the type system and is intended
for use by code generated by theorem provers. We have only used unsafe functions
in very bounded areas of the MPL standard library (§5.2.2) which can easily shown
to be safe by inspection.

Bindings to foreign libraries written in C can also result in buffer overflows in
that code—the most major library in all OCaml programs is the standard library
which has been carefully inspected for problems (both by automated tools [106]
and manual code auditing). Binding interfaces can also be statically checked for
safety by Saffire [115]. In our experience, it is often easier to rewrite libraries than
to bind to their C versions except for trivial system calls such as kqueue(2) which
are not present in the standard library. From the servers in our case study (§7), the
SSH server uses one external OCaml library for cryptography and the DNS server
uses no external libraries.

Integer Overflows: These result from the silent overflow of integers due to the modulo
nature of their machine representation. These problems are not normally directly
exploitable to run arbitrary code in the style of buffer overflows, but are used as
a step towards code execution by causing an application to under-allocate mem-
ory and thus result in a buffer overflow later in the control flow (§2.1.4). OCaml
integers can silently overflow (and in fact are more likely to do so since they are
one bit smaller than C integers) but this can only lead to control flow errors and
never arbitrary code execution due to dynamic bounds checking. Our use of MPL
to abstract packet parsing (which is the most common source of integer overflows)
ensures that all integer operations which can possibly overflow (e.g. addition) are
dynamically checked for correctness.

Memory Exhaustion: Classically defined by the TCP SYN flooding attack [243], these
attacks keep increasing the amount of state stored by a server until it runs out of
memory. MELANGE applications are as vulnerable to this as normal servers if
constructed in such a way that they store per-connection state (which in some pro-
tocols is unavoidable). However, the presence of a garbage collector which deals
with low-memory situations by compacting and aggressively freeing memory such

69

Chapter 4. Architecture

as weak references (see our DNS server in §7.2.2) may make this attack harder to
exploit than in conventional servers which manually manage their memory space.

Complexity Attacks: Algorithmic complexity attacks [86] convert normally efficient
data structures into much more expensive versions by inserting specially crafted
data into them—e.g. by forcing hash collisions in an associative array. MELANGE

applications are written in OCaml which makes it significantly easier to use an
appropriate data structure instead of the “catch-all” hash tables typically found in
scripting languages such as Perl or Python. Badly constructed OCaml applications
are equally vulnerable to this attack however.

Dynamic Termination: Applications which use external safety monitors such as system
call monitors are vulnerable to forced termination of the entire application by a sin-
gle malicious connection which has knowledge of a flaw in the security policy. For
example a systrace [229] policy applies to the entire process and a threaded server
may receive a malicious request which triggers a rare code path which violates the
policy and aborts the entire server. MELANGE safety monitors are integrated with
the application code and raise software exceptions which can be caught and dealt
with more cleanly. For example, the SPL policies for our SSH server (§7.1.3) are
split up into per-session and per-connection safety monitors, and a violation will
only terminate one session or one multiplexed connection respectively, and never
the entire server.

Another source of dynamic termination is from dynamic typing errors; e.g. class
cast exceptions in Java. OCaml is statically typed and a large class of these dy-
namic type errors cannot happen; however dynamic bounds checking errors can.
Currently these errors are caught as normal software exceptions, but recent research
into dependent types in ML [287, 288] promises to statically eliminate many run-
time bounds checks and provides a path to future immunity against this attack.

Protocol Vulnerabilities: Many problems are the result of higher-level vulnerabilities
than implementation issues; e.g. e-mail spam through open relays [83], WWW
Cross-Site Scripting or SQL injection attacks [245] or phishing attacks [92]. MELANGE

does not deal with these problems, beyond providing a more solid implementation
of protocols which can be used to reason about higher-level issues in the future.

Covert Channels: Covert channels are mechanisms for sending and receiving data be-
tween two agents over existing communications channels without alerting observers [274].

70

4.4. Summary

Most Internet protocols are acknowledged to have many covert channels [25] and
the current MELANGE architecture does not seek to address them. However, ex-
perimental extensions to OCaml which perform information flow analysis point to
type-based solutions for reducing their bandwidth in future work [227].

Memory Errors: A very novel recent attack which shows that soft memory errors (e.g.
from cosmic rays) can lead to serious security vulnerabilities in virtual machines
(e.g. Java or .NET) which depend on dynamic sand-boxing of untrusted code [123].
MELANGE applications do not execute untrusted code and so this attack is not
relevant.

Source Code Trojans: First famously proposed by Ken Thompson in his 1984 ACM
Turing Award speech on “Reflections on trusting trust” [265], these attacks are re-
cently becoming more popular due to attackers inserting trojan horses inside the
source code of popular open-source applications such as Sendmail4 which execute
malicious code when the application is compiled. MELANGE applications assume
the source code accurately expresses the intentions of the programmer (i.e. it has
not been tampered with by third parties) and that the compiler tool-chain and oper-
ating system are operating correctly.

4.4 Summary
We began this section by explaining the design goals for our proposed new application
architecture which will solve some of pressing security concerns on the Internet (§4.1).
These goals were translated into the MELANGE architecture (§4.2) and a threat model
defined to clarify the level of protection which the architecture grants from the myriad of
possible attacks (§4.3).

4See CERT CA-2002-28 at http://www.cert.org/advisories/CA-2002-28.html.

71

http://www.cert.org/advisories/CA-2002-28.html

Chapter 5. Meta Packet Language

CHAPTER 5

Meta Packet Language

Be conservative in what you do, be liberal in what you accept from others.

JON POSTEL, RFC 793

In Chapter 4, we introduced the MELANGE architecture for constructing statically
type-safe and high-performance network applications. A key component of MELANGE

is the Meta Packet Language (MPL)—a domain-specific language used to specify how
to transmit, receive and pretty-print network packets for most Internet protocols. Unlike
other interface description languages such as CORBA IDL (§3.2.1) it specifies the wire
format directly and generates a compatible interface for the programmer to use (and back-
end code to implement that interface). MPL ensures a separation between the concerns
of statefully manipulating packets and of the low-level parsing required to convert to and
from a low-level stream of network byte traffic.

MPL offers: (i) a modular system for reading and writing low-level types (such as
bytes, booleans, integers, and bit-fields) according to the protocol’s requirements, (ii) ar-
rays for fixed-length and variable-length fields; (iii) attributes to specify constant values,
variant types, or alignment requirements; and (iv) higher-level constructs such as packet
classification via pattern matching, arrays of fields, and extensible custom types. Rather
than outputting machine code, the MPL compiler acts as a meta-compiler and outputs
code in a variety of different languages. The back-ends are optimised with the capabil-
ities of the target language. For example, the OCaml interface takes advantage of the

72

Network

MPL
Standard
Library

IPv4 IPv6 Ethernet

DNS BGP SSH

ARP ICMP TCP

MPL
Code

MPL
Protocol

Code

tcpdump

MPL
Compiler

OCaml Server

Main
Server

Figure 5.1: Architecture of an MPL-driven OCaml server

strong static type system to guarantee that a server linked with code output by MPL only
sends and receives well-formed network packets for that protocol. Similarly, although
the C backend cannot make such strong guarantees, it can ensure that all network traffic
is parsed safely with respect to buffer and integer overflows. All of our examples use the
OCaml backend as it is the implementation language of choice for our MELANGE archi-
tecture. However, the overall structure of the code generated can be easily translated to
other languages which have constructs such as namespaces (or objects or modules) and
first-class functional closures (e.g. Haskell, Python or Ruby).

MPL is primarily concerned with ensuring that a server receives and sends well-
formed packets; it does not attempt to enforce that the contents of those packets are
meaningful with respect to the protocol’s semantics, but it does ensure that (for example)
length fields are consistent with the amount of data that follows. Figure 5.1 illustrates
how an OCaml network application which uses MPL would be structured. Firstly an
MPL compiler accepts an input specification, type checks and compiles it, and outputs an
OCaml module for that protocol. This code module depends on the presence of a basis
library of code which deals with transmitting and receiving individual fields efficiently.
Thus, the main body of the OCaml server never directly interacts with the network, in-
stead going via the MPL code to ensure the well-formedness of any traffic.

This chapter offers two key research contributions: (i) showing that parsing network
traffic in a high-level language (e.g. OCaml) can be as efficient as C code, but with signif-
icantly better static safety properties; (ii) demonstrating that for Internet protocols com-

73

Chapter 5. Meta Packet Language

plex grammars are not necessary to parse the majority of protocols, with the compromise
that field parsing is performed in a general-purpose language. In the remainder of this
chapter we first describe the MPL language (§5.1), the basis library of standard functions
(§5.2), the output structure of the OCaml interface (§5.3), and the performance evaluation
of the system against an equivalent server written in C (§5.4).

5.1 Language

We now introduce the MPL language by an example (§5.1.1), discuss the theoretical space
where it is based (§5.1.2), and finally define the syntax (§5.1.3) and semantics (§5.1.4).

5.1.1 Parsing IPv4: An Example

At its simplest level, an MPL specification is a list of named, typed fields with an optional
list of attributes. In this section, we illustrate MPL by example by defining a specification
to parse IPv4 packets. The following unmarshals IPv4 packets from a byte stream.

packet ipv4 { MPL

version: bit[4];
ihl: bit[4];
flags: byte;
length: uint16;
id: uint16;
frag info: uint16;
ttl: byte;
protocol: byte;
checksum: uint16;
src: uint32;
dest: uint32;
options: byte[(ihl × 4) - offset(dest)];
data: byte[length - (ihl × 4)];

}

Our specification begins with a bitfield; two variables version and ihl which are
encoded into the first byte of the IPv4 packet. The MPL compiler converts these bit-
fields into integers with the appropriate shifts and masks (§5.1.4). Once the first byte
has been decoded, we progress by binding variables such as ttl or length by using
built-in MPL types to represent bytes, 16- and 32-bit integers. When the options field
is reached, we move onto the next feature of MPL: variable-length byte arrays. In MPL,
variable-length fields can use any previously bound variables (which are of a numeric
type) to calculate their length at run-time. In the case of the data field, it uses the values
from the length and ihl fields. The function offset(label) used in the calculation of the
options field returns the total length of all the variables until (and including) label.

74

5.1. Language

However, MPL specifications must also include sufficient information to allow the
packet to be created from scratch (i.e. marshalled). We perform this function in MPL by
adding value attributes to fields which provide their values to a newly created packet:

packet ipv4 { MPL

version: bit[4];
ihl: bit[4] value(offset(options) / 4);
flags: byte;
length: uint16 value(offset(data));
id: uint16;
frag info: uint16;
ttl: byte;
protocol: byte;
checksum: uint16;
src: uint32;
dest: uint32;
options: byte[(ihl × 4) - offset(dest)];
data: byte[length - (ihl × 4)];

}

The above IPv4 specification now contains sufficient information to both send and
receive packets, with all of the length fields (ihl and length) automatically calculated.
MPL converts this specification into an OCaml implementation and interface:

module Ipv4 : sig OCAML

class o : object
method src: int32
[...]
method flags : int
method data : string
method options : string

end
val t : version:int → flags:int → id:int → frag info:int →

ttl:int → protocol:int → checksum:int → src:int32 →
dest:int32 → options:blob → data:blob → env → o

val unmarshal : env → o
end

The interface above (simplified for this example) contains an object definition Ipv4.o

which has accessor methods for each field of the packet. The object is never instantiated
directly; instead the function Ipv4.unmarshal accepts a parsing environment and returns
the object after parsing the raw bytes from the network (an exception is raised if the traffic
is malformed). To create packets, the function Ipv4.t is invoked with labelled arguments
corresponding to the field bindings in the MPL specification. The OCaml types of these
arguments are matched to the precision of the MPL types; e.g. the src and dest fields are
32-bit integers and are thus best represented by an OCaml int32 . To manage payloads

75

Chapter 5. Meta Packet Language

with minimal data copying, byte arrays are represented by an abstract blob type (§5.2).
Ipv4.t does not require ihl and length arguments, since they have value attributes in
the MPL specification to automatically calculate their values.

Attributes and Variants

The specification for IPv4 includes a number of other invariants which should be en-
forced; for example, the minimum value of ihl is 5, and the options field must be
padded to 32-bit alignment. Another common idiom in network protocols is to map the
values a field can contain to textual labels. MPL allows these labels to be represented
symbolically in the specification and maps them to variant types in the OCaml interface,
and the conversion code to and from the variant type in the generated implementation.

In addition to the value attribute described earlier, MPL offers attributes to restrict
the range of a field, mark it as a variant type, give it a default value, or specify alignment
restrictions. Below is a more complete IPv4 specification with the flags field expanded
into its component bits and attributes added:

packet ipv4 { MPL

version: bit[4] const(4);
ihl: bit[4] min(5) value(offset(options) / 4);
tos precedence: bit[3] variant {
|0 ⇒ Routine |1 → Priority |2 → Immediate
|3 → Flash |4 → Override |5 → ECP
|6 → Internetwork control |7 → Network control };

tos delay: bit[1] variant {|0 ⇒ Normal |1 → Low};
tos throughput: bit[1] variant {|0 ⇒ Normal |1 → Low};
tos reliability: bit[1] variant {|0 ⇒ Normal |1 → Low};
tos reserved: bit[2] const(0);
length: uint16 value(offset(data));
id: uint16;
reserved: bit[1] const(0);
dont fragment: bit[1] default(0);
can fragment: bit[1] default(0);
frag offset: bit[13] default(0);
ttl: byte;
protocol: byte variant { |1→ICMP |6→TCP |17→UDP };
checksum: uint16 default(0);
src: uint32;
dest: uint32;
options: byte[(ihl × 4) - offset(dest)] align(32);
header end: label;
data: byte[length-(ihl×4)];

}

The version field is defined as a constant value 4 in an IPv4 packet; the const at-

76

5.1. Language

tribute also removes this field from the OCaml creation function and adds to code to
automatically insert it in the implementation code. The default attribute is a specifica-
tion hint which allows the compiler to propagate the default value through to the creation
function, or generate optimised code for the default “fast path” if the target language
supports this. The options field has an align attribute added to it to indicate that the
field must always be aligned to 32-bit boundaries and padding added if this is not the
case. The ihl field also has a min attribute to indicate that the header must be at least 5
words long (there is also a max attribute, unused in this example). The protocol field
defines integer values to indicate the nature of the payload contained in the data field.
The variant attribute maps the protocol field as a variant type in OCaml:

type protocol t = [OCAML

| ‘ICMP
| ‘TCP
| ‘UDP

]
let protocol t unmarshal = function
|1 → ‘ICMP
|6 → ‘TCP
|17 → ‘UDP
| → raise Bad packet

let protocol t marshal = function
|‘ICMP → 1
|‘TCP → 6
|‘UDP → 17

let protocol t to string = function
|‘ICMP → “ICMP”
|‘TCP → “TCP”
|‘UDP → “UDP”

Since the full IPv4 protocol field defines over 150 labels, it is clearly safer and
easier to mechanically generate these accessor functions. In addition, the compiler takes
care of tracking the underlying data type of the field (e.g. int32) and labelling the pattern
matches on the integers with the correct suffix (“l” or “L” for int32 and int64 types).
Variant attributes also support a default value by the convenient syntax of using⇒.

Classification

The keen reader will notice that the contents of the protocol field ought to mandate
the type of the data payload. If TCP data were stored into data, a well-formed packet
must store 6 in the protocol field. MPL allows packets to be classified into sub-types
by using a pattern-matching style on fields that have previously been unmarshalled:

77

Chapter 5. Meta Packet Language

packet ipv4 { MPL

version: bit[4];
ihl: bit[4] value(offset(options) / 4);
flags: byte;
length: uint16 value(offset(data));
id frag ttl: byte[5];
protocol: byte;
check src dest: byte[10];
options: byte[(ihl × 4) - offset(check src dest)];
classify (protocol) {
|1:“ICMP” → data: packet icmp();
|6:“TCP” → data: packet tcp();
|17:“UDP” → data: packet udp();
};

This example introduces the packet keyword, used to include external MPL specifi-
cations; for example, packet icmp() would reference an external “icmp.mpl” and have
type Icmp.o in the OCaml interface. We use the classify keyword to distinguish packets
based on the contents of protocol. The pattern-matching style is similar to ML, and the
first match succeeds (in the example, an unknown IPv4 type will be represented by a byte
array). The output OCaml is represented by a series of nested modules and objects:

module Ipv4 : sig OCAML

module ICMP : sig
class o
val t : version:int → (...etc) → packet

end
module TCP : sig

class o
val t : version:int → (...etc) → packet

end
module UDP : sig

class o
val t : version:int → (...etc) → packet

end
module Unknown : sig

class o
val t : version:int → protocol:int → (...etc) → packet

end
type o =
|‘ICMP of ICMP.o |‘TCP of TCP.o
|‘UDP of UDP.o |‘Unknown of Unknown.o
val unmarshal : env → o

end

The top-level type Ipv4.o is no longer an object type; instead it is a parametric poly-
morphic variant which represents the different classification options. The sub-modules

78

5.1. Language

for ICMP/TCP/UDP contain functions to create packets of their respective types, but with
the protocol field considered constant according to its value from the classification pat-
tern match. However the Ipv4.Unknown.t creation function still has the protocol argu-
ment, since the default pattern match does not contain a constant value.

This style of OCaml output permits the use of pattern-matching over packets, as
shown below. The polymorphic variant definitions output by MPL are fully refined
(§2.3.2), allowing the compiler to check for exhaustiveness. The code below also shows
the types of the checksum functions; an attempt to pass a UDP packet to the function
tcp checksum would not type-check since the type Udp.o is distinct from Tcp.o1.

val icmp checksum : Icmp.o → bool OCAML

val tcp checksum : Tcp.o → bool
val udp checksum : Udp.o → bool
let ipv4 = IPv4.unmarshal env in
let checked = match ipv4 with
|‘ICMP icmp → icmp checksum icmp#data
|‘TCP tcp → tcp checksum tcp#data
|‘UDP udp → udp checksum udp#data
|‘Unknown data → false in
output (if checked then “passed” else “failed”)

5.1.2 Theoretical Space

Some data description languages in the literature (e.g. PADS [109]) can express com-
plex grammars in order to fully describe the wire format of a packet. Others only allow
simpler and less expressive classes of grammars (e.g. PACKETTYPES [189]) but are un-
able to fully describe more complex Internet protocols. As Pierce notes in his work on
bi-directional programming (§3.2.3), it is desirable to simplify the grammar as much as
possible in order to make it more practical to write bijective specifications (essential for
packet parsing as we must both transmit and receive packets). Some protocols will always
require special parsing for certain aspects (e.g. the DNS host-names described in §7.2.1)
and even advanced data description languages such as PADS may not suffice since they
do not permit arbitrary computation. For constructing practical network applications, it is
not sufficient to be able to parse “almost” all of an RFC protocol specification of course!

MPL explores the middle-ground by permitting individual field parsing routines to be
written directly in the target language, while their high-level composition and constraints
are expressed using a more abstract specification language. This has several advantages:

1This is not precisely true since object definitions in OCaml are structural, and so an object with iden-
tical fields to Udp.o would in fact type-check. A solution is discussed later (§5.5).

79

Chapter 5. Meta Packet Language

(i) the specification language need only describe a significantly simpler grammar; (ii)
low-level field parsing routines can be highly optimised for the target language; and (iii)
the complex parsing corner cases present in most Internet protocols can be written in a
general-purpose language while keeping the core specification relatively simple.

To justify this approach we must consider the history of Internet protocols. The end-
to-end principle provides a guideline that complexity in protocols should be present in end
hosts and not in the core network [239]. This meant that, unlike conventional telecom-
munications systems which were primarily implemented directly in hardware, Internet
protocols were always designed to be processed by general purpose CPUs in software.
The original IP RFC [224] states that a module is “an implementation, usually in soft-

ware, of a protocol or other procedure”. Other early RFCs on efficient checksum imple-
mentation [43, 185] confirm this by actually providing C source code and discussing its
performance on various prevalent hardware architectures of the time. Internet protocols
have also tended to evolve over the decades rather than be reconstructed from scratch (e.g.
TCP/IP itself was based on the ARPANET NCP protocol [237]). Due to their software
nature changes were sometimes made to incur the minimum of disruption to existing code
to avoid introducing errors.

Text-based protocols such as HTTP [107], SMTP [169] or FTP [226] are documented
as context-free BNF grammars [85] and easily parsed using existing tools such as yacc.
However binary protocols such as SSH [293], DNS [208] or BGP [236] are often simple
regular grammars parsed using finite state machines, but are still complex to manually im-
plement. This is evidenced by the number of packet parsing related security problems in,
for example, OpenSSH (§7.1). It is these binary protocols that MPL is designed to parse
as efficiently and succinctly as possible using a high-level language; the “quirks” intro-
duced by gradual evolution can be cleanly hidden behind a general-purpose programming
language interface, the overall composition can be expressed using MPL specifications,
and efficiency is not sacrificed by excessive abstraction.

MPL utilises a non-lookahead decision-tree parsing algorithm which is simple enough
to capture many binary Internet protocols while retaining a simple set of rules to ensure
that specifications remain bijective (§B.1). It cannot express context-free grammars by
design (since it has no stack), but many real-world binary Internet protocols are, due to
their roots in early resource-constrained software stacks, fundamentally simple grammars
which have a number of quirks due to the evolutionary nature of Internet protocol design.
As we show later (§5.2) much of the general-purpose language code for field types can
be factored out across common protocols into a basis library and re-used.

80

5.1. Language

5.1.3 Syntax

We describe the LALR(1) grammar [252] for MPL below using an an extended BNF
notation [16]. In the extended syntax, we represent terminals as term, tokens as token,
alternation with {one | two}, optional elements as [optional], elements which must repeat
once or more as (term)+ and elements which may appear never or many times as (term)*.

main → (packet-decl)+ eof

packet-decl → packet identifier [(packet-args)] packet-body

packet-args → { int | bool } identifier [, packet-args]
packet-body → { (statement)+ }

statement → identifier : identifier [var-size] (var-attr)* ;
| classify (identifier) { (classify-match)+ } ;
| identifier : array (expr) { (statement)+ } ;
| () ;

classify-match → | expr : expr [when (expr)] -> (statement)+
var-attr → variant { (| expr {→ | ⇒} cap-identifier)+ }

| { min | max | align | value | const | default } (expr)

var-size → [expr]

expr → integer | string | identifier | (expr)
| expr { + | - | * | / | and | or } expr

| { - | + | not } expr

| true | false

| expr { > | >= | < | <= | = | .. } expr

| { sizeof | array length | offset } (expr-arg)

| remaining ()

5.1.4 Semantics

The full user manual for MPL is available in Appendix B and we summarise the impor-
tant points in this section. An MPL specification must contain enough information to un-
ambiguously create and receive packets, and so the compiler performs well-formedness
checks to ensure that this is the case (§B.1). MPL uses three different notions of types for
a field: (i) wire types for the network representation of a field; (ii) MPL types which are
used within MPL specifications only; and (iii) language types which are the native types
of the field in the output programming language.

81

Chapter 5. Meta Packet Language

Internet protocols often use common mechanisms for representing values such as
fixed-precision integers and bit-fields; e.g. network byte order is defined as “big endian”
(the most significant byte is stored first). Wire types help capture this redundancy by
defining the wire formats for common formats. The built-in types can be found in Ta-
ble B.2 and custom wire types may also be defined on a per-protocol basis (§5.2.3).

Every wire type must be mapped onto a corresponding MPL type so that the con-
tents of the field may be manipulated within the MPL specification (e.g. for classifying
the packet). The supported MPL types are integers (of varying precision), strings and
booleans. If a field is not intended to be manipulated as one of these MPL types it is
mapped to a special “opaque” type which ensures it is treated as an abstract type and
simply passed through to the application. Similarly, every wire type also has a corre-
sponding language type for every language back-end. For example an unsigned 32-bit
integer is mapped into the OCaml int32 type, and a DNS label with a more complex wire
format (§7.2.1) becomes a native OCaml string.

Classification Tree

In addition to converting individual fields to their corresponding language equivalents,
the overall MPL specification must be converted into a high-level data structure in the
target language. The fields are structured into a series of nested modules that are used to
separate differently classified packets into unique namespaces. This is accomplished by
recursively iterating over the abstract syntax tree and forking a new list of namespaces
for every classify keyword which is encountered.

The algorithm for calculating a classification tree is described below using ML-like
pattern matching, where ~N represents a list of elements, φ the empty list, :: and @ are the
list cons and concatenation operators, and iter ~L L−→ f applies the function f(L) to every
element of ~L. ~N and ~L represents a list of labels, ~R and ~S a list of MPL statements.

let walk ~N = function

| CLASSIFY(~L × ~S) :: ~R⇒ iter ~L L−→ {walk (L :: ~N) (~S @ ~R)}
| x :: ~R⇒ walk ~N ~R
| φ⇒ ~N

Observe that a classification propagates the name bound in its match through all state-
ments subsequently after the classification, resulting in a multiplication effect of names
if many classifications are used in series:

82

5.1. Language

classify (a) { MPL

|1:“One” → ();
|2:“Two” → ();
|3:“Three” → ();

};
classify (b) {
|4:“Four” → ();
|5:“Five” → ();
|6:“Six” → ();

};

module One = struct OCAML

module Four = struct [...] end
module Five = struct [...] end
module Six = struct [...] end

end
module Two = struct

module Four = struct [...] end
module Five = struct [...] end
module Six = struct [...] end

end
module Three = struct

module Four = struct [...] end
module Five = struct [...] end
module Six = struct [...] end

end

On the left is an MPL fragment with two classify clauses in series. The right shows
the output OCaml interface, which duplicates the contents of the second classify in every
branch of the first. This multiplication effect can result in very large interfaces if classify
statements are applied in series. However, we have encountered no Internet protocols
where such a structure of classification is necessary. In general, classifications are nested
and not placed in series (see §7 and Appendix C).

Bound Variables

The compiler must determine which variables need to be marked as bound variables that
are not exposed in the external code interface. This allows fields to be automatically
and reliably calculated from other fields of the packet (e.g. length fields). A variable is
considered bound if: (i) it is marked with a const or value attribute; (ii) a variable is an
argument in a classify statement (see below for some caveats); or (iii) a byte array or an
array construct use a variable in their size specifier. Variables are only considered bound
in the context of the current classification tree; a variable might later be bound in one
classification branch but not another. Classification pattern-matches matches do not bind
their variable if: (i) the pattern match represents an integer range (e.g. 1..5) in which case
the variable is left free2; or (ii) the default clause of the pattern match, if present, does not
bind the classification variable as its value cannot be statically determined. Classification
binding is considered to have a higher precedence than a value attribute, and thus the
attribute is ignored if a classification later binds it.

Since every classification branch can have a different list of bound variables, the com-

2Strictly speaking, the variable ought to be constrained to the same range as the pattern match, but we
do not do this in the current implementation.

83

Chapter 5. Meta Packet Language

piler walks across the AST and obtains a list of variables for every combination of classify
statements. The MPL specification below is an artificial example which uses default clas-
sification, const attributes and ranges to show examples of the different ways variables
can be bound. The classified modules are shown on the right (underlined values represent
bound variables).

alpha: byte; MPL

classify (alpha) {
|1:“One” → beta: byte;
|2:“Two” → beta: byte const(0);
|3:“Three” →

gamma: byte;
classify (gamma) {
|1..3:“India” → delta: byte;
|4:“Foxtrot”→ epsilon: byte;
};

};
omega: byte;

One← alpha, beta, omega

Three.India← alpha, gamma, delta, omega

Two← alpha, beta, omega

Three.Foxtrot← alpha, gamma, epsilon, omega

Notice in particular that gamma is not bound in Three.India since that pattern match
uses a range variable, but is bound in Three.Foxtrot. Support for this assymmetry in
binding variables across some classification branches is useful in real-world protocols;
for example, consider the shortened MPL specification for an Ethernet frame:

packet ethernet { MPL

dest mac: byte[6];
src mac: byte[6];
length: uint16 value(offset(eop)-offset(length));
classify (length) {
|46..1500:”E802 2” →

raw: byte[length];
|0x800:“IPv4” →

raw: byte[remaining()];
|0x806:“Arp” →

raw: byte[remaining()];
};
eop: label;

}

In an Ethernet frame, if the length field contains a value less than 1500, it represents
a “raw” E802.2 frame, otherwise the value of the length field determines the specific
type of the frame (e.g. IPv4 or ARP). It is clearly desirable for the length field to be
automatically calculated, so if an IPv4 or Arp packet is created, the constant pattern
match values determine the value of length. If an E802.2 packet is created, the presence
of a range of integers in the pattern match means length is instead bound by the value

84

5.2. Basis Library

attribute (which uses offset calculations to assign a value to the field automatically). The
value attribute could have been left out of the specification, in which case length would
be a free variable for the interface to E802.2 packets.

The variable binding rules are generally only needed in protocols which overload
a field for multiple purposes, such as the Ethernet length field described above. New
protocol designs should not use such techniques in the interests of simpler parsing.

Bit Conversion

The MPL compiler statically converts bit-fields into a sequence of bytes and the shifts
and masks required to extract the relevant portion of the bit-field from those bytes. This
is required since network interfaces can only manipulate data at the byte granularity. A
well-formed MPL specification (§B.1) requires that bit-alignment is tracked and matched
across classify statements such that all branches of a classification result in the same bit-
alignment. This restriction permits the compiler to statically create “dummy” bytes for
every 8 bits in the bit-field. During marshalling and unmarshalling, the dummy bytes
are used for sending and receiving data, while the bit-field variables are exposed to the
external code interface.

Bit shifting is a very useful feature of MPL, as it is an easily automated transformation
performed by the compiler that hides the complexity of manually keeping track of bit-
fields. A number of Internet protocol require this support, ranging from low-level formats
such as IPv4 up to higher-level protocols such as DNS (§7.2).

5.2 Basis Library

The code output by the MPL compiler does not communicate with the network directly,
instead operating via function calls to a basis library. This library deals with obtaining
data for the application and provides support for packet environments which offer re-
stricted views of a packet (§5.2.1). The library supports the basic MPL wire types (§ 5.2.2)
and allows importing new custom types for more complex packet formats (§5.2.3).

In this section we describe the OCaml basis library, which (along with the OCaml
code output by the MPL compiler) is designed to be linked directly with the main network
application (see Figure 5.1). By structuring the application to only send or receive packets
via the MPL interface, applications can guarantee that they only ever transmit or receive
valid network packets with respect to the MPL specification.

85

Chapter 5. Meta Packet Language

m
ax

im
um

 b
uf

fe
r s

ize

to
ta

l p
ac

ke
t l

en
gt

h
IP header

ICMP header

ICMP body

packet type (byte)
code (byte)

checksum (uint16)

identifier (uint16)

sequence (uint16)

Complete Buffer ICMP Header View

Figure 5.2: The MPL environment of the complete packet (left) and a view on the ICMP
header alone (right)

5.2.1 Packet Environments

The basis library performs operations on an abstract packet environment which represents
a single, mutable version of the underlying packet data. The packet environment consists
of a static buffer and the total length of valid data within that buffer. Multiple views may
be constructed from this environment which allow data to be manipulated and read in dif-
ferent portions of the packet. For example, Figure 5.2 illustrates an example environment
of an ICMP Echo Request packet, most commonly used by the UNIX ping utility. The
left box shows the complete buffer, of which the gray portion is unused. The packet can
be broken down into different sections of the protocol stack, such as the IPv4 header, the
ICMP header, and the ICMP payload. On the right, a view is constructed of the ICMP
header, which represents offsets into the header (starting from 0). Code to manipulate the
ICMP header can operate on this view irrespective of its actual underlying position in the
complete packet. The OCaml packet environment is represented by:

type env = { OCAML

buf: string; (? data ?)
len: int ref; (? total length of valid data ?)
base: int; (? start position in buffer ?)
mutable sz: int; (? valid length of data, relative to base ?)
mutable pos: int; (? position in data, relative to base ?)

}

The buf and len fields represent the global properties of the packet (the contents
and total length), and are shared across all views. We use a large, fixed-size string and
track packet length separately to eliminate the overhead of allocating and resizing strings

86

5.2. Basis Library

dynamically. The rest of the fields (base, sz and pos) are used to provide views into
the underlying contents. The base field acts as a base offset from which all positions are
calculated. sz allows a view to be constrained in size (e.g. the length of the ICMP packet
body in Figure 5.2), and pos tracks the current position while processing a packet.

A view is created by using the basis library function env at (env → int → int →
env) which specialises an input environment with a new base and size, and returns the
new structure. A view maintains its own position and length (the mutable entries in the
record), while sharing the global fields such as total packet size (this is essential to see
for some protocols such as DNS where field parsing is determined by the global position
in the packet). Since a view is just a normal environment, further sub-views are easily
created by repeated invocations of env at on the new view. The creation of a new view
copies only a few integers and is relatively inexpensive compared to copying the buffer.

The basis library provides several ways to fill a packet environment: (i) directly from
a string when instantiating a new environment; (ii) reading from a file descriptor (which
could be a network connection or a file); or (iii) by defining a “fill function” which is a
closure that is triggered when more data is required in the environment. The fill function
is useful to embed packet environments in the middle of a more complex parsing struc-
ture; for example, if the network data is encrypted, a fill function could apply a closure
which writes decrypted bytes into the environment provided (§7.1.2). Similar functions
are provided to transmit the contents of a packet environment.

5.2.2 Basic Types

MPL has a set of built-in wire types to manipulate common, low-level fields used in net-
work protocols. The most basic types are byte (representing a single octet), and byte[x]

(representing a byte array of length x). However, since integers are used so often and their
efficient representation is important, types are provided for 16-, 32- and 64-bit integers
respectively. The built-in types map directly into OCaml native types (see Table 5.1). An-
other reason for distinguishing between integer types is that the native integers provided
by many functional languages (e.g. SML and OCaml) are 1 bit short of the architecture
word size (e.g. 31 bits on i386 and 63 bits on Alpha), to store unboxed integers on the
heap alongside pointers. As we noted earlier (§4.1), the lack of polymorphic integer op-
erators in OCaml results in very verbose network code when compared to the equivalent
in languages such as Haskell or C. Even worse, if the programmer fails to realize that na-
tive integers in OCaml are smaller in size and carelessly converts between them, network
values can be silently truncated. Although this truncation cannot result in buffer over-

87

Chapter 5. Meta Packet Language

Table 5.1: Mapping of MPL wire types to OCaml native types

byte octet char

byte[x] array of x bytes string

uint16 unsigned 16-bit integer int

uint32 unsigned 32-bit integer int32

uint64 unsigned 64-bit integer int64

flows in the manner of C programs, it will corrupt data and can result in application-level
security issues. The OCaml code output by MPL automates this conversion process.

The basis library provides functions to manipulate the traffic being sent or received:
(i) unmarshal to convert from the current position in the packet environment and advance
the position of the current view; (ii) at to unmarshal from a specified offset and not
modify the current environment; and (iii) marshal to write the field at the current position
and modify the environment. Below is the interface for the Mpl byte module:

module Mpl byte : sig OCAML

type t
val unmarshal : env → t
val marshal : env → t → unit
val at : env → int → t
val to char : t → char
val of char : char → t
val to int : t → int
val of int : int → t

end

A byte is represented by an abstract type Mpl byte.t. The unmarshal function ac-
cepts a packet environment, reads the byte at the current position, advances the position
by one, and returns the abstract type. Similarly, the Mpl byte.at function accepts an
environment and an offset into it, and returns the byte at that position without modifying
the environment. The marshal function writes a byte, advances the position, and also up-
dates the total length of the environment if it has written beyond the previously recorded
limit. This total length is a reference and reflected across all views.

The {to, from} {int, char} functions are provided to convert between the abstract
MPL types and native OCaml values. Recall that abstract types may be used to enforce
interface abstraction without run-time overhead (§2.3.1). In the basis library the internal
representation of a Mpl byte is the char type (represented as a native integer by OCaml).
Since the internal representation matches the external OCaml type, the conversion func-

88

5.2. Basis Library

tions are actually the identity function let x = x and are optimised away. However, a
debug version of the basis library can track the offset of each byte, giving Mpl byte.t

the concrete type (int × char) and allowing debugging without modifying the interface.

The 16-, 32- and 64- bit integer modules are similarly composed by invocations of the
Mpl byte module functions and combined with appropriate shift operations. A flag in the
environment is used to decide the byte-order (little-endian or big-endian) of the incoming
traffic. This is normally big-endian (also known as network byte-order [257]) in the
case of network traffic, but certain file formats (e.g. the popular pcap [150] library) can
record traffic in little-endian format, potentially requiring a conversion while marshalling
and unmarshalling. Also, protocols such as the Plan9 Remote Resource Protocol [132]
mandate the use of little-endian byte order even for network traffic.

Each of the integer modules also defines a dissection function, which allows an en-
vironment to be iterated over as if it were a list of that integer type. The functions have
the type (α → β → α) → α → env → α, which is a similar type signature to the
built-in OCaml fold left function. The function repeatedly unmarshals integers (of
some type β) from the current environment, and applies those integer values to the first
argument (a function which accepts an integer and an accumulator, and returns the ac-
cumulator). These dissection functions are very important when using Internet protocols
such as IPv4, UDP, TCP and ICMP; e.g. the checksumming routines require fast 16-bit
unsigned integer iterators across the packet headers and bodies (see §5.4).

The final built-in data type is Mpl raw, used for byte arrays. Since this type often
holds large packet data, it provides special support for manipulating abstract fragments.

type env OCAML

type frag
module Mpl raw : sig

val marshal : env → string → unit
val frag : env → int → int → frag
val at : env → int → int → string
val blit : env → frag → unit
val prettyprint : string → string

end

In the above interface, the marshal and at functions operate similarly to the functions
described earlier. The frag and blit functions manipulate fragments of data without
actually copying them; frag returns a value which represents the data as a tuple of its
environment, the offset and length. This fragment can be passed around until it needs to
be copied into another environment (e.g. another packet) by using blit, which accepts
an environment and copies a fragment into it.

89

Chapter 5. Meta Packet Language

5.2.3 Custom Types

The built-in wire types are sufficient to encode many Internet protocols such as IPv4,
BGP, ICMP, ARP, Ethernet, UDP and TCP. However, higher-level protocols often re-
quire more complex parsing and so MPL provides support for custom wire types by: (i)
defining the MPL type to which the custom type maps (e.g. string, boolean, or an inte-
ger); and (ii) providing an external library of functions to handle the wire format. An
example custom type is a DNS string (§7.2) which consists of a single header byte and a
number of bytes equal to the value of the header. We dub this custom type a string8,
and register it as type string with the MPL compiler. The OCaml code output expects a
module called Mpl string8 with the following interface:

module Mpl string8 : sig OCAML

type t
val size : t → int
val unmarshal : env → t
val to string : t → string
val of string : string → t
val marshal : env → t → unit

end

Since string8 has the MPL type string, the accessor functions {to, of} string
are used to convert to and from OCaml types. Notice that the type of Mpl string8.t

is left abstract, allowing its internal representation to be flexible. In this example the
internal representation is also a string, but we show more complex cases later (§7.2.1).

5.3 OCaml Interface

The MPL basis library provides concrete methods to manipulate low-level fields such
as bytes, integers, blobs of data or other custom types. The output from the MPL com-
piler consists of efficient OCaml code which uses this library to combine sequences of
fields into complete protocol packets. Conceptually, the OCaml interface must support:
(i) packet sources which create new packets and transmit them; (ii) packet sinks which
accept raw bytes and translate them into OCaml data structures; and (iii) packet prox-

ies which read raw bytes into an OCaml structure, safely modify values via the OCaml
interface, and transmit the resulting packet. Proxies are not simply a combination of a
source and a sink—rather, they allow for the in-place modification of data in a packet
environment without any additional data copying3.

3An example use of a packet proxy would be an IPv4 router, which merely updates the time-to-live,
destination and checksum fields and retransmits the rest unmodified.

90

5.3. OCaml Interface

OCaml provides first-class support for representing functional objects (i.e. a collec-
tion of data and functions) natively in its type system. We therefore use the notion of
packet objects—objects which wrap an environment (representing the packet data) with
the accessor functions to retrieve and modify fields within that particular packet. The
packet objects are not allowed to be instantiated directly; instead, they are returned by
accessor functions: (i) an unmarshalling function which classifies a packet environment
and returns the correct object; and (ii) a marshalling function which accepts arguments
corresponding to the packet fields, writes the wire format of the packet into an envi-
ronment, and returns a packet object containing that environment. By restricting object
creation in this way, we ensure that the environment encapsulated by the packet object
always holds a consistent wire-format version of the packet.

The MPL classification tree (§5.1.4) is converted into a series of nested OCaml mod-
ules. Each module contains an object definition with accessor functions for each field
in the packet, and also a creation function used to create that packet object. Figure 5.3
illustrates an example protocol as an MPL specification and the associated OCaml struc-
ture. Each classified variable has two variant types defined; o represents a packet object
and x is a packet suspension which captures all the arguments necessary to create the
packet but without actually applying it to a packet environment. The t functions (e.g.
Example.Fixed.t) are used to create a packet object directly and the m functions (e.g.
Example.m) combine packet suspensions and an environment to result in a packet object.
Next we explain this module structure by considering the use cases described earlier.

5.3.1 Packet Sinks

A packet sink receives raw bytes and classifies them into OCaml data structures. In
Figure 5.3, the Example.unmarshal function accepts a packet environment and returns
a polymorphic variant type Example.o. This can be pattern-matched to retrieve the exact
packet object; we illustrate the definitions for two packets below:

class Example.Sig.Exit.o : env → object OCAML

method code : int
method env : env

end
class Example.Var.o : data length:int → env → object

method data : string
method data env : env
method data frag : frag
method data length : int
method env : env

end

91

Chapter 5. Meta Packet Language

packet example { MPL

ptype: byte;
classify (ptype) {
|1:“Var” →

plen: uint16 value(sizeof(data));
data: byte[plen];

|2:“Fixed” →
data: byte[512];

|3:“Sig” →
subtype: byte;
classify (subtype) {
|4:“Restart” → ();
|5:“Exit” → code: byte;
};

};
}

module Example : sig OCAML

module Sig : sig
module Exit : sig

class o : env → object [...] end
val t : code:int → env → o

end
module Restart : sig

class o : env → object [...] end
val t : env → o

end
type o = [‘Exit of Exit.o | ‘Restart of Restart.o]
type x = [‘Exit of env → Exit.o | ‘Restart of env → Restart.o]
val m : x → env → o

end
module Fixed : sig

class o : env → object [...] end
val t : data:data → env → o

end
module Var : sig

class o : data length:int → env → object [...] end
val t : data:data → env → o

end
type o =

[‘Fixed of Fixed.o | ‘Sig of Sig.o | ‘Var of Var.o]
type x =

[‘Fixed of env → Fixed.o | ‘Sig of env → Sig.o
| ‘Var of env → Var.o]

val m : x → env → o
val unmarshal : env → o

end

Figure 5.3: An example MPL packet (manually written) and the corresponding signature
of the auto-generated OCaml code output

92

5.3. OCaml Interface

The object for a Sig.Exit packet is straight-forward; the only unbound variable is
the code field, exposed as a method which returns an integer—internally, the OCaml
implementation invokes the MPL basis library code to unmarshal a single byte at an
offset of 2 from the packet start (since the previous bytes in the packet were of fixed
size this is statically calculated). The Example.unmarshal function does not parse fields
which are not necessary to parsing the packet and instantiate a packet object, instead
skipping directly past them. Thus the first time that the code field will be parsed is when
the method is invoked on the packet object.

The Example.Var packet holds a variable-length payload data. Since its length must
be known in order to calculate the offsets of any packets beyond it, the unmarshal code
calculates it (from the value of the plen field), and passes data length as an argument to
the object constructor. The Example.Var.o object has several methods for accessing the
contents of data: (i) o#data copies the contents as a string; (ii) o#data env returns a
view positioned at the start of the array, with a size equal to its length; (iii) o#data frag

returns an abstract fragment of the contents of the array; and (iv) o#data length returns
the length of the array. Each of these methods are necessary in different situations; cre-
ating a new view is used to further classify the contents of data as another MPL packet,
the fragment can be copied into a reply packet, or the string can be used as a last resort to
perform a data copy.

5.3.2 Packet Sources

A packet source transforms OCaml data into raw bytes in the format specified by the
MPL specification. In Figure 5.3, packets are created by calling the appropriate creation
function; e.g. Example.Sig.Exit.t creates a “Exit Signal” packet in our protocol. Two
parameters need to be specified: (i) the labelled integer argument code (dynamically
checked to be of range 0–255 or an exception is raised); and (ii) a packet environment
to write the packet contents into. Specifying large byte-arrays is more problematic, since
simply specifying a string will result in excessive data copying if using layered protocol
stacks (e.g. TCP/IP). We use function currying to create a packet suspension which has
the type (env → o) and can be created by omitting the environment argument when
invoking the packet creation function; until an environment is given to this suspension,
it is not evaluated. From Figure 5.3, Example.x is the variant type used to store packet
suspensions for different packet types. Due to the support for suspensions and fragments,
byte arrays use the following type in packet creation functions:

93

Chapter 5. Meta Packet Language

type data = [OCAML

| ‘Str of string
| ‘Sub of env → unit
| ‘Frag of frag
| ‘None]

This permits a string, suspension, fragment or null value to be used as the contents
of a byte array. If a suspension is specified, the function will always be evaluated with
a view beginning from 0. This permits, for example, ICMP packets to be created as
packet suspensions, passed into an IPv4 packet suspension, which is finally passed into
an Ethernet packet creation function. The Ethernet function will write its headers and
evaluate the IPv4 packet suspension in the correct place in the packet, which in turn
evaluates the ICMP packet suspension. After the IPv4 variable-length body has been
written, the Ethernet layer automatically fills in the length field with the correct value
(calculated via the value attribute from the Ethernet MPL spec in Appendix C.1). As we
will see later (§5.4), combinator functions can be defined as a succinct and type-safe way
to create packets in this fashion without unnecessary data copying.

5.3.3 Packet Proxies

The final category of packet parsing our interface must deal with is packet proxies. These
are a combination of packet sinks and sources, which read in a packet, modify it, and
output the result without having to re-create it from scratch. A common example of
this idiom is an IP router, which inspects packet headers, adjusts a few fields such as
checksum and time-to-live, and transmits the packet towards its next hop.

Support for packet proxies is possible due to our requirement that an instantiated
packet object always maintains a consistent wire-format representation of the packet in
its encapsulated packet environment. Thus, irrespective of how the packet object was
created (i.e. from a packet sink or packet source), we can invoke methods on the packet
object to change the value of a field, and changes will be immediately reflected in the
underlying environment. The Example.Sig.Exit packet object from Figure 5.3 now has
the following, complete interface:

class Example.Sig.Exit.o : env → object OCAML

method code : int
method set code : int → unit
method env : env

end

The set code method marshals an integer at the correct offset in the packet environ-
ment, and leaves the rest of it unmodified. Currently, the output OCaml code does not

94

5.4. Evaluation

tun0

Kernel Userland

network
stack

lwIP

MPL
stack

Userland

UNIX
Ping

Figure 5.4: Architecture of our evaluation setup; the red line shows the data path of a
single ICMP echo packet through the kernel into the user-level stack being evaluated.

generate set methods for variable-length fields such as byte arrays. Although initially
implemented, the functionality was not useful since changing the length of the structure
would result in effects through the entire packet (e.g. recalculation of length fields, and
the moving of data following the field). In practise, proxies for many protocols (e.g.
ICMP, IP) are designed to minimise the disruption caused to the packet payload [163]
and so this is a reasonable restriction.

5.4 Evaluation

We have described the MPL specification language and the structure of the OCaml code
output from the MPL compiler. We now evaluate the effectiveness of the MPL output in
terms of its performance and latency. Since at this stage we wish to isolate the packet
parsing aspect of MPL from the rest of the MELANGE architecture, we choose a simple
network application: an ICMP echo server4. The ICMP protocol allows hosts to send
“ping” packets to each other, which are returned unmodified to the originator. The trans-
mitting host generally encodes a timestamp in the packet being sent, which can be read
back in the response to determine the time-of-flight of the ping over the network. This
protocol is a good choice for our experiments since it allows us to vary the size of ICMP
pings, and gauge how well the MPL code scales over a variety of packet sizes.

5.4.1 Experimental Setup

Our benchmarks are performed on the OpenBSD 3.8 operating system, running on a
3.00GHz Pentium IV with 1GB RAM. The applications use the tuntap interface pro-

4It is worth noting that even relatively simple utilities such as the SunOS ping have suffered from buffer
overflows [73, 259]. These have led to root-level exploits due to the use of the setuid bit which permits
ping to open raw network sockets.

95

Chapter 5. Meta Packet Language

vided by OpenBSD which allows userland applications to send and receive network traf-
fic by opening a /dev/tun interface and sending and receiving raw Ethernet (in the “tap”
mode) or IPv4 packets (in the “tun” mode). As a reference implementation, we bench-
mark against the popular lwIP user-level networking stack [97]. lwIP is written in C and
thus does not offer automatic garbage collection or dynamic bounds checking; nonethe-
less, it is a good way to measure the throughput of our OCaml ICMP echo server with
another user-land implementation.

The experimental architecture is illustrated in Figure 5.4. A tun0 interface is estab-
lished, and configured with an IPv4 address and netmask. Either the lwIP or the MPL
server (depending on which stack is being used) opens the file /dev/tun0, which binds
that user process to the tun0 interface. The ping command is executed on the same
machine with the destination address equal to the IPv4 address of the tun0 interface.
The ICMP Echo Request packets from this ping are routed to the user-level network-
ing stack, which receives the raw IP packet as the result of the read(2) system call on
the /dev/tun0 file descriptor. The user-level stack processes the packet, and transmits
a response via the write(2) system call on the same file descriptor. This packet is then
injected into the kernel routing tables, and (assuming it is a valid ICMP echo response
packet), is sent to the ping program which processes and prints out the time taken for the
ping response to arrive.

During the experimental runs, only essential processes are running on the OpenBSD
machine (e.g. cron and syslogd are killed to ensure they do not interfere with the tim-
ings), and logging is performed onto a memory file system to reduce jitters caused by
physical disk accesses. We test over a variety of ICMP payload sizes; each size is re-
peated with 150 ICMP echo packets, and we increase our payload size by 32 until we
reach the maximum MTU for the experiment. There is a delay of 0.5 seconds between
each transmission. We plot the mean5 of every set of 150 pings and use least-squares
regression fitting to obtain a best-fit line against the mean values of each payload size.

lwIP Setup

The lwIP [97] TCP/IP stack is a mature user-level networking stack which we use as
the reference implementation to measure our code against. It is a much more accurate
benchmark than comparing against the kernel TCP/IP stack since it accounts for the extra
overhead imposed by the tuntap interface. lwIP was compiled with the recommended
optimisation level for the OpenBSD gcc compiler (-O2), and all debugging code was

5The 95% confidence interval for each set of pings is less than 0.01 s and thus not drawn for clarity.

96

5.4. Evaluation

disabled to ensure maximum throughput. Unfortunately, lwIP only supports a maximum
interface MTU of 1500, and so we have no results for the stack past that point.

The only aspect of lwIP we measure is its ICMP echo response handling. Examina-
tion of the code reveals that lwIP performs an extremely efficient response to ICMP echo
requests by performing the following steps: (i) the raw IPv4 packet is read and classified
as an ICMP echo request; (ii) the IP source and destination fields are swapped (which
does not require a recalculation of the IPv4 header); (iii) the ICMP “packet type” byte
(the first byte in the ICMP header) is modified to the value of an ICMP Echo Reply; (iv)
the ICMP checksum is adjusted by performing a one’s complement addition of the dif-
ference in the header constants modified in the previous step. The modified buffer is then
directly transmitted back to the client.

This method of handling ICMP echo requests is efficient even for very large ICMP
payload sizes since the packet payload is only iterated over once (to verify the incoming
packet’s checksum). The outgoing checksum is simply adjusted by a constant amount,
and the payload does not need to be copied out of the original receive buffer.

OCaml ICMP Echo Server

We use the MPL specification for IPv4 (Appendix C.2) and ICMP (Appendix C.3) to
provide the packet-parsing code for the OCaml ICMP echo server. We first define utility
functions to perform IP and ICMP packet checksumming in OCaml, shown below:

let ones checksum sum = OCAML

0xffff - ((sum lsr 16 + (sum land 0xffff)) mod 0xffff)
let icmp checksum env =

let header sum = Mpl uint16.unmarshal env in
Mpl stdlib.skip env 2;
let body sum = Mpl uint16.dissect (+) 0 env in
ones checksum (header sum + body sum), body sum

The icmp checksum function accepts an environment which is a view of the ICMP
header and body. The header byte is unmarshalled as a uint16 and the checksum bytes
are skipped (since they must be considered to be 0 during a checksumming). The subse-
quent body of the packet (which composes the bulk of the data) is dissected into chunks
of uint16 values and summed. Finally, a tuple is returned consisting of the ICMP check-
sum and the sum of the body bytes (useful to recalculate the ICMP checksum later). We
now have all the functions required to write an ICMP echo server which can verify the
checksum of incoming ICMP echo requests, and generate valid responses.

97

Chapter 5. Meta Packet Language

5.4.2 Experiments and Results

We chose the ICMP ping test because it is such a simple protocol, allowing us to isolate
overhead of the MPL API for transferring data to and from the network. By varying the
size of the payload contained inside the ping payload, we break down the API overhead
into: (i) a fixed overhead in processing the packet and its constant-size headers; and
(ii) the overhead in handling the larger variable-size payload (shown by the gradient of
the lines in our graphs). The overhead of handling the payload is interesting since it
highlights the cost of data copying and bounds checking, which MPL was minimises.

We create three different implementations of an ICMP echo server: (i) the “copying”
version creates a new ICMP payload as a string, and copies that string into the IPv4
response packet; (ii) a “normal” version which creates a new IPv4 response packet and
directly copies the incoming payload into the response via the MPL fragment support;
and (iii) a “reflecting” server which directly modifies the incoming packet to convert it
into a response and re-transmits it (matching the mechanism used by lwIP). For each
version, we also ran exactly the same tests but with automatic bounds checking turned
off6. The difference between the safe and unsafe versions highlights any bounds checking
overhead versus the cost of data copying.

Figure 5.5 shows the results of the copying and normal echo server, with the lwIP
results also included as a reference. The copying server clearly does more work per byte
of payload than the lwIP stack as latencies increase as packet size grows. Interestingly,
there is no significant difference between the safe and unsafe versions of the copying
server, which we attribute to the string copying priming the CPU cache before ICMP
checksumming (a phenomenon also noted by Miller and De Raadt with their safe C string
API [200]).

Figure 5.5 also plots the performance of the normal server which uses the MPL frag-
ment API to avoid an extra data copy. The unsafe version is now of equal speed to the
lwIP server, but with the bounds checking turned off is as vulnerable to buffer over-
flows. The safe version is slightly slower; code inspection revealed that this is because
the ICMP checksum is actually calculated twice; once when unmarshalling the payload,
and secondly when creating the response packet. lwIP does not recalculate the check-
sum, instead simply adjusting it in-place (which is possible due to the weak nature of the
ones-complement sum used by IP and ICMP).

6In OCaml, this is the −unsafe flag to the compiler, and all calls in the MPL standard library to
String.{get, put} were replaced with String.unsafe {get, put}. The exception was the dissect
function, discussed later in this section.

98

5.4. Evaluation

ICMP Payload Size (bytes)
0 1000 2000 3000 4000 5000 6000

Ro
un

d
Tr

ip
 T

im
e

(m
s)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14 lwIP
OCaml Copy
OCaml Normal

Figure 5.5: Performance of the normal and copying OCaml ICMP echo servers

ICMP Payload Size (bytes)
0 1000 2000 3000 4000 5000 6000

Ro
un

d
Tr

ip
 T

im
e

(m
s)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14 lwIP
Reflect (normal)
Reflect (MPL optimised)

Figure 5.6: Performance of the reflecting OCaml ICMP echo server with both slow check-
summing code and the MPL-optimised version

99

Chapter 5. Meta Packet Language

In order to address this extra checksumming and see if a safe MPL implementation
could match the lwIP stack, we implemented the reflecting echo server which adjusts
the checksum in-place as lwIP does. The reflecting implementation of the echo server
is less elegant than the normal version, since it violates layering and directly uses the
MPL API to adjust the “ICMP echo type” before adjusting the check-sum. However, it
is still statically type-safe when compared to lwIP (i.e. not vulnerable to buffer overflows
through poorly written OCaml code), and we argue that this flexibility to optimise is an
important feature. For code where elegance is more important, our normal echo server
(from Figure 5.5) still shows a close parity with only a small speed difference.

At the start of this section we showed the code used for ICMP checksumming, which
uses the Mpl uint16.dissect function to represent an environment as a list of unsigned
16-bit integers. The implementation of dissect eliminates redundant bounds checks
by performing a single bounds check at the start of the call. To test how much of a
difference this actually makes, we tested the reflection server with two versions of the
MPL basis library: (i) with the redundant bounds checks still present; and (ii) with the
optimised dissect implementation which coalesces them. The results in Figure 5.6
show a dramatic difference in performance, with the optimised version performing on
parity with lwIP and the overly safe version being as slow as our copying echo server
(Figure 5.5).

We conclude from these performance tests that the reduced data copying approach
by MPL is effective, and that the separation of auto-generated MPL code from the MPL
basis library gives developers the flexibility to “break the abstraction” and perform low-
level optimisations when matching the performance of C code is required. The MPL
basis library provides packet iterators which coalesce redundant bounds checks which
results in a large performance improvement over the standard OCaml bounds checks.

5.5 Discussion

In our introduction to MPL (§5.1.1), we noted that objects in OCaml are structurally

typed instead of by name. In the context of MPL, this means that if a function is con-
strained to accept a particular packet object through a type annotation, another packet
object which happens to have the exact same method signature would type-check suc-
cessfully. Although this is sound in the sense of the OCaml type system, it is almost cer-
tainly not what the programmer intended and should be rejected at compile time. Another
restriction which is difficult to statically enforce is the rule that packet objects should not
be instantiated directly, instead going via accessor functions. If a packet object is instan-

100

5.6. Summary

tiated by mistake, the environment it encapsulates will be in an inconsistent state.
These problems would not exist using the normal module system; OCaml provides

support for “private” variant types which can be pattern-matched externally to a library,
but only created via accessor functions in the library. However, Jacques Garrigue recently
added support for “private row types” [120] into OCaml which extend these private vari-
ants to object signatures hidden inside modules. Private row types permit object interfaces
to be exported from a module which can have method calls invoked on them as normal,
but can only be created from within the module itself. This solves both of the problems
with the existing MPL interface, at the cost of a more complex type specification in the
auto-generated MPL output (the external interface remains the same).

Private row types have just been added to the most recent version of OCaml (3.09),
and came too late to be evaluated as part of this thesis; however their addition does solve
two outstanding problems with our interface that we felt were important to highlight. We
plan to introduce support for private row types at a later date.

5.6 Summary
In this chapter we have described the Meta Packet Language (MPL) (§5.1), the OCaml
basis library it uses (§5.2) and the generated OCaml interface (§5.3). We isolated packet
parsing performance by implementing an OCaml ICMP echo server using MPL and mea-
suring its performance against the standard lwIP user-level networking stack (§5.4). We
concluded that the OCaml ICMP server matched lwIP in terms of latency and the amount
of per-byte overhead for varying packet sizes.

This validates our approach of using OCaml as the target language for auto-generated
packet parsing code rather than C since the static safety properties guaranteed by the
OCaml type system are much stronger than those provided by C, and our performance
results find no intrinsic overhead to the use of OCaml for parsing low-level protocols
such as ICMP and IP.

101

Chapter 6. Statecall Policy Language

CHAPTER 6

Statecall Policy Language

A computer lets you make more mistakes faster than any invention in human history—with the

possible exceptions of handguns and tequila.

MITCH RATLIFFE

The end-to-end principle that most Internet protocols are based upon [239] requires
the host software to encapsulate a significant amount of complex state and deal with a va-
riety of incoming packet types, complex configurations and versioning inconsistencies.
Network applications are also expected to be liberal in interpreting received data packets
and must reliably deal with timing and ordering issues arising from the “best-effort” na-
ture of Internet data traffic. Constructing software to deal with this complexity is difficult
due to the large state machines which result, and mechanical verification techniques are
very useful to guarantee safety, security and reliability properties.

One mature formal method used to verify properties about systems is model check-

ing. Conventional software model-checking involves (i) creating an abstract model of a
complex application; (ii) validating this model against the application; and (iii) checking
safety properties against the abstract model. To non-experts, steps (i) and (ii) are often
the most daunting. Firstly how does one decide which aspects of the application to in-
clude in the abstract model? Secondly, how does one determine whether the abstraction
inadvertently “hides” critical bugs? Similarly, if a counter-example is found, how does
one determine whether this is a genuine bug or just a modelling artifact?

102

OCaml
Application

Main
Server

SSH
Transport

SPL
Spec

DNS
Cache

SSH Auth SSH
Channels

DHCP
Server

SPL
Compiler

SPIN Graphviz

Tools

SPL
Debugger

Performance
Analysis

Figure 6.1: The SPL tool-chain architecture

In this chapter, we present the Statecall Policy Language (SPL) which simplifies the
model specification and validation tasks with a view to making model checking more
accessible to regular programmers. SPL is a high-level modelling language, SPL which
enables developers to specify models in terms of allowable program events (e.g. valid
sequences of received network packets). We have implemented a compiler that translates
SPL into both PROMELA and a general-purpose programming language (e.g. OCaml).
The generated PROMELA can be used with SPIN [138] in order to check static properties
of the model. The OCaml code provides an executable model in the form of a safety

monitor. A developer can link this safety monitor against their application in order to
dynamically ensure that the application’s behaviour does not deviate from the model. If
the safety monitor detects that the application has violated the model then it logs this
event and terminates the application. This architecture is illustrated in Figure 6.1.

Although this technique simplifies model specification and validation it is, of course,
not appropriate for all systems. For example, dynamically shutting down a fly-by-wire
control system when a model violation is detected is not an option. However, we observe
that there is a large class of applications where dynamic termination, while not desirable,
is preferable to (say) a security breach. In particular, this thesis focusses on implementing
Internet applications securely and correctly, and SPL delivers real benefits in this area.
None of the major implementations of protocols such as HTTP (Apache), SMTP (Send-

103

Chapter 6. Statecall Policy Language

mail/Postfix), or DNS (BIND) are regularly model-checked by their development teams.
All of them regularly suffer from serious security flaws ranging from low-level buffer
overflows to subtle high-level protocol errors (§2.1.3), some of which could have been
caught by using model checking.

There is no “perfect” way of specifying complex state machines, and the literature
contains many different languages for this purpose (e.g. SDL [247], Estelle [148], State-
mate [129], or Esterel [34]). In recognition of this, the SPL language is very specialised
to expressing valid sequences of packets for Internet protocols and is translated into a
more general intermediate “Control Flow Automaton” representation first proposed by
Henzinger et al. [133]. All of the output code targets are generated from this interme-
diate graph, allowing for other state machine languages to be used in the future without
requiring the backend code generators to be rewritten.

This chapter first describes the syntax, type rules and semantics of the SPL language
(§6.1). Next we define the intermediate representation that SPL specifications are trans-
lated into (§6.2), and finally the output languages from the SPL compiler (in particular
OCaml, PROMELA and HTML) (§6.3).

6.1 Statecall Policy Language

We now define the SPL language, firstly with a simple case study (§6.1.1), and then with
its syntax (§6.1.2) and the type checking rules for a valid specification (§6.1.3).

6.1.1 A Case Study using ping

SPL is used to specify sequences of events which represent non-deterministic finite state
automata. The automaton inputs are referred to as statecalls—these can represent any
program events such as the transmission of receipt of network packets or the completion
of some computation. The syntax of the language is written using a familiar ’C’-like syn-
tax, with built-in support for non-deterministic choice operators in the style of Occam’s
ALT [155]. Statecalls are represented by capitalized identifiers, and SPL functions use
lower-case identifiers. Semicolons are used to specify sequencing (e.g. S1; S2 specifies
that the statecall S1 must occur before the statecall S2).

Before specifying SPL more formally, we explain it via a simple case study. Earlier
in Chapter 5 we described how to use the MPL interface language to send and receive
ICMP frames. We now consider the state machine behind the UNIX ping utility which
transmits and receives ICMP Echo requests and measures their latencies. An extremely
simple ping automaton with just 3 statecalls could be written as:

104

6.1. Statecall Policy Language

automaton ping() { SPL

Initialize;
Transmit Ping;
Receive Ping;

}

This simple automaton guarantees that the statecalls must operate in the following
order: Initialize, Transmit Ping, and Receive Ping. A more realistic implementa-
tion of ping transmits and receives packets continuously. To represent this, we provide
the multiple keyword in our SPL specification; the example below specifies that one or
more iterations must occur after initialisation.

automaton ping() { SPL

Initialize;
multiple (1..) {

Transmit Ping;
Receive Ping;

}
}

Using this automaton, the ping process can perform initialisation once, and then
transmit and receive ping packets forever; an attempt to initialise more than once is not
permitted. In a realistic network a ping response might never be received, and the non-
deterministic either/or operator allows programmers to represent this scenario.

automaton ping() { SPL

Initialize;
multiple (1..) {

Transmit Ping;
either {

Receive Ping;
} or {

Timeout Ping;
};

}
}

ping provides a number of command-line options that can modify the program be-
haviour. For example, ping -c 10 requests that only 10 ICMP packets be sent in total,
and ping -w specifies that we must never timeout, but wait forever for a ping reply. We
represent these constraints by introducing state variables into SPL as follows:

105

Chapter 6. Statecall Policy Language

automaton ping(int max count, int count, bool can timeout) { SPL

Initialize;
count = 0;
do {

Transmit Ping;
either {

Receive Ping;
} or (can timeout) {

Timeout Ping;
};
count = count + 1;

} until (count > max count);
}

Observe that the either/or constructs can be conditionally guarded in the style of
Occam’s ALT, and state variables can be assigned to in an imperative style. Finally,
a long-running ping process would need to receive UNIX signals at any point in its
execution, take some action, and return to its original execution. Signal handlers are of-
ten a source of bugs due to their extremely asynchronous nature [65]—SPL provides a
during/handle construct which models them by permitting a state transition into alter-
native statement blocks during normal execution of an SPL specification.

automaton ping(int max count, int count, bool can timeout) { SPL

Initialize;
during {

count = 0;
do {

Transmit Ping;
either {

Receive Ping;
} or (can timeout) {

Timeout Ping;
};
count = count + 1;

} until (count > max count);
} handle {

Sig INFO;
Print Summary;

};
}

Once we are satisfied that our SPL specification is of suitable granularity, the SPL
compiler is run over it. The compiler outputs several targets: (i) a graphical visualisation
using the Graphviz tool [117] as seen in Figure 6.2 for the example above; (ii) a non-
deterministic model in the PROMELA language; and (iii) an executable model designed

106

6.1. Statecall Policy Language

S_h_init_6

S_seq_8

{Sig_INFO}

S_h_exit_7

{Print_Summary}

S_do_11

S_assign_10

(!(ping_count > ping_max_count))

S_final_2

(ping_count > ping_max_count)

h_ret_5=13

S_seq_12

{Transmit_Ping}

S_or_20

ping_can_timeout

S_or_16

true

h_ret_5=22

S_either_or_15

{Timeout_Ping}

h_ret_5=18

{Receive_Ping}

(h_ret_5 == 13)

(h_ret_5 == 22) (h_ret_5 == 18)

ping_count=(ping_count + 1)

S_initial_1

S_seq_3

{Initialize}

ping_count=0

Figure 6.2: Graph output of the example ping state machine. Red nodes indicate the start
and final states, black edges are statecalls, blue edges are conditional, and green edges
are state variable assignments

107

Chapter 6. Statecall Policy Language

to be linked in with an application. The OCaml interface for the executable model is
shown below:

exception Bad statecall OCAML

type t = [‘Initialize | ‘Print summary | ‘Receive ping
| ‘Sig info | ‘Timeout ping | ‘Transmit ping]
type s
val init : max count:int → count:int → can timeout:bool → unit → s
val tick : s → t → s

This code is linked in with the main ping application, and appropriate calls to ini-
tialize the automaton and invoke statecalls are inserted in the code. Crucially, we do
not mandate a single style of invoking statecalls; instead the programmer can choose be-
tween automatic mechanisms (e.g. MPL code can automatically invoke statecalls when
transmitting or receiving packets), language-assisted means (e.g. functional combinators,
object inheritance, or pre-processors such as cpp), or even careful manual insertion in
places where other methods are inconvenient.

6.1.2 Syntax

The SPL syntax is presented in Figure 6.3 using an extended Backus-Naur Form [16].
We represent terminals as term, tokens as token, alternation with {one | two}, optional
elements as [optional], elements which must repeat once or more as (term)+ and elements
which may appear never or many times as (term)*.

SPL source files are parsed using the yacc [154] implementation in OCaml, and
represented in the abstract syntax tree shown in Figure 6.4.

6.1.3 Typing Rules

SPL is a first order imperative language, extended from Cardelli’s simple imperative lan-
guage [58]. We distinguish between commands (without a return value) and expressions

which do have a return value. Function and automaton names are distinct, and are con-
sidered commands. Function types are written ρ1 × . . . × ρi, or abbreviated to ~ρ. Γα

represents a global environment with type signatures for functions and Γ a per-function
environment containing state variable bindings. SPL does not have any built-in functions,
so all type signatures are obtained from the SPL specifications.

Table 6.1 lists the imperative type judgements and Table 6.2 establishes the basic
typing rules. Note that procedure environments contain only the variables passed in as
arguments to the function declaration, and no global variables are permitted. Table 6.3
and Table 6.4 list the type rules for expressions and statements respectively.

108

6.1. Statecall Policy Language

main → (fdecl)+ eof
fdecl → {automaton | function} id fargs fbody
fargs → ({int id | bool id} [, fargs])

fcall-args → id [, fcall-args]
statecall-args → statecall [, statecall-args]

fbody → { (statement)* } [;]
int-range → ([int] .. [int]) | (int)
statement → statecall ; | id (fcall-args) ;

| always-allow (statecall-args) fbody
| multiple int-range fbody | optional fbody
| either guard fbody (or guard fbody)+
| do fbody until guard ;
| while guard fbody
| id = expr ;
| during fbody (handle fbody)+
| exit ; | abort ;

guard → (expr)
expr → int | id | (expr)

| expr + expr | expr - expr
| expr * expr | expr / expr
| - expr | true | false
| expr && expr | expr || expr | not expr
| expr > expr | expr >= expr
| expr < expr | expr <= expr
| expr = expr

Figure 6.3: EBNF grammar for SPL specifications

Table 6.1: Type Judgments for SPL

Γ ` � Γ is a well-formed environment
Γ ` A A is a well-formed type in Γ
Γ ` C C is a well-formed command in Γ
Γ ` E : A E is a well-formed expression of type A in Γ

109

Chapter 6. Statecall Policy Language

A ← state variable types
| Bool boolean
| Int unsigned integer
| Unit unit

S ← < statecall > statecall
D ← declarations

| fun I (V1 : A1 . . . Vn : An) = C function declaration
| auto I (V1 : A1 . . . Vn : An) = C automaton declaration

C ← commands
| S statecall
| S1 ; S2 sequencing
| allow (S1 . . . Si) = C always allow statecalls
| either (C1 × E1)(C2 × E2) . . . (Cj × Ej) guarded alternation
| multiple E1 E2 = C multiple
| until E1 = C do until
| while E1 = C while
| handle C1(C2 . . . Cn) during handle
| exit normal exit
| abort error exit
| call I (E1 . . . En)

Figure 6.4: Abstract Syntax Tree for SPL

Table 6.2: Basic environment and typing rules

(ENV φ)

φ ` �

(ENV X)
Γ ` A I /∈ dom(Γ)

Γ, I : A ` �

(TYPE INT)
Γ ` �

Γ ` Int

(TYPE BOOL)
Γ ` �

Γ ` Bool

(DECL PROC)
φ, ~x : ~ρ ` C Γα, I : ~ρ ` �
Γα ` (fun I (~x× ~ρ) = C)

110

6.1. Statecall Policy Language

Table 6.3: Expression typing rules

(EXPR BOOL)
Γ ` � x ∈ {true, false}

Γ ` x : Bool

(EXPR INT)
Γ ` �

Γ ` N : Int

(EXPR VAL)
Γ1, I : A, Γ2 ` �

Γ1, I : A, Γ2 ` I : A

(EXPR NOT)
Γ ` E1 : Bool

Γ ` not E1 : Bool

(EXPR BOOLOP)
Γ ` E1 : Bool Γ ` E2 : Bool O1 ∈ {and,or}

Γ ` O1(E1, E2) : Bool

(EXPR INTOP)
Γ ` E1 : Int Γ ` E2 : Int O1 ∈ {+,−,×,÷}

Γ ` O1(E1, E2) : Int

(EXPR COMPOP)
Γ ` E1 : Int Γ ` E2 : Int O1 ∈ {=, >,≥, <,≤}

Γ ` O1(E1, E2) : Bool

Table 6.4: Command typing rules

(CMD ASSIGN)
Γ ` I : A Γ ` E : A

Γ ` I ← E

(CMD SEQUENCE)
Γ ` C1 Γ ` C2

Γ ` C1;C2

(CMD ALLOW)
Γ ` C

Γ ` allow C

(CMD EITHER OR)
Γ ` C1..n Γ ` E1..n : Bool

Γ ` either (C1 . . . Cn)

(CMD DO UNTIL)
Γ ` E : Bool Γ ` C

Γ ` (until E = C)

(CMD WHILE)
Γ ` E : Bool Γ ` C

Γ ` (while E = C)

(CMD MULTIPLE)
Γ ` E1 : Int Γ ` E2 : Int Γ ` C

Γ ` (multiple E1 E2 = C)

(CMD EXIT)

Γ ` exit

(CMD ABORT)

Γ ` abort

(CMD FUNCTION CALL)
Γ1

α, I : ~ρ, Γ2
α ` � Γ ` ~x : ~ρ

Γ1
α, I : ~ρ, Γ2

α ` call I ~x

111

Chapter 6. Statecall Policy Language

6.2 Intermediate Representation
This section first defines the Control Flow Automaton graph used as an intermediate
representation of SPL specifications (§6.2.1), the semantics of multiple automata in the
same SPL specification (§6.2.2), and finally optimisations applied to the CFA to reduce
the number of states (§6.2.3). The CFA is a good abstraction for a software-based non-
deterministic model and it is often used by model extraction tools (e.g. BLAST [133])
as the representation into which C source code is converted. Since there are a myriad of
state-machine languages similar to SPL which share the properties formalised by Schnei-
der’s software automata [242], our adoption of the CFA representation ensures that the
back-ends of the SPL tool-chain (e.g. the PROMELA output) remain useful even if the
front-end language is changed into something specialised for another task.

6.2.1 Control Flow Automaton

The SPL compiler transforms specifications into an extended Control Flow Automaton
(CFA) [133] graph. A CFA represents program states and a finite set of state variables in
blocks, with the edges containing conditionals, assignments, statecalls or termination op-
erations. The CFA is non-deterministic and multiple states can be active simultaneously.

More formally, our extended control flow automaton C is a tuple (Q, q0, X, S,Op,→)
where Q is a finite set of control locations, q0 is the initial control location, X a finite set of
typed variables, S a finite set of statecalls, Op a set of operations, and→⊆ (Q×Op×Q)

a finite set of edges labeled with operations. An edge (q, op, q′) can be denoted q
op−→ q′.

The set Op of operations contains: (i) basic blocks of instructions, which consist of finite
sequences of assignments svar = exp where svar is a state variable from X and exp
is an equivalently typed expression over X; (ii) conditional predicates if(p), where p
is a boolean expression over X that must be true for the edge to be taken; (iii) statecall

predicates msg(s), where s is a statecall (s ∈ S) received by the automaton; and (iv) abort

traps, which immediately signal the termination of the automaton. From the perspective
of a Mealy machine, the input alphabet Σ consists of statecall predicates and the output
alphabet ∧ is the remaining operations. Thus a CFA graph is driven purely by statecall
inputs, and the other types of operations serve to hide the state space explosion of a
typical software model.

The CFA graph is constructed from SPL statements by recursively applying trans-
formation rules to an initial state I and a final state O. Figure 6.5 illustrates the trans-
formations for the basic SPL statements diagrammatically with the circles and lines rep-
resenting CFA nodes and edges. The diamonds indicate a recursive application of the

112

6.2. Intermediate Representation

I O

Until(E,C)

C α

if (n
ot(E))

if (E)
β

if (true)

if (true)
I OαC

if (true)
Multiple(C)

While(E,C)

I

O

Cα

if (not(E))

if (E)
β

γ

if(tr
ue)

if (true)

I α
msg(id)

Statecall (id)
Γ=allows

Δ=handles

O
if (true)

msg(Γ)

H

msg(Δ)

I α O
abort

Abort

I O
id=E

Assign(id,E)

α
if (true)

I

if(E
1)

Either([E x C])

O

α1

β1

C1

if(
E2

)

α2

β2

C2

if(En)

αn

βn

Cn

if(true) if(
tru

e)

if(
tru

e)

I α O
if (true)

Exit

I

During(C,[H])

O

β1

C

H1

Hn β2

α1

α2

Figure 6.5: Transformations of SPL statements into the corresponding CFA nodes

113

Chapter 6. Statecall Policy Language

transformation rules with the initial and final states mapped to the input and outputs of
the diamond node. Nodes within the dashed ellipses (named α, β, γ and so on) are newly
created by the transformation rule. The abort and exit keywords signal the end of the
automaton and thus do not connect to their output states. Each transformation rule has
an environment (Γ×∆) where Γ is the list of always allowed statecalls as seen in allow
blocks and ∆ represents statecalls which result in a transition to a handle clause (gen-
erated by the during/handle statement). A during/handle statement first creates all the
handler nodes and transforms the main block with the handlers registered in the ∆ envi-
ronment. A statecall node creates a statecall edge and inserts appropriate edges to deal
with allow and during handlers.

Some statements require the creation of new internal variables. The multiple call can
optionally specify upper and lower bounds to the number of iterations; extra variables
are automatically created to track these bounds in the CFA. during/handle statements
create a new internal variable to track the state to which a handler must return. Function
calls are either macro-expanded (if only called once) or temporary variables used to push
and pop arguments in a single copy of the function graph (if called multiple times). An
example of these internal variables can be seen in Figure 6.2 in our earlier ping sample.

6.2.2 Multiple Automata

It is often more convenient and readable to break down a complex protocol into smaller
blocks which express the same protocol but with certain aspects factored out into simpler
state machines. Accordingly, SPL specifications can define multiple automata, but the
external interface hides this abstraction and only exposes a single, flat set of statecalls.
The scope of automata names are global and flat; this is a deliberate design decision since
the language is designed for light-weight abstractions that are embedded into portions of
the main application code. Even a complex protocol such as SSH can be broken down
into smaller, more manageable automata (§D.1). In this section, we explain how statecalls
are routed to the individual automata contained in an SPL specification.

Each automaton executes in parallel and sees every statecall. If an automaton receives
a statecall it was not expecting it reports an error. If any of the parallel automata report an
error then the SPL model has been violated. When a statecall is received, it is dispatched
only to automata which can potentially use that statecall at some stage in their execution.

More formally, let A represent an automaton or function definition in an SPL spec-
ification. Let V(A) represent the union of all the statecalls referenced in A, and F(A)

be the list of all functions called from A. The potentially visible statecalls P(A) are the

114

6.2. Intermediate Representation

B S1 S2 FOne Two Three

B S1Four
S2

S3

Five

Six F

Seven

Seven

B S1Two
S2

S3

Three

Four F

Five

Five

Automaton α

Automaton β

Automaton γ

P(α) = One, Two, Three

P(β) = Four, Five, Six, Seven

P(γ) = Two, Three, Four, Five

automaton alpha {
 One;
 Two;
 Three;
}

automaton beta {
 Four;
 either { Five } or { Six }
 Seven;
}

automaton gamma {
 Two;
 either { Three } or { Four }
 Five;
}

Figure 6.6: Initial automata states of the sample SPL specification

set of statecalls which the automaton A will use at some stage in its execution where
P(A) = V(A) ∪ {P(F0) . . .P(Fn)}. A statecall is only dispatched to an automaton
A if it is present in its potentially visible set P(A). Since the set of externally exposed
statecalls Pall = {P(A0) . . .P(An)} is calculated by the union of all the potentially vis-
ible sets of the automata contained in an SPL specification, it trivially follows that every
statecall will be dispatched to at least one automaton.

Figure 6.6 gives a sample specification of 3 automata α, β and γ to demonstrate these
semantics more visually. The CFA graph and potentially visible statecalls for each au-
tomaton is also shown; the circles represents nodes in the graph, all of the edges represent
msg transitions and the gray circles indicate the initial active states.

Figure 6.7 illustrates the events that occur when the statecalls [One, Two, Three, Four]

are sent to the automata. Firstly, One is only present in the potentially visible set of α and
ignored by β and γ. A valid transition exists for One in α and the automaton performs the
transition. Since none of the automata register an error, the statecall is successful. When
Two and Three are sent, only β ignores them and α and γ successfully transition into new
states. When Four is sent, α ignores it but β and γ have it in their potentially visible set

115

Chapter 6. Statecall Policy Language

B S1 S2 FOne Two Three

B S1Four
S2

S3

Five

Six F

Seven

Seven

B S1Two
S2

S3

Three

Four F

Five

Five

Automaton α

Automaton β

Automaton γ

1) Statecall One

3) Statecall Three 4) Statecall Four

B S1 S2 FOne Two Three

B S1Four
S2

S3

Five

Six F

Seven

Seven

B S1Two
S2

S3

Three

Four F

Five

Five

Automaton α

Automaton β

Automaton γ

B S1 S2 FOne Two Three

B S1Four
S2

S3

Five

Six F

Seven

Seven

B S1Two
S2

S3

Three

Four F

Five

Five

Automaton α

Automaton β

Automaton γ

B S1 S2 FOne Two Three

B S1Four
S2

S3

Five

Six F

Seven

Seven

B S1Two
S2

S3

Three

Four F

Five

Five

Automaton α

Automaton β

Automaton γ

ERROR

2) Statecall Two

Figure 6.7: State transitions for our sample SPL specification with 4 input statecalls

116

6.3. Outputs

and attempt to transition. β has a successful transition but γ does not and raises an error.
Since one of the automata flagged an error, the safety monitor raises an exception.

As we will see later (§7.1) this mechanism allows complex protocols such as SSH
to be broken down into simpler automata which are still connected together by common
messages. The SPL compiler can output the list of statecalls which are shared between
automata as a development aid; in practise while specifying Internet protocols we have
observed that most automata share only one or two statecalls between them (normally
global messages to indicate protocol termination or authentication status).

6.2.3 Optimisation

The transformation rules defined earlier (§6.2.1) result in a CFA which has a number of
redundant edges (e.g. if(true) conditionals). In the interests of creating a correct compiler,
these edges are optimised away in a separate phase once the initial CFA has been created.
At this stage, the optimisation focusses on reducing the number of states in the CFA
without modifying the semantics of the graph. We first iterate over all nodes and edges in
the graph and perform constant folding [3] to simplify any conditional expressions. Since
SPL only has expressions with booleans and integers, the folding is a simple recursive
pattern match over the abstract syntax tree.

Once the constant folding is complete, the CFA is traversed to eliminate redundant
nodes. A node is considered redundant if: (i) for a node Qi, all edges from the node are
of the form Qi

if(true)−−−−→ Qo or (ii) for a node Qo, all edges pointing to the node are of the
form Qi

if(true)−−−−→ Qo. The initial state of the automaton is left unoptimised, in order to
maintain each automaton as having only a single entry point for simplicity.

The conditional elimination optimisation is particularly important for CFA graphs
generated from SPL source code, since the compiler deliberately inserts a number of
redundant blocks around basic blocks in order to simplify the code generation algorithms.
Eliminating these in a separate optimisation phase makes the compiler more modular and
permits unit testing of the code generator and optimiser separately. Figure 6.8 shows an
SPL code fragment before and after conditional elimination has been applied.

6.3 Outputs

This section describes the transformation of the CFA graph into various languages: (i)
OCaml to be embedded as a dynamic safety monitor (§6.3.1); (ii) PROMELA to statically
verify safety properties using a model checker such as SPIN (§6.3.2); and (iii) HTM-
L/Javascript to permit high-level debugging of SPL models embedded in an executing

117

Chapter 6. Statecall Policy Language

S_or_9

S_seq_10

{Three}

S_seq_8

S_either_or_5

true

S_or_4

true
S_or_6

true

S_initial_1

S_or_11

truetrue

S_either_or_3

S_final_2

true

true

S_seq_7

{One}

true

S_seq_12

true

{Four}

{Two}

S_initial_1

S_final_2

{Three} S_seq_7

{One}

{Four}

{Two}

automaton main ()
{
 either {
 either { One; Two }
 or { Three }
 } or {
 Four;
 }
}

Figure 6.8: Conditional elimination on a CFA (left) before, and (right) after

application (§6.3.3).

Although we specifically describe an OCaml interface here, the compiler can also be
easily extended to other type-safe languages (e.g. Java or C#), allowing application au-
thors to write programs in their language of choice and still use the SPL tool-chain. In the
case where languages do not make strong enough memory-safety guarantees to protect
the safety monitor from the main program (e.g. C/C++), the compiler must output code
which runs in a separate process [230] and stub code which allows the server to commu-
nicate with the monitor via IPC. This approach will be slower for larger SPL policies due
to the overhead in performing inter-process communication rather than simply calling a
function as the OCaml interface does.

6.3.1 OCaml

The OCaml output from the SPL compiler is designed to: (i) dynamically enforce the
SPL model and raise an exception if it is violated; and (ii) provide real-time monitoring,
debugging and logging of the SPL models. The SPL compiler generates OCaml code
with a very simple external interface, shown in Figure 6.9 (top). The polymorphic vari-
ant s represents all the statecalls, and t is an abstract type which represent the state of
the automaton. Two methods manipulate this state—init returns a fresh instance of the
automaton and tick accepts a statecall and automaton state, and returns the new state or
raises the exception Bad statecall in the event of a violation. The interface is purely

118

6.3. Outputs

functional and the returned state is independent of the input state (thus allowing an au-
tomaton to be “rolled back” by keeping a list of previous automaton values).

Internally, the implementation is structured into a sequence of modules for each au-
tomaton defined in the SPL specification. A top-level tick function dispatches incoming
statecalls to the correct modules according to the rules specified earlier (§6.2.2). The SPL
compiler assigns every node in the CFA graph a unique integer label1, and each automa-
ton module defines a record state to represent state variables (it has type unit if no
state variables are present). The full automaton state descriptor with type states is a
hash-table mapping state labels to a list of state records. Figure 6.9 (bottom) shows the
internal signature for the example SPL automata from Figure 6.8.

The internal implementation takes several steps to make transitions as fast as possible.
Since the only edges in the CFA which can “block” during execution are the statecall
edges, all other edges are statically unrolled during compile-time code generation. The
tick function for each automaton allocates an empty state descriptor and populates it by
applying the input statecall over all states in the old state descriptor and registering any
resultant states in the new state descriptor. If the result is an empty state descriptor after
all the input states have been iterated over, a Bad statecall exception is raised.

When unrolling non-statecall edges during code generation, assignment operations
are statically tracked by the SPL compiler in a symbol table. This permits the compiler
to apply constant folding when the resultant expressions are used as part of conditional
nodes (or when creating new state descriptors). Multiple conditional checks involving the
same variable are grouped into a single pattern match (this is useful in SPL specs with
during/handle clauses). These optimisations are necessary even when using an optimis-
ing OCaml compiler, since they represent constraints present in the SPL specification
which are difficult to spot in the more low-level OCaml code output.

Figure 6.10 shows an SPL specification (top left), the associated CFA graph (top

right), and the complete pattern match for all valid statecall transitions (bottom). Each
pattern match has a comment beside it with the human-readable state name (which matches
up with the node labels in the CFA graph). Observe that only four nodes have a pat-
tern match, as the other nodes do not have any statecall edges and are statically un-
rolled at compile-time. Assignment optimisation can be seen in the (S multentry 5
S2−→ S seq 15

v=false−−−−→ S multentry 5
v=true−−−−→ S assign 12) transition sequence which

results in only a single assignment to v. Similarly, the conditional check for v is also

1Variant types were not directly used here since OCaml imposes a limitation of 255 labels per type;
polymorphic variants remove this limitation, but are not needed since the labels are only used internally.

119

Chapter 6. Statecall Policy Language

exception Bad statecall OCAML

type t
type s = [‘One | ‘Two | ‘Three | ‘Four | ‘Five | ‘Six | ‘Seven]
val init : unit → t
val tick : t → s → t

exception Bad statecall OCAML

module Alpha : sig
type state = { state : int; }
type states = (int, state list) Hashtbl.t
type s = [‘One | ‘Two | ‘Three]
val tick : states → s → states
val init : unit → states

end
module Beta : sig

type state = { state : int; }
type states = (int, state list) Hashtbl.t
type s = [‘Five | ‘Four | ‘Seven | ‘Six]
val tick : states → s → states
val init : unit → states

end
module Gamma : sig

type state = { state : int; }
type states = (int, state list) Hashtbl.t
type s = [‘Two | ‘Three | ‘Four | ‘Five]
val tick : states → s → states
val init : unit → states

end
type t = { alpha : Alpha.states; gamma : Gamma.states;

beta : Beta.states }
type s = [‘One | ‘Two | ‘Three | ‘Four | ‘Five | ‘Six | ‘Seven]
val init : unit → t
val tick : t → s → t

Figure 6.9: External (top) and internal (bottom) OCaml interface for the example SPL
specification from Figure 6.6

120

6.3. Outputs

S_seq_15

S_multentry_5

main_v=false (7)

S_final_2

main_v=false (7)

{S2} (6)

S_or_17

main_v (2)

S_assign_12

main_v=true (3)

S_initial_1

{S0} (0)

{S0} (0)

S_seq_18

abort (10)

{S3} (9)

{S1} (4)

{S1} (4)

automaton main(bool v)
{
 S0;
 multiple {
 either {
 v = true;
 S1;
 } or {
 S2;
 v = false;
 } or (v) {
 S3;
 abort;
 }
 }
}

|6,‘S1 (? S assign 12 ?) → OCAML

register state 0 x h; (? S final 2 ?)
register state 4 x h; (? S multentry 5 ?)
if x.main v then begin

register state 5 x h; (? S or 17 ?)
end;
begin (? main v ← true in ?)
register state 6 {x with main v=true} h; (? S assign 12 ?)
end;

|5,‘S3 (? S or 17 ?) → raise Bad statecall
|4,‘S2 (? S multentry 5 ?) →

begin (? main v ← false in ?)
register state 4 {x with main v=false} h; (? S multentry 5 ?)
(? skipped false conditional ?)
begin (? main v ← true in ?)

register state 6 {main v=true} h; (? S assign 12 ?)
end;
register state 0 {x with main v=false} h; (? S final 2 ?)

end;
|2,‘S0 (? S initial 1 ?) →

register state 0 x h; (? S final 2 ?)
register state 4 x h; (? S multentry 5 ?)
if x.main v then begin

register state 5 x h; (? S or 17 ?)
end;
begin (? main v ← true in ?)

register state 6 {x with main v=true} h; (? S assign 12 ?)
end

Figure 6.10: An example SPL specification (top left), its CFA graph (top right) and a
fragment of the OCaml executable automaton (bottom)

121

Chapter 6. Statecall Policy Language

statically skipped in the (S multentry 5
S2−→ S seq 15

v=false−−−−→ S multentry 5
if(v)−−−→

S or 17) transition sequence since it is known to be false.

automaton main(int v) { SPL

S0;
multiple {

v = v+1;
optional { S2; }

};
S1;

}

This optimisation also has the useful side-effect of detecting poorly written SPL poli-
cies which would result in a large state explosion at run-time, such as the one above. If
an excessive depth of recursion through the CFA graph is detected, the SPL compiler ter-
minates with an error indicating the location of the state explosion. In practise, we used
integer variables extremely rarely in protocol state machines; the main source is internal
variables created from statements such as multiple or during/handle (which are safely
used).

6.3.2 PROMELA

The CFA graph structure is already a non-deterministic finite-state automaton, and thus
maps very easily into PROMELA code. Firstly, two global boolean variables err and
gen are defined to represent an error occurring or the generator process (described later)
shutting down. Each statecall is mapped into an mtype (or an integer if there are more
than 255 statecalls, due to implementation limits in SPIN), and every node is assigned a
unique integer label as with the OCaml output. Each automaton in the SPL specification
is defined as a separate PROMELA process and its state variables are declared globally
(with unique names obtained by prepending the automaton name). Every automaton also
has a rendezvous channel (a channel with a message buffer of size 0) through which it
receives statecall messages.

The automaton processes execute continuously in a do :: od loop, and outside this
loop two labels Bad statecall and End automaton are defined to represent an error or
normal termination respectively. The only way a process can exit the loop is by jump-
ing to one of these labels (this is guaranteed by an assertion between the loop and the
labels). A generator process continuously transmits statecalls non-deterministically to
each of the other processes using their respective rendezvous channels. Each statecall is
dispatched only to the automata which expect it, according to the semantics described

122

6.3. Outputs

Alpha Beta Gamma

Generator

One
Two
Three

Two
Three
Four
Five

Four
Five
Six
Seven

Figure 6.11: The structure of the output PROMELA from our example in Figure 6.6. Each
box represents a separate PROMELA process

earlier (§6.2.2). Although this conversion seems straightforward, it is carefully designed
to overcome several practical problems with expressing models in PROMELA or checking
them with SPIN.

• The generated model will always pass the SPIN checks for valid end-states, progress
and assertion checks by default for any valid SPL models. A manually constructed
PROMELA model can easily dead-lock due to programmer error when handling
rendezvous channels, since every attempt at receiving a statecall on a rendezvous
channel must also guard against automaton error by checking that the generator
is still transmitting messages via the gen variable. Since this check must be per-
formed at every potential blocking point in an automaton and PROMELA lacks the
high-level programming constructs to abstract it in the language, it is best intro-
duced mechanically by the SPL compiler output.

• By default, PROMELA assumes that statements in different processes can be exe-
cuted with arbitrary interleaving. This can lead to a very large state explosion if
many processes are involved. However, the SPL output constrains this interleaving
via the atomic and d step keywords to the same semantics of the OCaml safety
monitor. This reduction in state space has reduced the verification times of some
SPL models from the order of weeks to minutes, but without introducing the risk
of deadlocks (due to the point above).

• The contents of messages transmitted across rendezvous channels cannot be speci-
fied in a trace clause in SPIN. To overcome this, every message transmitted by the
generator is also assigned to a global variable which can be tested in LTL formulae.

• Key automaton local variables such as whether it has terminated, the current state,

123

Chapter 6. Statecall Policy Language

and the value of state variables are exported as global variables, but constrained
using the local keyword. This enables compatibility with partial order reduction in
SPIN [139] (which is normally disabled if local variables are accessed inside LTL
formulae and never-claims). The variables names are also guaranteed to be unique,
which means that the potential danger of incorrect verification by inadvertently
using a variable marked local in more than one process is guaranteed not to happen.

• The limitation of 255 mtype values is overcome by converting them to integers if
more statecalls are present and instrumenting the PROMELA output to print human-
readable strings in the Message Sequence Chart output. Normally the mtype
variable is the only way to obtain human-readable strings inside simulation runs,
severely limiting the utility of PROMELA code which does not use it.

Running SPIN over the PROMELA output allows the model checker to exhaustively
calculate the maximum ranges of state variables in the SPL specification. SPIN uses
this information to optimise its verification algorithms, but it also gives developers more
assurance that the OCaml safety monitors will have a reasonable size at run-time if integer
variables are being used. The PROMELA models can also be further constrained via safety
assertions such as never-claims or using the convenient SPIN LTL formulae converter
provided by SPIN. We give concrete examples of some LTL formulae applied to the SPL
models defined for our implementation of the SSH protocol later (§7.1.5).

6.3.3 HTML and Javascript

AJAX (Asynchronous Javascript and XML) is a group of technologies for creating inter-
active applications running directly in a Web browser [295], consisting of: (i) XHTML2

and CSS3 to markup and style content; (ii) the DOM4 tree which can be modified by
the client-side scripting language JavaScript to dynamically alter a web page; and (iii)
the XMLHttpRequest object to exchange data asynchronously with a web server. AJAX
is an effective method of deploying cross-platform applications with no dependencies
beyond a standard web browser such as Mozilla [212] being present on the host.

The SPL compiler can optionally embed an AJAX-based debugger in an executing
SPL safety monitor, permitting a standard web-browser to connect to the monitor and
perform high-level debugging with respect to the SPL specifications. For security rea-
sons, a web-browser can only make HTTP requests using the XMLHttpRequest object to

2eXtensible HyperText Markup Language, see http://www.w3.org/TR/xhtml1/
3Cascading Style Sheets, see http://www.w3.org/Style/CSS/
4Document Object Model, see http://www.w3.org/DOM/

124

http://www.w3.org/TR/xhtml1/
http://www.w3.org/Style/CSS/
http://www.w3.org/DOM/

6.3. Outputs

XHTML

HTTP GET

HTTP GET

Statecall 2

HTTP GET

Statecall 1

BrowserSPL Monitor

user enters URL

javascript requests
statecall in background

blocked

Application

Statecall 1

Statecall 2

user selects
single-step mode

...pause...

user clicks "next"

page loads

Statecall 3

Figure 6.12: Message sequence chart showing the asynchronous interactions between a
web browser, an SPL safety monitor its associated application.

the same server from which it obtained the web-page and the responses to these requests
must be short-lived or the browser runs out of memory rather quickly.

Figure 6.12 shows the interactions between a web-browser, an SPL monitor, and the
application the monitor is embedded in. Every SPL safety monitors listens on a unique
TCP port5 and operates as normal until an HTTP request is received on this port. When
the monitor receives an HTTP request, it switches into debug mode and replies with
a web-page embedded in it as a string generated by the SPL compiler. The web-page
contains a pretty-printed version of the SPL specification rendered using XHTML and
CSS. As soon as the page loads in the browser, the Javascript in it begins to the poll the
safety monitor for updates. The safety monitor accepts the connection and holds it open
until it receives a statecall from the application, after which it replies with the statecall
and its internal state, which is parsed by Javascript in the browser and updated on the
client browser in real-time.

This scheme permits the easy implementation of single-step monitoring of the target
application with respect to the statecalls it is outputting by delaying the web-browser
HTTP GET requests. This in turn causes the SPL monitor to block in the accept(2)

system call when it receives a statecall from the main application, until the user clicks on

5The actual IP address/port a safety monitor is listening on can be discovered in a variety of ways; e.g.
multicast DNS, the UNIX portmap utility, or simply by logging a randomly chosen port to syslog.

125

Chapter 6. Statecall Policy Language

a “next” button in the web-browser and triggers the transmission of an HTTP GET. After
this, the application can execute as normal until it needs to issue another statecall.

The AJAX debugger proved to be extremely useful when developing the SSH imple-
mentation, which embeds multiple SPL safety monitors and invokes statecalls on every
packet being sent or received. We show screen-shots of the debugger in action when we
describe the SSH server (§7.1).

6.4 Summary
In this chapter we have presented the Statecall Policy Language (SPL), a language which
simplifies the task of specifying non-deterministic state machines (§6.1). The state ma-
chines are compiled into an intermediate representation which separates the front-end
SPL language from the compiler outputs (§6.2). SPL trades extreme formal safety in
favour of flexible, light-weight dynamic enforcement of the models via safety moni-
tors in languages such as OCaml, but also makes model-checking easier by outputting
well-formed PROMELA code which can be verified using the SPIN model checker (§6.3).
Applications using SPL models also benefit from high-level run-time monitoring support
embedded within safety monitors and exposed to any standard web browser via AJAX
techniques.

126

CHAPTER 7

Case Studies

Applicants must also have extensive knowledge of UNIX, although they should have sufficiently

good programming taste to not consider this an achievement.

MIT JOB ADVERTISEMENT

We have defined the MELANGE architecture, which consists of two domain specific
languages (MPL and SPL) which output OCaml code to handle packet parsing and em-
bedding state-machines. In this chapter we describe two implementations of Internet
protocol servers using this architecture and evaluate the performance of each against the
industry-standard reference implementations. We chose two protocols for implementa-
tion: (i) Secure Shell version 2 (SSH), used for securely connecting to remote machines
across an untrusted network (§7.1); and (ii) the Domain Name Service (DNS), which
provides an Internet directory service, e.g. used to map human-readable names to IP ad-
dresses (§7.2).

The choice of protocols is important due to their differing characteristics. SSH is
a highly flexible protocol which deals with authentication, access control, encryption,
and channel multiplexing and flow control for both interactive and bulk transfer sessions.
DNS is primarily a stateless control protocol and deals in very small packets but, unusu-
ally for control protocols, must also be high-performance due to the large number of DNS
lookups performed during common operations such as e-mail delivery or web surfing.

Our performance measurement methodologies emphasise the throughput and latency

127

Chapter 7. Case Studies

characteristics of the complete application. During the initial stages of testing, we in-
strumented the OCaml garbage collector to output detailed statistics about its behaviour.
However, examination of the C applications we benchmark against revealed that they
quite often implement their own memory management routines (e.g. pool or slab alloca-
tors [42]). Measurement using standard system calls such as getrusage(2) is complicated
by the fact that even the system malloc(3) and free(3) routines implement their own in-
ternal caching of memory depending on their exact implementation1 and so obtaining a
precise number for the amount of live memory used by an application is difficult without
altering its performance (e.g. forcing a garbage collection or libc to flush its caches).
The OCaml garbage collector is also characterised by providing faster memory alloca-
tion than the standard C functions since it simply increments a pointer on the heap and
relies on the garbage collection phase to free it.

We do not actually care about the precise internal workings of memory allocation, but
rather the overall performance and latency of the system (e.g. whether the presence of a
garbage collection phase introduces long pauses which disrupts network traffic). In all
the performance results presented in this section, we have used default system resource
limits in OpenBSD and ensured that tests run long enough to permit thousands of full
garbage collection cycles to occur in the OCaml applications so that the latency data will
point to any “hotspots”.

7.1 Secure Shell (SSH)

SSH is a widely used protocol for providing secure login over a potentially hostile net-
work. It uses strong cryptography to provide authentication, confidentiality and mul-
tiplexed data channels for interactive and bulk data transfer. Provos and Honeymoon
developed scanssh to rapidly scan large portions of the Internet for SSH servers and de-
termine the versions of deployed SSH servers [231]. As we showed earlier in Figure 1.1,
OpenSSH [262] is the dominant server used by over 90% of Internet hosts which are
running an SSH server. OpenSSH is written in C and developed in two versions: a “core
version” developed on OpenBSD, and a “portable” release consisting of a patchset for
numerous other operating systems.

SSH is a complex protocol, with hundreds of different packet types, combined with
cryptography and channel multiplexing. Interestingly, despite the complex cryptogra-
phy requirements OpenSSH has also suffered from a significant number of relatively

1On OpenBSD, libc memory allocation is handled by the mmap(2) system call, and a common alter-
native on other UNIX-like operating systems is to use sbrk(2).

128

7.1. Secure Shell (SSH)

Table 7.1: Some CERT Vulnerabilities for OpenSSH from 2000 to 2003, with the crosses
marking parsing related security issues (source: kb.cert.org)

VU# Date Description
40327 6/2000 OpenSSH UseLogin allows remote execution as root⊗

945216 2/2001 SSH CRC32 attack detection contains remote integer overflow
655259 6/2001 OpenSSH allows arbitrary file deletion via symlink redirection
797027 6/2001 OpenSSH allows PAM restrictions to be bypassed
905795 9/2001 OpenSSH fails to properly apply source IP based access control
157447 12/2001 OpenSSH UseLogin directive permits privilege escalation⊗
408419 3/2002 OpenSSH contains a one-off array overflow in channel handling⊗
369347 6/2002 OpenSSH vulnerabilities in challenge response handling⊗
389665 16/2002 SSH transport layer vulnerabilities in key exchange and init
978316 6/2003 Vulnerability in OpenSSH daemon (sshd)⊗
209807 9/2003 Portable OpenSSH server PAM conversion stack corruption⊗
333628 9/2003 OpenSSH contains buffer management errors
602204 9/2003 OpenSSH PAM challenge authentication failure

straightforward parsing-related security issues in recent years. Table 7.1 shows the im-
portant security issues in OpenSSH since 2000, and out of the 14 listed, 6 (43%) could
be attributed to bugs in the parsing of network traffic. Some of the problems such as
the CRC32 integer overflow2 were easily and remotely exploitable, leading to a wave of
attacks being reported to CERT [62].

The potential for more SSH worms is worrying since the service is so widespread
across the Internet and is difficult to hide from attackers since it is often used as a man-
agement protocol to administer firewalls. OpenSSH is becoming more secure through
the use of techniques such as privilege separation [230] and host hashing [240] to reduce
the impact of vulnerabilities. However the server is still written in C, with the associated
risks of future security issues through code errors.

The SSH protocol has recently been standardised in a series of RFCs by the IETF,
starting with its architecture [293]. Figure 7.1 illustrates its various layers: (i) a trans-
port layer [294] which deals with establishing and maintaining encryption and compres-
sion via key exchange and regular re-keying; (ii) an authentication layer [291] which
is used immediately after the transport layer is encrypted to establish credentials; and
(iii) a connection protocol [292] which deals with multiplexing data channels for interac-

2CERT VU#945216 available from http://www.kb.cert.org/vuls/id/945216

129

http://www.kb.cert.org/vuls/id/945216

Chapter 7. Case Studies

Key Negotiation
Key Exchange

(Diffie-Hellman Group1
Diffie-Hellman Group14

Diffie-Hellman Gex)
Switch to New Keys

Debug Message
Ignore Message

Disconnect Message

Transport Layer Auth

None
Password
PublicKey
HostKey

Channel

Open Session
Port Forward
X11 Forward

Agent Forward

Chan #1

Request Pty
Request Shell
Request Env

Window Adjust
Send Data

Send Stderr
Send Signal
Exit Status
End of Data

Chan #2

Request Pty
Request Shell
Request Env

Window Adjust
Send Data

Send Stderr
Send Signal
Exit Status
End of Data

Figure 7.1: Diagram of the various aspects of the SSHv2 protocol with sample messages
inside each box

tive and bulk data transfer sessions. The connection protocol has both global messages
(e.g. to create TCP/IP port forwardings) and channel-specific messages which must be
dispatched appropriately. Channels can be created and destroyed dynamically over a sin-
gle connection, data transfer can continue while re-keying over the transport layer is in
progress, and the protocol even permits different cryptographic mechanisms to be used
for transmission and receipt of data. Extensions such as the use of DNS to store host keys
and new authentication methods have also been published as RFCs [241, 87, 29].

We implemented a fully-featured SSH library—dubbed MLSSH—which supports both
client and server operation. The library supports the essential features of an SSH session
including key exchange, negotiation and re-keying, various authentication modes (e.g.
password, public-key and interactive), and dynamic channel multiplexing for interactive
and bulk data transfer. The implementation is quite succinct, consisting of around 4500
lines of OCaml code, 350 lines of MPL and 400 lines of SPL specifications. When the
MPL and SPL compilers have auto-generated their respective OCaml modules, the total
size rises considerably to 18000 lines. The only external component used was Xavier
Leroy’s Cryptokit library3 to handle the cryptography. The code is pure OCaml with no
C bindings except a small library for pseudo-terminal allocation via openpty(3) which is
not supported by the OCaml standard library.

We now present the performance evaluation of MLSSH versus OpenSSH (§7.1.1),
describe how SSH packets are parsed using MPL (§7.1.2), the use of SPL to model the
SSH protocol state machine (§7.1.3), the AJAX debugger (§7.1.4) and finally some LTL
formulae we applied against the PROMELA generated from the SPL compiler (§7.1.5).

3Available from http://pauillac.inria.fr/∼xleroy/software.html

130

http://pauillac.inria.fr/~xleroy/software.html

7.1. Secure Shell (SSH)

7.1.1 Performance

In this section we measure the performance and latency characteristics of MLSSH against
OpenSSH 4.3, as included in the standard distribution of OpenBSD 3.8. We first per-
form our measurements with cryptography turned off (both data ciphers and the MAC
verification codes) in order to isolate the core SSH engine.

Throughput

First, we measure the sustained throughput of an SSH session by running repeated trans-
fers of large files through a single connection. A connection using the standard OpenSSH
client is established to either an MLSSH or OpenSSH server, with all logging disabled. A
file of a variable size (ranging from 100MB to 300MB) is created on a memory file sys-
tem and transferred via the established SSH connection to another memory file system on
the same host. This process is repeated 100 times across the same connection by dynam-
ically creating a new channel, ensuring that at least 10 gigabytes of data are sent through
every connection to highlight any bottlenecks due to memory or resource leaks. Since
the SSH protocol also mandates re-keying every million packets or so, our benchmarks
reflect that cost as part of the overall result (despite disabling encryption, session keys
were still derived).

Figure 7.2 shows a plot of transfer rate (in megabytes/second) vs the transfer size of
the individual chunks of data. Each data point and error bar reflects the average time and
95% confidence interval over the 100 repeated invocations across one SSH connection.
OpenSSH is slightly slower than MLSSH and interestingly also has a larger variation of
transfer times over the more consistent MLSSH. We attribute this to the regular garbage
collection and memory compaction cycle used by MLSSH when compared to the more
ad-hoc manual allocation and deallocation used by OpenSSH. This result is a very en-
couraging start since our MPL standard library is written in pure OCaml, and there re-
mains a large scope for further low-level optimisations in the field-parsing code for even
more speed in the future.

Figure 7.3 shows the same experimental setup applied to MLSSH and OpenSSH servers
with encryption enabled and using HMAC-SHA1-160 as the message digest algorithm
for both graphs. The transfer rates are of course slower than the previous plain-text ci-
pher, and MLSSH and OpenSSH demonstrate similar transfer speeds when using a stream-
based cipher. However, MLSSH is only 75% of the speed of OpenSSH when using the
more computationally intensive AES-192 cipher. Examination of OpenSSL [264] (the
cryptography library used by OpenSSH) and Cryptokit (the OCaml library we are using)

131

Chapter 7. Case Studies

Figure 7.2: Transfer size vs transfer rate for MLSSH and OpenSSH servers using null en-
cryption and MAC cipher (rekeying via Diffie-Hellman every million packets is enabled).
The anomolous OpenSSH value is attributed to caching effects and is reproducable.

Figure 7.3: Transfer size vs transfer rate for MLSSH and OpenSSH servers, using either
the stream Arcfour or block AES ciphers

132

7.1. Secure Shell (SSH)

SSH server
session

SSH client

SCP/SSH client

character generator

latency measurement

SCP/SSH server
bulk transfer

Figure 7.4: Architecture of our latency tests which send a regular stream of characters
through an established and heavily loaded SSH session to another client to measure la-
tencies between the received characters.

reveals that OpenSSL uses optimised, hand-written assembly language code for their im-
plementation of AES, where Cryptokit is a combination of portable C and OCaml. Both
Cryptokit and OpenSSL include informal regression tests in their source distributions,
and running them revealed that Cryptokit was roughly 75% slower than OpenSSL on our
test machines, indicating that the problem lies with the external library used and not our
SSH implementation. Since AES is becoming a commonly used cipher, we intend to
investigate speeding up Cryptokit as part of our future work.

Connection Latency

We also measured the latency of established SSH connections to MLSSH and OpenSSH,
with the measurement architecture shown in Figure 7.4. First, a master connection is
started to either server and a file transfer is repeatedly looped through it as in our earlier
throughput experiments. Once this continuous transfer has settled down (we left it for 5
minutes), another connection is established from an OpenSSH client to the session. A
character generator process is begun on the server side which transmits a single character
every second4 back to the client. The client measures the time between characters being
received back—in an “ideal” server this would be a regular one second but if delays
are introduced in the pipe-line (e.g. network problems) then the inter-packet latency will
vary. Since we are using the localhost interface which does not introduce any network
latencies, the main source of delay will be the server process itself (along with scheduling
inconsistencies which are common to all the tests).

Figure 7.5 shows the cumulative distribution function of receiving 10000 characters
over an SSH connection loaded down with bulk transfers of 200MB files in the back-
ground. The latencies recorded through MLSSH are extremely consistent and clustered

4The TCP NO DELAY socket option is active on both servers being measured to ensure that TCP buffers
do not introduce buffering delays.

133

Chapter 7. Case Studies

Figure 7.5: Cumulative distribution function for SSH connection latency against a heavily
loaded SSH server session

around the one second mark with very little variance. In contrast OpenSSH exhibits jitter
within a range of ±100ms indicating that delays are being introduced within the server
which cause it to disrupt the inter-packet arrival times. This is surprising for two reasons:
(i) OpenSSH is performing manual memory management which “should” be faster than
automatic garbage collection; and (ii) MLSSH ought to have a more bi-modal distribution
to reflect the cost of the occasional garbage collection introducing a delay.

The first point is easily debunked by examining the internals of the OpenBSD mal-

loc(3) and free(3) functions, which are almost as complex as the OCaml garbage col-
lector routines. Allocation in OCaml is a simpler process than malloc(3) since only a
single pointer needs tp be incremented as opposed to the more complex free-list manage-
ment required by the libc functions. Recall that OCaml has two distinct heaps—one for
longer-lived data which requires compaction (an expensive operation) and a smaller one
for the more common short-lived data [17]. Our approach of separating the data and con-
trol paths of servers via MPL (§7.1.2) is clearly validated here, since we generate much
less “large” garbage (i.e. data packet payloads) that would normally require collection
from the major heap. Instead, by re-using packet environments the only real garbage is
generated in the smaller heap which introduces negligible pauses in the application.

134

7.1. Secure Shell (SSH)

encrypted
header +

encrypted initial
data

decrypted
header +

decrypted initial
data

decryption
function

decrypted header +
compressed

unverified data +
MAC + padding

decryption
function

M
AC

fu
nc

tio
n

decrypted header +
compressed data +

verified MAC +
padding

decompression
function

OCaml MPL
data structure

decrypted
header + data +
verified MAC +

padding

MPL
unmarshal

Figure 7.6: SSH unmarshal path for a single packet which shows the sequence of de-
cryption, decompression, MAC verification and finally classification of the contents with
MPL

This is an interesting area we intend to re-visit in future work by measuring perfor-
mance across a variety of malloc(3) implementations. For the purposes of our thesis how-
ever, we have shown that a well-constructed network application in a garbage-collected
language can perform as well as an application manually managing its memory.

7.1.2 SSH Packet Format

The SSH protocol constructs data packets in two stages: (i) a secure encapsulation layer
for all packets (which includes encryption and a message hash to ensure integrity) and
random padding; and (ii) classification rules for the decrypted packet payloads. We im-
plement the encapsulation layer directly in OCaml and and parse the decrypted payloads
with MPL specifications. Figure 7.6 shows the sequence of functions called to convert the
encapsulated encrypted data into plain-text data. Firstly a small chunk of data is read and
decrypted from which the length of the rest of the packet is obtained. The packet payload
is then read and decrypted, followed by an unencrypted MAC string and some random
padding. The MAC is verified by recalculating it over the decrypted packet payload, and
then the payload is decompressed. Finally, this plain-text payload is passed onto the MPL
classification functions for conversion into an OCaml data structure.

The early implementations of MLSSH performed a data copy of the payload for every
stage of this computation by allocating a new buffer. The latest (and much faster!) version
requires the payload to be copied only a single time to decrypt it into a new buffer (if
the Cryptokit library were extended to support in-place decryption, this copy would no
longer be needed). The reduced data copies are possible due to the MPL standard library
support for “fill functions”, which are closures invoked when the MPL unmarshal code

135

Chapter 7. Case Studies

requires more data that has not yet been placed into the packet environment. Fill functions
are normally simple calls to read(2) or recvfrom(2), but in the case of SSH perform the
stages shown in Figure 7.6 before placing the decrypted data directly into the packet
environment at the correct location.

The MPL classification for SSH required the definition of several custom types: (i)
string32 for variable-length strings which have a 32-bit length identifier; (ii) mpint
for multiple precision integers required for establishing cryptographic keys; and (iii)
boolean for the wire representation of SSH binary flags. Some of the MPL specifi-
cations for SSH packets are shown in Appendix C.5; the full MPL specification defines
over 250 different packet types defined across the many SSH RFCs. The support for
MPL string and boolean types proved essential since SSH frequently uses both of these
to classify packets (in addition to the more conventional integer labels).

When we first began to implement MLSSH, the RFCs were still in draft stage and our
more formal encoding of the packet parsing portion of the protocol led us to find some
inconsistencies in the drafts which we submitted as corrections to the final RFC.

• The identifier for a “password change request” packet clashes with that of a “public
key confirmation” packet. An MPL state variable deals with this ambiguity by
determining if a previous request to change the password is outstanding or not.

• The replies to global channel requests (e.g. to open a new session) do not specify
the request to which they are replying. We notified the RFC working group, who
modified the specification to mandate that replies (either successes or failure) had
to be sent in the order they were received.

• A global channel response can optionally include a “port” field, but only if a pre-
vious request had requested a port forwarding. A state variable was added to the
MPL specification to cope with this ambiguity.

Our MPL specification was useful to pin down poorly specified portions of the SSH
RFCs with respect to packet parsing and shows that with some small modifications to
eliminate the above ambiguities, SSH implementations could be made simpler by reduc-
ing the amount of external application state required to parse network packets.

7.1.3 SSH State Machines

We chose to use statecalls to specify and enforce: (i) the sequences of network packets
being transmitted or received, identified by Transmit or Receive in front of the state-
calls name; and (ii) the results of significant computation within the server, identified by

136

7.1. Secure Shell (SSH)

Expect prefixed to the statecall name. The network packet statecalls are automatically
provided by the MPL compiler and the Expect statecalls are manually inserted into key
points in the server code. We have two distinct SPL specifications—a global automaton
to deal with the transport layer, authentication layer and global channel messages, and
a channel-local automaton which is spawned for every dynamic channel that is created.
Statecalls are “routed” to the appropriate automaton via a classification function which
inspects the incoming or outgoing packet type and dispatches it to either the global au-
tomaton or the appropriate per-channel automaton.

The global SPL specification (Appendix D) contains multiple automata for the trans-
port, authentication and global channel packets. These execute in parallel according to
the semantics defined for multiple automata earlier (§6.2.2). Some statecalls are shared
between automata, such as Transmit Transport ServiceAccept UserAuth which is
used in the SSH protocol to “unlock” the authentication service. It can be transmitted in
the transport layer, but is also used as the first transition in the authentication automa-
ton. This succinctly ensures that no authentication progress is allowed until the service is
opened by the transport layer. A similar mechanism unlocks the global channel automa-
ton by waiting for a Transmit Auth Success packet from the authentication layer.

The per-channel automaton ensures some operations can be done only once per chan-
nel, such as pseudo-terminal allocation and requesting a command execution (either as a
shell or a specified binary). Once command execution has completed, data packets are
allowed to be sent or received along with window adjust packets used for flow control.
An “EOF” message which indicates that one side of a channel has closed is also enforced,
making sure that data transmission packets are not sent after an EOF is transmitted.

The SPL specifications strike a balance between the complete formalisation of the
packet state-machine and completely informal server code. The simplicity of the specifi-
cations, combined with the efficient OCaml code output from the SPL compiler results in
a negligible performance loss from dynamically enforcing the SPL automata. Figure 7.7
shows the result of running the performance tests described earlier on a version of MLSSH

with the SPL automata enabled and disabled. Note that all of the other performance and
latency tests reported in this chapter are conducted with the dynamic automata enforce-
ment turned on.

7.1.4 AJAX Debugger

Figure 7.8 shows a screen capture of the SPL AJAX debugger single-stepping through the
global SPL automaton. The MLSSH server is blocked waiting for password authentica-

137

Chapter 7. Case Studies

Figure 7.7: Transfer rate of MLSSH with the dynamic enforcement of the SSH SPL au-
tomata turned on and off, using null ciphers.

tion, having previously attempted to authenticate via null and public-key authentication.
In our experience, the debugger was a valuable tool to debug complex protocol bugs in
our implementation, as the single-stepping view via this debugger is significantly higher
level then the alternative provided by either the native OCaml debugger or the GNU de-
bugger gdb.

We also implemented the facility to turn the debugging mode on and off via a UNIX
signal, enabling individual SSH sessions to be debugged without affecting the other con-
nections (our MLSSH server executes a fork(2) on every unique session since it needs to
switch user-id during the course of a session, so threading is not sufficient).

7.1.5 Model Checking

The SPL specifications described earlier are also output as PROMELA models by the SPL
compiler. The specification for the transport, authentication and global channel handling
is a complex state machine, and an exhaustive safety verification in SPIN without any
additional LTL constraints (i.e. testing assertions and invalid end-states) requires around
400MB of RAM and one minute to verify on a dual-G5 1.25GHz PowerMac running
MacOS X 10.4.5. SPIN reports the following statistics:

138

7.1. Secure Shell (SSH)

Figure 7.8: Screen capture of the AJAX debugger embedded into the SSH daemon, show-
ing the global SPL automaton. The green states are valid statecalls, the pie chart shows
the 5 most popular statecalls in real time, and the list on the left show recent statecalls.

139

Chapter 7. Case Studies

State-vector 48 byte, depth reached 78709, errors: 0

1.41264e+07 states, stored (1.99736e+07 visited)

2.59918e+07 states, matched

4.59654e+07 transitions (= visited+matched)

7.85945e+07 atomic steps

The large number of atomic steps show the complexity reduction which results from
the SPL compiler inserting atomic statements in the generated PROMELA to simulate the
execution semantics of the OCaml safety monitors. Before this optimisation, messages
would unnecessarily be interleaved and verification took orders of magnitude longer.

We now list some of the LTL formulae applied to the PROMELA output of the SSH
global automaton. Unlike some other tools which translate state machine languages into
PROMELA (e.g. Scott’s SWIL language for interface descriptions [246]), we never require
the manual modification of the PROMELA code (which would be dangerous since the
equivalence between the model and the dynamically enforced SPL automaton would not
be guaranteed any more). Instead, globally allocated state variables5 are exposed within
the model which can be referenced with LTL formulae, as shown below:

• �(a → �a) where (a ← transport encrypted) which informally reads “once
transport encrypted is true, it remains true forever”. This check ensures that
the SPL specification never sets the encrypted state variable to false once a secure
transport has been established.

• �(a→ �(a&& b)) where (a← transport serv auth) and (b← transport encrypted)

which informally reads “in the transport automaton, once serv auth is true,
both serv auth and encrypted remain true forever”.

• �a where (a ← auth success + auth failed < 2) informally reads “in the
auth automaton, success and failure must never simultaneously be true”. This
restriction lets us use two boolean variables instead of a larger integer to store the
3 values for undecided, success or failure authentication states.

• �(a → X(b || �♦c)) where (a ← p == Transmit Auth Success) and (b ←
auth success) and (c ← err) informally reads “when an authentication success
packet is transmitted, it must immediately be followed by the success variable
being true or always eventually lead to an error.”

5Recall that SPIN does not support partial order evaluation over local variables, so the SPL compiler
safely promotes automaton-local variables to a global scope.

140

7.1. Secure Shell (SSH)

• �(a→ (b ||�♦c)) where (a← p == Transmit Transport ServiceAccept UserAuth)

and (b← transport encrypted) and (c← err) which informally reads “if the
authentication service is unlocked then the transport layer must be encrypted or
an error always eventually occurs”. This matches the security considerations sec-
tion of the SSH authentication specification in RFC4252 [291] which states that “it
assumed (sic) that this runs over a secure transport layer protocol, which has al-
ready authenticated the server machine, established an encrypted communications
channel [...]”.

• �(a → (b || �♦c)) where (a ← p == Receive Channel Open Session) and
(b ← auth success) and (c ← err) which informally reads “requests to open a
new channel are only allowed when authentication has been successful, or an error
state is always eventually reached”. This is in line with the security considerations
section of the SSH connection specification in RFC4254 [292] which states that
“this protocol is assumed to run on top of a secure, authenticated transport”.

The SPIN guided traces which result from violations of these policies are very easy
to follow. For example, consider this fragment from the authentication automaton:

either { SPL

Receive Auth Req None;
Transmit Auth Success;

} or {
Receive Auth Req Password Request;
either {

Transmit Auth Success;
success = true;

} or {
Transmit Auth Failure;

}
}

When the LTL constraints described above are applied, SPIN reports a violation and
generates the guided trace seen in Figure 7.9. The trace consists of an entire successful
key exchange and the receipt of two authentication packets. The mistake is now obvious;
we have mistakenly placed an authentication success packet following the request for null
authentication, instead of a failure. This error was caught by the LTL requirement that all
success packets be immediately followed by setting the success state variable to true. In
reality of course, this simple bug would have caught during testing (unless the bug was
mirrored in the implementation), but by using a model checker we can eliminate the error
even before the main application is created.

141

Chapter 7. Case Studies

generator:2

7

p_transport:1

8

1!Transmit_Transport_KexInit

16

17

1!Receive_Transport_KexInit

25

26

1!Expect_DHInit

34

35

1!Receive_Dhgroupsha1_Init

43

44

1!Transmit_Dhgroupsha1_Reply

52

53

1!Receive_Transport_NewKeys

61

62

1!Transmit_Transport_NewKeys

72

73

1!Receive_Transport_ServiceReq_UserAuth

83

p_auth:0

84

2!Transmit_Transport_ServiceAccept_UserAuth

90

91

1!Transmit_Transport_ServiceAccept_UserAuth

End state reached

102

103

2!Receive_Auth_Req_None

111

112

2!Transmit_Auth_Success

124

124

124

Figure 7.9: The SPIN guided backtrace for the shortest possible violation of an LTL
specification (see text for details)

142

7.2. Domain Name System

7.2 Domain Name System

The Domain Name System (DNS) is a distributed database used to map textual names to
information such as network addresses, mail forwarders, administrative contacts and even
physical location. According to RFC1034 [207] the DNS consists of three components:
(i) the Domain Name Space and Resource Records (RRs) which form a tree-structured
namespace and the data associated with each name; (ii) name servers which hold infor-
mation about portions of the domain name space, and can either act as an authoritative
source for data or as a proxy which obtains and caches information from other name
servers; and (iii) resolvers are generally part of client network stacks and manage the
interface between client DNS requests and the local network name server.

Surveys of DNS name server deployment on the Internet have revealed that BIND [4]
serves over 70% of DNS second-level .com domains and over 99% of the servers are
written in C, according to surveys by Bernstein [32] and Moore [209]. BIND has had a
long history of critical security vulnerabilities6 and has been the target of worms7 which
exploit these vulnerabilities to self-propagate across hosts.

In the rest of this section we first describe the DNS packet format (§7.2.1), the archi-
tecture of our OCaml authoritative DNS server (§7.2.2) and a performance evaluation of
our implementation against the widely deployed BIND (§7.2.3).

7.2.1 DNS Packet Format

DNS is designed to be a low-latency, low-overhead protocol for resolving domain names.
In order to avoid the time taken to perform the 3-way TCP handshake most DNS requests
and responses are encoded in a single UDP packet. This packet is normally restricted to
be of 512 bytes or less (unless certain extensions, such as EDNS [276] are in use).

Due to these size restrictions, the original DNS specifications [207, 208] allocated
a small number of bits to a various fields in the protocol header to pack them into a
smaller space, as shown in Figure 7.10. The identification field is an unsigned 16-
bit integer used to uniquely identify a question and the corresponding answer (necessary
since the underlying transport protocol can be connectionless, such as UDP). The next
16 bits contain a series of status flags such as whether the packet is a query or response,
or an authoritative or truncated reply. Once the packet flags have been parsed, the next 4

6The CERT Knowledge Base has these vulnerability ids, among others: VU#13145, VU#196945,
VU#229595, VU#327533, VU#542971, VU#572183, VU#738331. Another list is available at http:
//www.isc.org/index.pl?/sw/bind/bind-security.php

7An anatomy of the “li0n” worm available from http://www.cse.msu.edu/∼enbody/
virus/lionFuad.pdf and http://www.sans.org/y2k/lion.htm

143

http://www.isc.org/index.pl?/sw/bind/bind-security.php
http://www.isc.org/index.pl?/sw/bind/bind-security.php
http://www.cse.msu.edu/~enbody/virus/lionFuad.pdf
http://www.cse.msu.edu/~enbody/virus/lionFuad.pdf
http://www.sans.org/y2k/lion.htm

Chapter 7. Case Studies

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Identification

QR Opcode AA TC RD RA Z AD CD Rcode

Total Questions

Total Answer RRs

Total Authority RRs

Total Additional RRs

Figure 7.10: Format of a DNS Header message (source: RFC1035 [208])

fields are unsigned 16-bit integers containing the number of Resource Records (or RRs)
which follow in their respective sections (query, answer, authority and additional). The
RRs describe a DNS entry of a specific type, such as an A record for a hostname to
IPv4 address mapping or an MX record for mapping domain names to their e-mail servers.
The sections are used to distinguish different classes of answers: (i) the Answer section
contains either authoritative or cached answers (depending on the value of the aa flag
in the header); (ii) the Authority section contains meta-data about why the answers are
authoritative by including the NS records for the authoritative name servers; and (iii) the
Additional section provides any “glue” records which may be helpful for the client (e.g.
the IP address of an authoritative name server referenced in the Authority section).

DNS packet parsing is made significantly more complex due to the use of a compres-
sion mechanism for hostnames. An uncompressed hostname is separated into a list of
labels by splitting across the dot characters8. Each label is represented by a byte indicat-
ing its length following by the contents of the label. A length of 0 indicates the end of the
hostname. The designers of DNS decided that if a sequence of labels occurred previously
in the DNS packet it should be referenced instead of being duplicated (this repetition is
quite common within hostnames in responses since at least the top-level portions are of-
ten the same between RR sets). Figure 7.11 illustrates how this compression works—two
hostnames foo.bar and example.com are defined in different areas of a DNS response
(the dashed boxes indicate the absolute offset within the packet). When the hostname
www.example.com is encoded later, the first www is inserted as normal, but the tail of the
hostname is replaced by a pointer to the previous definition of example.com. A pointer

8Confusingly the DNS specification does not forbid dot characters within labels, leaving it up to imple-
mentations to decide if this is valid or not!

144

7.2. Domain Name System

7 example 3 com 0

7 example 3 com 03 www

P 193 www

3 foo 3 bar 010

19

32

Figure 7.11: DNS label compression example, with www.example.com being encoded by
a pointer. The dashed boxes are the offset from the start of the packet.

can only be used for the tail of a hostname but can lead to other strings which are also ter-
minated by a pointer. Due to backward compatibility concerns, pointers may only point
from hostnames contained in RRs defined in the original DNS RFCs [207, 208] so that
an implementation is guaranteed to be capable of decompressing a label. The complexity
of this compression scheme has directly led to bugs in many DNS implementations9, for
example by constructing a label with a pointer directed at itself.

We parse DNS labels via two MPL custom types dns label and dns label comp,
where the latter indicates a compressible hostname. Unlike most of our other custom
types the implementation of these requires stateful parsing actions and the MPL parser
initialisation functions must be invoked carefully (normally these functions are identity
functions and their omission may not be noticed). Internally hostnames are stored as a
tuple of (int × string list) listing the encoded hostname size and the list of labels.
The parsing maps very easily onto the standard OCaml hash-table, with pointer references
only permitted to reference a previous offset10.

These two custom types (along with the string8 type described earlier) were suffi-
cient to capture DNS packets in a single pass, thus avoiding the overhead of a two-pass
resolution approach for hostnames. Appendix C.4 lists the MPL specification for the
packet format shown in Figure 7.10. The most notable aspect is the use of the MPL
array and packet keywords to capture RR sections without duplicating code. The RR
specification (only common types are shown for the sake of brevity) is also listed, and it
can be seen that the custom types abstract away the stateful parsing portions of DNS very
effectively.

9See CERT VU#23495 at http://www.kb.cert.org/vuls/id/23495
10The DNS specifications are not entirely clear on whether an forward pointers are allowed, but none of

the implementations we have examined support this nor have any of the tested packet traces exhibited this.

145

http://www.kb.cert.org/vuls/id/23495

Chapter 7. Case Studies

7.2.2 An Authoritative Deens Server

We implemented an OCaml authoritative DNS server in order to test the performance of a
complete application against the reference BIND implementation. The OCaml server—
dubbed deens—was created in collaboration with Tim Deegan who implemented effi-
cient representations for large numbers of DNS records as part of his work on a more
centralised name system [91]. This work included a DNS zone file parser and the OCaml
data structures to store zones in-memory with a compressed trie representation.

deens is single-threaded; once zone file loading is complete it operates in a contin-
uous loop which listens on an unconnected UDP socket using recvfrom(2) for queries
and transmits responses back using sendto(2). Both queries and answers are generated
using only the automatically generated MPL interfaces, and no external C bindings were
required beyond the functions provided by the OCaml standard library.

During our tests, we observed that the results of DNS queries are often idempotent
with respect to the (qclass × qname × qtype) of a DNS question, where qclass is
the DNS class (e.g. most often “Internet”), qname is the domain name and qtype is the
type of RR being requested. The exception to this rule are servers which perform arbi-
trary processing when calculating responses (e.g. DNS load balancing [49]), but this is
a specialist feature we are not concerned with for the moment. Features such as wild-
card domains and DNS updates can be supported via standard functional data structure
techniques [218] and thus also our memoisation cache. The only variation in response
packets is that the first two bytes of the response must be modified to reflect the DNS id

field of the request.

As an optimisation, we implemented a “memoisation” query cache which captured
a query answer in a string containing the raw DNS response, and used the cached copy
for further questions which were the same. The modifications required to deens were
trivial, and to test the effectiveness of the technique we implemented two separate caching
schemes: (i) a hash-table mapping the query fields to the marshalled packet bytes which
is never removed from the hastable; and (ii) a “weak” hash-table (using the standard
Weak.Hashtbl functor) of the query fields to the packet bytes.

The normal hash table simulates an ideal cache when large amounts of memory are
available, since it performs no cache management and can thus leak memory. The weak
hash table lies at the other extreme and is a cache which can be garbage collected and
disappear at any time. Weak references are special data structures which do not count
towards the reference counts of objects they point to for the purposes of garbage collec-

146

7.2. Domain Name System

tion, and are often used as a safe mechanism to construct efficient purely functional data
structures (known as “hash consing”11). In our case we are using the weak data structure
itself as a cache without pointing it to anything, meaning that it is extremely transient
and will be cleared on every garbage collection cycle. However, it also does not require
any traditional cache management (e.g. least-recently-used checks) and can safely grow
to any size since if the heap grows too large the cache will simply be erased.

7.2.3 Performance

We used the freely available tools from the BIND DLZ project12 to evaluate the perfor-
mance of deens. These tools generate both the source data for an authoritative server in
the form of zone files and also an appropriate query set which can be fed into queryperf

measurement tool from the BIND distribution. The query generation tools were config-
ured to create zones and RRs in a rough Zipf power-law distribution13, so that some hosts
were more popular than others in the query set.

Our benchmarks are performed on the OpenBSD 3.8 operating system running on a
3.00GHz Pentium IV with 1GB RAM. The standard installation of BIND (9.3.1) included
with OpenBSD was used with no modifications and configured to run a single instance,
and deens compiled with OCaml 3.08.4 as native-code. Zone files are randomly gener-
ated for a variable number of domains and output as zone files which can be loaded into
either BIND or deens. The queryperf tool from the BIND distribution was run against
the DNS server on the same machine for 30 1-minute intervals for each set of zone data
(the query data sets are re-randomised for each of the 1-minute runs), and the average
and standard distribution of the reported queries-per-second calculated.

Throughput

The first test measured the performance of BIND against the deens server with query
memoisation turned off. These results are shown in Figure 7.12. The results of the first
test show that deens is slightly (around 10%) faster than a stock BIND installation for
authoritative-only data. Figure 7.13 shows the results of another test run under the same
conditions with memoisation turned on. There is a very large performance increase when
using the space-leaking cache as deens takes advantage of caching its query results to
double in performance and become significantly faster than BIND, at the expense of

11An implementation and explanation for OCaml is available from http://www.lri.fr/
∼filliatr/software.en.html.

12http://bind-dlz.sourceforge.net/
13The correlation of DNS queries to a Zipf power-law distribution is well-established [160, 47]

147

http://www.lri.fr/~filliatr/software.en.html
http://www.lri.fr/~filliatr/software.en.html
http://bind-dlz.sourceforge.net/

Chapter 7. Case Studies

Figure 7.12: Query performance of BIND 9.3.1 versus deens with memoisation turned
off

Figure 7.13: Query performance of BIND 9.3.1 versus deens running in three modes: (i)
memoisation off; (ii) memoisation using a space-leaking hash-table; and (iii) memoisa-
tion using a safe weak hash-table cache.

148

7.2. Domain Name System

Figure 7.14: Cumulative distribution function for DNS query latency against a heavily
loaded DNS server

larger memory usage.

The results from weak memoisation are more interesting—it represents an extremely
transient cache with a low hit rate, but with no increase in memory footprint since it can
be eliminated safely at any time. The weak cache, although slower than the space-leaking
cache is still significantly faster than the non-caching servers. This result is justified by
the analysis Jung et al. performed on the effectiveness of DNS caching [160], in which
they note that lowering the caching of RRs to even a few hundred seconds does not
significantly reduce cache hits. Similarly, our simple experiment with weak hash-tables
(which was a 3-line modification to the original non-caching deens server) demonstrates
how our approach of reconstructing Internet protocol servers in a higher-level language
can not only increase security and reliability, but also performance.

Latency

To test the latency of DNS responses, we first ran either deens or BIND under sustained
load by running queryperf against it as in the previous throughput experiments. This
load ensures that the OCaml deens server is undergoing a regular cycle of garbage col-

149

Chapter 7. Case Studies

OpenSSH mlssh BIND Deens

Li
ne

s
of

 c
od

e

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

28,347

13,635

207,105

7,806

C
MPL / OCaml
generated code

Figure 7.15: Relative code sizes for MPL/OCaml and C code (lower is better).

lection while answering queries. Then the nsping utility14 sends queries at 0.5 second
intervals to the server and measures the latency of the returned response. The queries
are run for an hour for each server, and the results shown in Figure 7.14 as a cumulative
distribution graph. The results are remarkably consistent between deens and BIND, with
deens being slightly faster in returning responses under load, and certainly not exhibiting
any deviant behaviour due to overhead from the use of OCaml.

7.3 Code Size

A primary benefit of our approach is the smaller amount of code required to construct
network applications. By reducing the difficulty and time required to rapidly implement
Internet protocols (much as yacc simplified the task of writing language grammars), we
hope to increase the adoption of type-safe programming languages such as OCaml.

To justify this claim of simplicity, we analyse the lines of code in our protocol im-
plementations against their C equivalents. The C code is first pre-processed through
unifdef to remove platform portability code that would artificially increase its size, but
otherwise unmodified. The OCaml code is run though the camlp4 pre-processor that
reformats it to a consistent, well-tabulated style. External libraries such as OpenSSL or

14Available in the OpenBSD ports tree in net/nsping

150

7.4. Summary

Cryptokit were not included in the count.
Figure 7.15 plots the number of lines of C, OCaml and auto-generated code present

in the applications. The figures for SH show that OpenSSH is nearly 3 times larger than
the total lines of OCaml in MLSSH, and 6 times larger when considering only the hand-
written OCaml.

The number for DNS reveal that deens is a remarkable 50 times smaller than the
BIND 9.3.1 source code. deens does lack some of the features of BIND such as DNSSEC
support and so this should only be treated as a rough metric. We are confident, particularly
after our experiences with constructing MLSSH, that these features can be implemented
with issue or dramatically increasing the OCaml code size.

7.4 Summary
In this chapter we have described two servers—MLSSH and deens—we constructed us-
ing the MELANGE application architecture. We evaluated the performance and latency
characteristics of both of these implementations against their widely-deployed counter-
parts written in C and found that the OCaml versions perform equivalently under heavy
load for sustained periods of time. In some cases, our implementations are significantly
better—notably for SSH connection latency which exhibits extremely low variance com-
pared to OpenSSH and for DNS peak throughput which performs twice as well as BIND
with the trivial addition of a memoisation cache to our implementation. The code sizes
of MLSSH and deens are also significantly smaller than their C equivalents.

This chapter seeks to dispel the widely-held assumption that garbage collection im-
poses inherent overhead for network applications when compared to manual memory
management. We argue—and demonstrate via the above performance results—that with
a clean separation of the data and control paths in a network application, garbage collec-
tion can actually be a positive feature for performance as well as for the more conven-
tional safety and reliability aspects.

151

Chapter 8. Conclusions

CHAPTER 8

Conclusions

Whenever people agree with me I always feel I must be wrong.

OSCAR WILDE

Recall from Chapter 1 our initial thesis statement that:

Applications which communicate via standard Internet protocols must be
rewritten to take advantage of developments in formal methods to increase
their security and reliability, but still be high-performance, portable and prac-
tical in order to make continued deployment on the Internet feasible.

Let us start by considering the first part of this statement that “applications which

communicate via standard Internet protocols must be rewritten”. We justify this state-
ment by arguing that the current trend of containment is not effective enough due to the
persistence of attackers in finding new attacks that bypass them (§2.1) and that the rate of
incidents and vulnerabilities to malicious attacks (§2.1.3) continues to grow (§2.1.4). We
also note that the open RFC process which specifies Internet protocols (§2.1.1) makes it
possible to write replacement applications which communicate via the same protocols.

Our thesis statement states that this reconstruction is necessary “to take advantage

of developments in formal methods to increase their security and reliability”. In our
background work (§2) we described the history of functional languages which promote

152

a more rigourous and well-specified programming style than the currently dominant
C/C++ (§2.2), and in particular Objective Caml which provides a mature implementation
on which to base our reconstruction efforts (§2.3). We also described the SPIN model
checker which exhaustively verifies safety properties of abstract models of complex soft-
ware systems (§2.4). Our survey of related work (§3) confirms that there exists a large
amount of literature on constructing reliable network applications which is not currently
being used in real applications deployed on the Internet (§1.1.3).

The thesis statement continues that the architecture must “still be high-performance,

portable and practical”. We note in our related work that pioneering projects such as
FoxNet (§3.3.3) were very elegant examples of constructing network applications us-
ing a functional language, but fell short of the performance and portability requirements
needed for deployment on the Internet. Therefore, our design goals (§4.1) and concrete
MELANGE architecture (§4.2) made these a priority, and established the abstraction of a
“data” and “control” plane for constructing network applications.

Our approach of constructing entirely new source code rather than relying on existing
applications gave us the flexibility to re-examine conventional techniques for engineering
network applications; in particular we imposed a requirement that the entire source code
consist of type-safe OCaml as a new base-line for safety and security. We designed
two domain-specific languages to implement the control and data abstractions and our
architecture uses OCaml to implement the complex “glue” between the two planes. Both
domain-specific languages are implemented in OCaml and output OCaml code in order
to maintain the portability requirement that no compiler modifications be required.

The Meta Packet Language (MPL) handles the data plane by capturing protocol wire
formats in succinct specifications and outputs high-performance and safe OCaml code
which processes them with low overhead and no unnecessary data copying (§5). Unlike
other data description languages which output C code, MPL demonstrates the feasibility
of directly outputting statically type-safe code and thus the possibility of fully construct-
ing high-performance network applications entirely in a high-level language. Our val-
idation of this approach will be encouraging to generative meta-programming research
(§3.3.2) which seeks to generalise the concept, and also to the field of data description
languages which are becoming more formalised and feature-complete (§3.2.1) but still
persist in outputting C code.

The Statecall Policy Language (SPL) specifies non-deterministic finite state automata
that can be dynamically enforced with low overhead in an OCaml application and stat-
ically verified using the SPIN model checker (§6). Unlike conventional uses of model

153

Chapter 8. Conclusions

checking for systems code which involve model extraction from existing source code,
SPL permits the developer to specify both the source code and the abstract models and
decide how to hook them together. Failure of the main application to follow the ab-
stract model results in a software exception being raised, from which termination or
error recovery may occur. We argue that our approach is more appropriate to integrat-
ing model checking into software since it preserves high-level restrictions (e.g. LTL or
CTL) across the evolution of the main application, and also permits the developer to di-
rectly choose their levels of abstraction without having to go through procedures such as
counter-example refinement (§3.1.2).

We confirm the performance assertion by constructing implementations of two com-
plex Internet protocols which have not previously been implemented with good perfor-
mance (to our knowledge) in a high-level functional language such as OCaml. Our imple-
mentations of SSH (§7.1) and DNS (§7.2) were evaluated against their industry standard
implementations OpenSSH and BIND respectively. In both cases our MELANGE im-
plementations were at least as good as their C counterparts in terms of throughput and
latency, and we demonstrated how the trivial use of features built into OCaml such as
weak references dramatically increased the throughput of our DNS implementation to be
twice as fast as BIND for authoritative DNS responses. Remarkably, the latency charac-
teristics of our SSH implementation show that it is more stable than OpenSSH, revealing
that the complexity of manual memory management can introduce more uncertainty into
a network application than automatic garbage collection.

Our thesis statement concludes that our software was constructed “to make continued

deployment on the Internet feasible.” We have released all of the source code for the
compilers and applications described in this dissertation under a BSD-style open-source
license1 to ensure that the work can continue to be developed and deployed.

8.1 Future Work
Our approach of reconstructing software from scratch has involved re-evaluating many
historical choices in the context of using modern languages and techniques, and some
interesting future work in this area consists of: (i) continuing to develop new protocol
implementations (e.g. DHCP and BGP servers) with a view for production deployment
on the Internet; (ii) increase the integration of the applications with the operating sys-
tem software stack; and (iii) raise our understanding of the software engineering process
through which these applications are being constructed.

1Available at http://melange.recoil.org/

154

http://melange.recoil.org/

8.1. Future Work

The development of new protocol implementations using functional languages is in-
teresting as it eases the separation of algorithmic concerns from low-level protocol de-
tails. This is essential to avoid mistakes while evolving existing protocols to meet new
demands, and is starting to be recognised as important by the networking community
(e.g. meta-routing [126]) as the complexity of the Internet continues to increase. Another
pragmatic reason for developing new implementations is that it allows the exploration of
how to effectively configure complex network software. The current ad-hoc approaches
makes reasoning of global network properties very difficult to machine verify.

UNIX (and its derivatives) are primarily operating systems which are written in C
and exist to safely execute applications also written in C. More recent innovations such
as high-level language run-times integrate poorly with the POSIX APIs exposed to them,
and a lot of efficiency is lost due to interactions between the different layers. For exam-
ple, when an OCaml application executes the fork(2) system call, the garbage collector
managing its memory also splits since it is just part of the application run-time. If both
processes subsequently perform a garbage collection, the efficient copy-on-write memory
which both processes have as a result of the fork(2) will be copied and resources wasted
as a result. If the garbage collectors were integrated directly into the operating system
kernel, this inefficiency would be unnecessary.

Continuing this line of thought, many other features of conventional operating sys-
tems are not needed with applications which provide static typing guarantees. The use
of separate virtual address spaces for isolation can be eliminated, especially on 64-bit
architectures. Abstractions for concurrency based on time-quanta (e.g. threads) which
are often used for convenience due to poor I/O APIs can be replaced by direct support for
alternative high-level APIs (e.g. continuation passing style).

The recent ascent of para-virtualisation via systems such as Xen [23] makes it possi-
ble to construct entire light-weight operating systems without the need to support a wide
range of hardware—a barrier which has led to the obsolescence of many past research ef-
forts in novel operating systems. We are currently developing a prototype system, dubbed
MLX, which executes MELANGE applications directly as a guest operating system run-
ning under Xen. This reduces the overall complexity of the system by removing a layer
of software and leverages new features such as live migration [69] without requiring an
entire OS to be also transferred with the application.

Although a perfectly secure Internet will probably never be realised, we anticipate
that the lines of research begun in this dissertation will make life happier for system
administrators, more miserable for virus authors, and more fun for programmers.

155

BIBLIOGRAPHY

Bibliography

[1] ABADI, M., AND CARDELLI, L. A Theory of Objects. Springer-Verlag, New
York, USA, 1996. Ref: page 26, 54

[2] AGHA, G., DE CINDIO, F., AND ROZENBERG, G., Eds. Concurrent Object-

Oriented Programming and Petri Nets: Advances in Petri Nets (2001), vol. 2001
of Lecture Notes in Computer Science, Springer. Ref: page 45

[3] AHO, A. V., AND ULLMAN, J. D. Principles of Compiler Design. Computer Sci-
ence and Information Processing. Addison-Wesley, Reading, MA, USA, August
1977. Ref: page 117

[4] ALBITZ, P., AND LIU, C. DNS and BIND, fourth ed. O’Reilly, April 2001. Ref:
page 4, 143

[5] ALEPH ONE. Smashing the stack for fun and profit. Phrack 7, 49 (1996), 14.
Available from: http://www.phrack.org/phrack/49/P49-14. Ref:
page 14

[6] ALEXANDER, D. S., MENAGE, P. B., KEROMYTIS, A. D., ARBAUGH, W. A.,
ANAGNOSTAKIS, K. G., AND SMITH, J. M. The price of safety in an active
network. Journal of Communications and Networks 3, 1 (March 2001), 4–18.
Ref: page 51

[7] ALTENKIRCH, T., MCBRIDE, C., AND MCKINNA, J. Why dependent types
matter. In Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (POPL) (January 2006). Available from:
http://www.cs.nott.ac.uk/∼txa/publ/ydtm.pdf. Ref: page 22

156

http://www.phrack.org/phrack/49/P49-14
http://www.cs.nott.ac.uk/~txa/publ/ydtm.pdf

BIBLIOGRAPHY

[8] ALUR, R., AND WANG, B.-Y. Verifying network protocol implementations by
symbolic refinement checking. In Proceedings of the 13th International Confer-

ence on Computer Aided Verification (CAV) (London, UK, 2001), Springer-Verlag,
pp. 169–181. Ref: page 47

[9] AMD64 TEAM. AMD64 architecture programmer’s manual volume 1: Applica-
tion programming. Tech. Rep. 24592, Advanced Micro Devices, 2005. Available
from: http://www.amd.com/us-en/assets/content type/white

papers and tech docs/24592.pdf. Ref: page 16

[10] APACHE FOUNDATION. The Apache web server [online]. 2006. Available from:
http://httpd.apache.org/. Ref: page 4

[11] ARMSTRONG, J. The development of Erlang. In Proceedings of the 2nd ACM

SIGPLAN International Conference on Functional Programming (New York, NY,
USA, 1997), ACM Press, pp. 196–203. doi:10.1145/258948.258967. Ref: page
21, 26

[12] BACK, G. DataScript - a specification and scripting language for binary data.
In The ACM SIGPLAN/SIGSOFT Conference on Generative Programming and

Component Engineering (GPCE) (London, UK, 2002), Springer-Verlag, pp. 66–
77. Ref: page 50

[13] BACK, R.-J. On the Correctness of Refinement Steps in Program Development.

Department of computer science, University of Helsinki, Helsinki, Finland, 1978.
Ref: page 54

[14] BACK, R.-J., AND WRIGHT, J. Refinement Calculus: A Systematic Introduction.
Springer-Verlag, New York, USA, May 1998. Ref: page 54

[15] BACKUS, J. Can programming be liberated from the von Neumann style?: a
functional style and its algebra of programs. Communications of the ACM 21, 8
(1978), 613–641. doi:10.1145/359576.359579. Ref: page 19

[16] BACKUS, J. W., BAUER, F. L., GREEN, J., KATZ, C., MCCARTHY, J., PERLIS,
A. J., RUTISHAUSER, H., SAMELSON, K., VAUQUOIS, B., WEGSTEIN, J. H.,
VAN WIJNGAARDEN, A., AND WOODGER, M. Revised report on the algo-
rithm language ALGOL 60. Communications of the ACM 6, 1 (1963), 1–17.
doi:10.1145/366193.366201. Ref: page 81, 108

157

http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24592.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24592.pdf
http://httpd.apache.org/
http://dx.doi.org/10.1145/258948.258967
http://dx.doi.org/10.1145/359576.359579
http://dx.doi.org/10.1145/366193.366201

BIBLIOGRAPHY

[17] BAKER, H. G. Infant mortality and generational garbage collection. SIGPLAN

Notices 28, 4 (1993), 55–57. doi:10.1145/152739.152747. Ref: page 134

[18] BALL, T., COOK, B., DAS, S., AND RAJAMANI, S. K. Refining approxima-
tions in software predicate abstraction. In Proceedings of the 10th International

Conference on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS) (April 2004), vol. 2988 of Lecture Notes in Computer Science, Springer-
Verlag GmbH, pp. 388–403. Ref: page 46

[19] BALL, T., MAJUMDAR, R., MILLSTEIN, T., AND RAJAMANI, S. K. Automatic
predicate abstraction of C programs. In Proceedings of the ACM SIGPLAN 2001

Conference on Programming Language Design and Implementation (PLDI) (New
York, NY, USA, 2001), ACM Press, pp. 203–213. doi:10.1145/378795.378846.
Ref: page 40, 46

[20] BALL, T., AND RAJAMANI, S. K. Automatically validating temporal safety
properties of interfaces. In Proceedings of the 8th International SPIN Workshop

on Model Checking of Software (New York, NY, USA, 2001), Springer-Verlag,
pp. 103–122. Ref: page 40

[21] BALL, T., AND RAJAMANI, S. K. SLIC: A specification language for interface
checking (of C). MSR-TR 2001-21, Microsoft Research, 2001. Ref: page 46

[22] BARENDREGT, H. P. The Lambda Calculus: Its Syntax and Semantics, 2nd ed.
Studies in Logic and the Foundation of Mathematics. Elsevier B.V., 1997. Ref:
page 18

[23] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HARRIS, T., HO, A.,
NEUGEBAUER, R., PRATT, I., AND WARFIELD, A. Xen and the art of vir-
tualization. In Proceedings of the 19th ACM Symposium on Operating Sys-

tems Principles (SOSP) (New York, NY, USA, 2003), ACM Press, pp. 164–177.
doi:10.1145/945445.945462. Ref: page 5, 155

[24] BASET, S. A., AND SCHULZRINNE, H. An analysis of the skype peer-to-peer in-
ternet telephony protocol. Tech. Rep. CUCS-039-04, Columbia University, 2004.
Ref: page 17

[25] BAUER, M. New covert channels in HTTP: adding unwitting web browsers to
anonymity sets. In Proceedings of the 2003 ACM Workshop on Privacy in the

158

http://dx.doi.org/10.1145/152739.152747
http://dx.doi.org/10.1145/378795.378846
http://dx.doi.org/10.1145/945445.945462

BIBLIOGRAPHY

Electronic Society (WPES) (New York, NY, USA, 2003), ACM Press, pp. 72–78.
doi:10.1145/1005140.1005152. Ref: page 71

[26] BBC NEWS. UK “embraces digital technology” [online]. 2005. Avail-
able from: http://news.bbc.co.uk/1/hi/entertainment/tv and

radio/4679023.stm. Ref: page 2

[27] BEAUDOUIN-LAFON, M., MACKAY, W. E., ANDERSEN, P., JANECEK, P.,
JENSEN, M., LASSEN, M., LUND, K., MORTENSEN, K., MUNCK, S., RATZER,
A., RAVN, K., CHRISTENSEN, S., AND JENSEN, K. CPN/Tools: A post-WIMP
interface for editing and simulating coloured Petri nets. In Proceedings of the

22nd International Conference on the Application and Theory of Petri Nets (2001),
vol. 2075, Springer-Verlag, p. 71. Ref: page 45

[28] BEGEL, A., MCCANNE, S., AND GRAHAM, S. L. BPF+: Exploiting global data-
flow optimization in a generalized packet filter architecture. SIGCOMM Computer

Communications Review 29, 4 (1999), 123–134. doi:10.1145/316194.316214.
Ref: page 60

[29] BELLARE, M., KOHNO, T., AND NAMPREMPRE, C. The Secure Shell (SSH)
Transport Layer Encryption Modes. RFC 4344 (Proposed Standard), Jan. 2006.
Available from: http://www.ietf.org/rfc/rfc4344.txt. Ref: page
130

[30] BENZAKEN, V., CASTAGNA, G., AND FRISCH, A. CDuce: an XML-centric
general-purpose language. In Proceedings of the Eighth ACM SIGPLAN Inter-

national Conference on Functional Programming (ICFP) (New York, NY, USA,
2003), ACM Press, pp. 51–63. doi:10.1145/944705.944711. Ref: page 52

[31] BENZAKEN, V., AND DRIC MIACHON, G. C. C. A full pattern-based paradigm
for xml query processing. In 7th International Symposium on the Practical As-

pects of Declarative Languages (PADL), M. V. Hermenegildo and D. Cabeza, Eds.,
vol. 3350 of Lecture Notes in Computer Science. Springer, January 2005, pp. 235–
252. Ref: page 52

[32] BERNSTEIN, D. J. Dns server survey [online]. 2002. Available from: http:
//cr.yp.to/surveys/dns1.html. Ref: page 4, 143

159

http://dx.doi.org/10.1145/1005140.1005152
http://news.bbc.co.uk/1/hi/entertainment/tv_and_radio/4679023.stm
http://news.bbc.co.uk/1/hi/entertainment/tv_and_radio/4679023.stm
http://dx.doi.org/10.1145/316194.316214
http://www.ietf.org/rfc/rfc4344.txt
http://dx.doi.org/10.1145/944705.944711
http://cr.yp.to/surveys/dns1.html
http://cr.yp.to/surveys/dns1.html

BIBLIOGRAPHY

[33] BERNSTEIN, D. J. Cr.yp.to, home of qmail and djbdns [online]. 2006. Available
from: http://cr.yp.to/. Ref: page 5

[34] BERRY, G. The Foundations of Esterel: Proof, Language, and Interaction (Essay

in Honor of Robin Milner). MIT Press, May 2000, ch. III, pp. 425–454. Ref: page
51, 104

[35] BEYER, D., CHLIPALA, A. J., HENZINGER, T. A., JHALA, R., AND MAJUM-
DAR, R. The BLAST query language for software verification. In Proceedings of

the 2004 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-based

Program Manipulation (PEPM) (Verona, Italy, 2004), ACM Press, pp. 201–202.
doi:10.1145/1014007.1014028. Ref: page 68

[36] BEYER, D., HENZINGER, T. A., JHALA, R., AND MAJUMDAR, R. Checking
memory safety with blast. In Proceedings of the 8th International Conference on

Fundamental Approaches to Software Engineering: 8th International Conference

(FASE) (London, UK, 2005), M. Cerioli, Ed., vol. 3442 of Lecture Notes in Com-

puter Science, Springer-Verlag GmbH, p. 2. doi:10.1007/b107062. Ref: page 46

[37] BIAGIONI, E. A structured TCP in Standard ML. In Proceedings of

the Conference on Communications Architectures, Protocols and Applica-

tions (SIGCOMM) (New York, NY, USA, 1994), ACM Press, pp. 36–45.
doi:10.1145/190314.190318. Ref: page 55

[38] BIAGIONI, E., HARPER, R., AND LEE, P. A network protocol stack in
Standard ML. Higher Order Symbolic Computing 14, 4 (2001), 309–356.
doi:10.1023/A:1014403914699. Ref: page 6, 55

[39] BIRD, R., AND WADLER, P. Introduction to Functional Programming. Series in
Computer Science. Prentice Hall, 1998. Ref: page 20

[40] BISHOP, S., FAIRBAIRN, M., NORRISH, M., SEWELL, P., SMITH, M.,
AND WANSBROUGH, K. Rigorous specification and conformance testing tech-
niques for network protocols, as applied to TCP, UDP, and sockets. In
Conference on Applications, Technologies, Architectures, and Protocols for

Computer Communications (SIGCOMM) (2005), ACM Press, pp. 265–276.
doi:10.1145/1080091.1080123. Ref: page 47

160

http://cr.yp.to/
http://dx.doi.org/10.1145/1014007.1014028
http://dx.doi.org/10.1007/b107062
http://dx.doi.org/10.1145/190314.190318
http://dx.doi.org/10.1023/A:1014403914699
http://dx.doi.org/10.1145/1080091.1080123

BIBLIOGRAPHY

[41] BLATHERWICK, P., BELL, R., AND HOLLAND, P. Megaco IP Phone Media
Gateway Application Profile. RFC 3054 (Informational), Jan. 2001. Available
from: http://www.ietf.org/rfc/rfc3054.txt. Ref: page 49

[42] BONWICK, J. The slab allocator: An object-caching kernel memory allocator.
In Proceedings of the USENIX Annual Technical Conference (1994), USENIX,
pp. 87–98. Ref: page 128

[43] BRADEN, R., BORMAN, D., AND PARTRIDGE, C. Computing the Internet
checksum. RFC 1071, Sept. 1988. Updated by RFC 1141. Available from:
http://www.ietf.org/rfc/rfc1071.txt. Ref: page 80

[44] BRADNER, S. The Internet Standards Process – Revision 3. RFC 2026 (Best
Current Practice), Oct. 1996. Updated by RFCs 3667, 3668, 3932, 3979, 3978.
Available from: http://www.ietf.org/rfc/rfc2026.txt. Ref: page
11

[45] BRADNER, S. Key words for use in RFCs to Indicate Requirement Levels. RFC
2119 (Best Current Practice), Mar. 1997. Available from: http://www.ietf.
org/rfc/rfc2119.txt. Ref: page 11

[46] BRAUNER, T. Introduction to linear logic. BRICS-LS 96-6, BRICS, 1996.
Available from: http://www.brics.dk/LS/96/6/BRICS-LS-96-6/

BRICS-LS-96-6.html. Ref: page 22

[47] BRESLAU, L., CAO, P., FAN, L., PHILLIPS, G., AND SHENKER, S. Web caching
and Zipf-like distributions: evidence and implications. In Proceedings of the 18th

Annual Joint Conference of the IEEE Computer and Communications Societies

(INFOCOM) (March 1999), pp. 126–134. Ref: page 147

[48] BREWER, E., CONDIT, J., MCCLOSKEY, B., AND ZHOU, F. Thirty years is long
enough: Getting beyond C. In Proceedings of the 10th Workshop of Hot Topics in

Operating Systems (HOTOS) (2005), USENIX. Ref: page 5

[49] BRISCO, T. DNS Support for Load Balancing. RFC 1794 (Informational), Apr.
1995. Available from: http://www.ietf.org/rfc/rfc1794.txt. Ref:
page 146

161

http://www.ietf.org/rfc/rfc3054.txt
http://www.ietf.org/rfc/rfc1071.txt
http://www.ietf.org/rfc/rfc2026.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.brics.dk/LS/96/6/BRICS-LS-96-6/BRICS-LS-96-6.html
http://www.brics.dk/LS/96/6/BRICS-LS-96-6/BRICS-LS-96-6.html
http://www.ietf.org/rfc/rfc1794.txt

BIBLIOGRAPHY

[50] BRYANT, R. E. Graph-based algorithms for boolean function manipulation. IEEE

Transactions on Computers 35, 8 (1986), 677–691. Ref: page 35

[51] BRYANT, R. E. Symbolic boolean manipulation with ordered binary-
decision diagrams. ACM Computing Surveys 24, 3 (1992), 293–318.
doi:10.1145/136035.136043. Ref: page 35

[52] BUDKOWSKI, S., AND DEMBINSKI, P. An introduction to Estelle: A specification
language for distributed systems. Computer Networks and ISDN Systems 14, 1
(1991), 3–24. Ref: page 40

[53] BUNKER, A., GOPALAKRISHNAN, G., AND MCKEE, S. A. Formal hard-
ware specification languages for protocol compliance verification. ACM Trans-

actions on Design Automation of Electronic Systems (TODAES) 9, 1 (2004), 1–32.
doi:10.1145/966137.966138. Ref: page 47

[54] BURSTALL, R. M., MACQUEEN, D. B., AND SANNELLA, D. T. Hope:
An experimental applicative language. In Conference Record of the 1980

LISP Conference (Stanford University, Stanford, California, August 1980),
ACM Press, pp. 136–143. Available from: citeseer.ist.psu.edu/

burstall80hope.html. Ref: page 20, 24

[55] CALHOUN, P., AND PERKINS, C. Mobile IP Network Access Identifier Extension
for IPv4. RFC 2794 (Proposed Standard), Mar. 2000. Available from: http:
//www.ietf.org/rfc/rfc2794.txt. Ref: page 49

[56] CALLAS, J., DONNERHACKE, L., FINNEY, H., AND THAYER, R. OpenPGP
Message Format. RFC 2440 (Proposed Standard), Nov. 1998. Available from:
http://www.ietf.org/rfc/rfc2440.txt. Ref: page 49

[57] CANTRILL, B., SHAPIRO, M. W., AND LEVENTHAL, A. H. Dynamic instru-
mentation of production systems. In Proceedings of the USENIX Annual Technical

Conference (General Track) (June 2004), USENIX, pp. 15–28. Ref: page 47

[58] CARDELLI, L. Type systems. In The Computer Science and Engineering Hand-

book, A. B. Tucker, Ed. CRC Press, 1997, pp. 2208–2236. Ref: page 108

[59] CARDELLI, L., AND GORDON, A. D. Mobile ambients. In Proceedings of the

First International Conference on Foundations of Software Science and Compu-

162

http://dx.doi.org/10.1145/136035.136043
http://dx.doi.org/10.1145/966137.966138
citeseer.ist.psu.edu/burstall80hope.html
citeseer.ist.psu.edu/burstall80hope.html
http://www.ietf.org/rfc/rfc2794.txt
http://www.ietf.org/rfc/rfc2794.txt
http://www.ietf.org/rfc/rfc2440.txt

BIBLIOGRAPHY

tation Structure (FoSSaCS) (London, UK, 1998), Springer-Verlag, pp. 140–155.
Ref: page 44

[60] CERT coordination center [online]. Available from: http://www.cert.

org/. Ref: page 15

[61] CERT COORDINATION CENTER. CERT knowledge base [online]. Available
from: http://www.cert.org/kb/. Ref: page 15

[62] CERT COORDINATION CENTER. Incident note in-2001-12, November 2001. Ref:
page 129

[63] CHAILLOUX, E., MANOURY, P., AND PAGANO, B. Developing applications
with objective caml [online]. 2000. Available from: http://caml.inria.
fr/pub/docs/oreilly-book/. Ref: page 28

[64] CHEN, H., DEAN, D., AND WAGNER, D. Model checking one million
lines of C code. In Proceedings of the 11th Annual Network and Dis-

tributed System Security Symposium (NDSS) (San Diego, CA, February 2004).
Available from: http://www.isoc.org/isoc/conferences/ndss/

04/proceedings/Papers/Chen.pdf. Ref: page 40

[65] CHEN, H., AND WAGNER, D. MOPS: an infrastructure for examining security
properties of software. In Proceedings of the 9th ACM Conference on Computer

and Communications Security (CCS) (New York, NY, USA, 2002), ACM Press,
pp. 235–244. doi:10.1145/586110.586142. Ref: page 40, 106

[66] CHEN, J., AND CUI, H. Translation from adapted UML to Promela for CORBA-
based applications. In Proceedings of the 11th Internation SPIN Workshop (New
York, USA, 2004), Springer-Verlag, pp. 234–251. Ref: page 40

[67] CHOI, I., SONG, M., PARK, C., AND PARK, N. An XML-based process defi-
nition language for integrated process management. Computers in Industry 50, 1
(2003), 85–102. doi:10.1016/S0166-3615(02)00139-2. Ref: page 45

[68] CHU, H. K. J. Zero-copy TCP in Solaris. In Proceedings of the USENIX Annual

Technical Conference (1996), USENIX, pp. 253–264. Ref: page 60

163

http://www.cert.org/
http://www.cert.org/
http://www.cert.org/kb/
http://caml.inria.fr/pub/docs/oreilly-book/
http://caml.inria.fr/pub/docs/oreilly-book/
http://www.isoc.org/isoc/conferences/ndss/04/proceedings/Papers/Chen.pdf
http://www.isoc.org/isoc/conferences/ndss/04/proceedings/Papers/Chen.pdf
http://dx.doi.org/10.1145/586110.586142
http://dx.doi.org/10.1016/S0166-3615(02)00139-2

BIBLIOGRAPHY

[69] CLARK, C., FRASER, K., HAND, S., HANSEN, J. G., JUL, E., LIMPACH, C.,
PRATT, I., AND WARFIELD, A. Live migration of virtual machines. In Pro-

ceedings of the 2nd Symposium of Networked Systems Design and Implementation

(May 2005). Ref: page 155

[70] CLARK, K., AND GREGORY, S. PARLOG: Parallel programming in logic.
ACM Transactions on Programming Language Systems 8, 1 (1986), 1–49.
doi:10.1145/5001.5390. Ref: page 21

[71] CLARKE, E., GRUMBERG, O., JHA, S., LU, Y., AND VEITH, H.
Counterexample-guided abstraction refinement for symbolic model checking.
Journal of the ACM 50, 5 (2003), 752–794. doi:10.1145/876638.876643. Ref:
page 46

[72] CLARKE, E. M., EMERSON, E. A., AND SISTLA, A. P. Automatic verification
of finite-state concurrent systems using temporal logic specifications. ACM Trans-

actions on Programming Languages and Systems (TOPLAS) 8, 2 (1986), 244–263.
doi:10.1145/5397.5399. Ref: page 35

[73] COMPUTER INCIDENT ADVISORY CAPABILITY. I-092: SunOS ping buffer over-
flow vulnerability [online]. September 1998. Available from: http://www.
ciac.org/ciac/bulletins/i-092.shtml. Ref: page 95

[74] CORBETT, J. C. Evaluating deadlock detection methods for concurrent soft-
ware. IEEE Transactions on Software Engineering 22, 3 (1996), 161–180.
doi:10.1109/32.489078. Ref: page 35

[75] CORBETT, J. C., DWYER, M. B., AND HATCLIFF, J. A language framework for
expressing checkable properties of dynamic software. In Proceedings of the SPIN

Software Model Checking Workshop (2000), K. Havelund, J. Penix, and W. Visser,
Eds., vol. 1885 of Lecture Notes in Computer Science, Springer, pp. 205–223. Ref:
page 40, 45

[76] CORBETT, J. C., DWYER, M. B., HATCLIFF, J., LAUBACH, S.,
PăSăREANU, C. S., ROBBY, AND ZHENG, H. Bandera: extracting
finite-state models from Java source code. In Proceedings of the 22nd Interna-

tional Conference on Software Engineering (ICSE) (New York, NY, USA, 2000),
ACM Press, pp. 439–448. doi:10.1145/337180.337234. Ref: page 45

164

http://dx.doi.org/10.1145/5001.5390
http://dx.doi.org/10.1145/876638.876643
http://dx.doi.org/10.1145/5397.5399
http://www.ciac.org/ciac/bulletins/i-092.shtml
http://www.ciac.org/ciac/bulletins/i-092.shtml
http://dx.doi.org/10.1109/32.489078
http://dx.doi.org/10.1145/337180.337234

BIBLIOGRAPHY

[77] CORBETT, J. C., DWYER, M. B., HATCLIFF, J., AND ROBBY. Expressing check-
able properties of dynamic systems: the Bandera Specification Language. Inter-

national Journal on Software Tools for Technology Transfer 4, 1 (2002), 34–56.
Ref: page 45

[78] COSTA, M., CROWCROFT, J., CASTRO, M., ROWSTRON, A., ZHOU, L.,
ZHANG, L., AND BARHAM, P. Vigilante: End-to-end containment of internet
worms. In Proceedings of the Twentieth ACM Symposium on Operating Systems

Principles (Brighton, United Kingdom, October 2005), ACM Press, pp. 133–147.
doi:10.1145/1095810.1095824. Ref: page 16

[79] COUSINEAU, G., AND MAUNY, M. The Functional Approach to Programming.
Cambridge University Press, October 1998. Ref: page 21, 28

[80] COWAN, C., BEATTIE, S., WRIGHT, C., AND KROAH-HARTMAN,
G. Raceguard: Kernel protection from temporary file race vulnerabil-
ities. In Proceedings of the 10th USENIX Security Conference (2001),
USENIX. Available from: http://www.usenix.org/events/sec01/

cowanbeattie.html. Ref: page 5, 16

[81] COWAN, C., PU, C., MAIER, D., WALPOLE, J., BAKKE, P., BEATTIE, S.,
GRIER, A., WAGLE, P., ZHANG, Q., AND HINTON, H. StackGuard: Automatic
adaptive detection and prevention of buffer-overflow attacks. In Proceedings of

the 7th USENIX Security Conference (January 1998), pp. 63–78. Ref: page 16

[82] CRANOR, C. D., AND PARULKAR, G. M. The UVM virtual memory system. In
Proceedings of the 1999 USENIX Annual Technical Conference (General Track)

(1999), USENIX, pp. 117–130. Ref: page 60

[83] CRANOR, L. F., AND LAMACCHIA, B. A. Spam! Communications of the ACM

41, 8 (1998), 74–83. doi:10.1145/280324.280336. Ref: page 70

[84] CREDENTIA. E-mail server survey results for April 2003 [online]. April 2003.
Available from: http://www.credentia.cc/research/surveys/

smtp/200304/. Ref: page 4

[85] CROCKER, D., AND OVERELL, P. Augmented BNF for Syntax Specifications:
ABNF. RFC 2234 (Proposed Standard), Nov. 1997. Obsoleted by RFC 4234.

165

http://dx.doi.org/10.1145/1095810.1095824
http://www.usenix.org/events/sec01/cowanbeattie.html
http://www.usenix.org/events/sec01/cowanbeattie.html
http://dx.doi.org/10.1145/280324.280336
http://www.credentia.cc/research/surveys/smtp/200304/
http://www.credentia.cc/research/surveys/smtp/200304/

BIBLIOGRAPHY

Available from: http://www.ietf.org/rfc/rfc2234.txt. Ref: page
80

[86] CROSBY, S. A., AND WALLACH, D. S. Denial of service via algorithmic com-
plexity attacks. In Proceedings of the 12th USENIX Security Symposium (August
2003), USENIX, pp. 29–44. Ref: page 70

[87] CUSACK, F., AND FORSSEN, M. Generic Message Exchange Authentication
for the Secure Shell Protocol (SSH). RFC 4256 (Proposed Standard), Jan. 2006.
Available from: http://www.ietf.org/rfc/rfc4256.txt. Ref: page
130

[88] DABBOUS, W., O’MALLEY, S., AND CASTELLUCCIA, C. Generating effi-
cient protocol code from an abstract specification. In Conference proceedings

on Applications, Technologies, Architectures, and Protocols for Computer Com-

munications (SIGCOMM) (New York, NY, USA, 1996), ACM Press, pp. 60–72.
doi:10.1145/248156.248163. Ref: page 51, 56

[89] DAHL, O.-J., DIJKSTRA, E., AND HOARE, A. Structured Programming. Aca-
demic Press, June 1972. Ref: page 53

[90] DALLIEN, J., AND MACCAULL, W. Automated checking for stut-
ter invariance of ltl formulas. In Proceedings of the 28th Annual

APICS Conference on Mathematics-Statistics-Computer Science (October 2004).
Available from: http://www.unbsj.ca/conferences/apics/2004/

DallienMacCaull.ps. Ref: page 38

[91] DEEGAN, T., CROWCROFT, J., AND WARFIELD, A. The main name system: an
exercise in centralized computing. SIGCOMM Computer Communications Review

35, 5 (2005), 5–14. doi:10.1145/1096536.1096538. Ref: page 146

[92] DHAMIJA, R., AND TYGAR, J. D. The battle against phishing: Dynamic
security skins. In Proceedings of the 2005 Symposium on Usable Privacy

and Security (SOUPS) (New York, NY, USA, 2005), ACM Press, pp. 77–88.
doi:10.1145/1073001.1073009. Ref: page 70

[93] DIERKS, T., AND ALLEN, C. The TLS Protocol Version 1.0. RFC 2246 (Proposed
Standard), Jan. 1999. Updated by RFC 3546. Available from: http://www.
ietf.org/rfc/rfc2246.txt. Ref: page 3, 49

166

http://www.ietf.org/rfc/rfc2234.txt
http://www.ietf.org/rfc/rfc4256.txt
http://dx.doi.org/10.1145/248156.248163
http://www.unbsj.ca/conferences/apics/2004/DallienMacCaull.ps
http://www.unbsj.ca/conferences/apics/2004/DallienMacCaull.ps
http://dx.doi.org/10.1145/1096536.1096538
http://dx.doi.org/10.1145/1073001.1073009
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc2246.txt

BIBLIOGRAPHY

[94] DIJKSTRA, E. W. Guarded commands, nondeterminacy and formal deriva-
tion of programs. Communications of the ACM 18, 8 (1975), 453–457.
doi:10.1145/360933.360975. Ref: page 54

[95] DROMS, R. Dynamic Host Configuration Protocol. RFC 2131 (Draft Standard),
Mar. 1997. Updated by RFC 3396. Available from: http://www.ietf.org/
rfc/rfc2131.txt. Ref: page 39

[96] DSHIELD INC. Distributed intrusion detection system [online]. 2005. Available
from: http://www.dshield.com/. Ref: page 15

[97] DUNKELS, A. lwIP - a lightweight TCP/IP stack [online]. Available from: http:
//savannah.nongnu.org/projects/lwip/. Ref: page 96

[98] EADS/CRC TEAM. Integer overflow in skype client. CERT Advisory CVE-
2005-3267, October 2005. Ref: page 17

[99] ELSMAN, M., AND HALLENBERG, N. Web programming with SMLserver. In
Proceedings of the 5th International Symposium on Practical Aspects of Declar-

ative Languages (PADL) (London, UK, 2003), Springer-Verlag, pp. 74–91. Ref:
page 56

[100] ENGLER, D., AND ASHCRAFT, K. RacerX: Effective, static detection of race
conditions and deadlocks. In Proceedings of the 19th ACM Symposium on Oper-

ating Systems Principles (New York, NY, USA, 2003), ACM Press, pp. 237–252.
doi:10.1145/945445.945468. Ref: page 40

[101] ENGLER, D., CHELF, B., CHOU, A., AND HALLEM, S. Checking system rules
using system-specific, programmer-written compiler extensions. In In Proceedings

of the 4th Symposium on Operating Systems Design and Implementation (Octo-
ber 2000), USENIX. Available from: http://www.usenix.org/events/
osdi2000/engler.html. Ref: page 54

[102] ENGLER, D., CHEN, D. Y., HALLEM, S., CHOU, A., AND CHELF, B.
Bugs as deviant behavior: a general approach to inferring errors in systems
code. In Proceedings of the Eighteenth ACM Symposium on Operating Sys-

tems Principles (SOSP) (New York, NY, USA, 2001), ACM Press, pp. 57–72.
doi:10.1145/502034.502041. Ref: page 54

167

http://dx.doi.org/10.1145/360933.360975
http://www.ietf.org/rfc/rfc2131.txt
http://www.ietf.org/rfc/rfc2131.txt
http://www.dshield.com/
http://savannah.nongnu.org/projects/lwip/
http://savannah.nongnu.org/projects/lwip/
http://dx.doi.org/10.1145/945445.945468
http://www.usenix.org/events/osdi2000/engler.html
http://www.usenix.org/events/osdi2000/engler.html
http://dx.doi.org/10.1145/502034.502041

BIBLIOGRAPHY

[103] ENNALS, R. Adaptive Evaluation of Non-Strict Programs. PhD thesis, University
of Cambridge, 2004. Ref: page 20, 24

[104] ENNALS, R., SHARP, R., AND MYCROFT, A. Linear types for packet process-
ing. In 13th European Symposium on Programming (ESOP), part of the Joint

European Conferences on Theory and Practice of Software (ETAPS) (Barcelona,
Spain, April 2004), D. A. Schmidt, Ed., vol. 2986 of Lecture Notes in Computer

Science, Springer, pp. 204–218. Ref: page 22

[105] ETOH, H. GCC extension for protecting applications from stack-smashing at-
tacks. Tech. rep., IBM Research Japan, 2004. Available from: http://www.
research.ibm.com/trl/projects/security/ssp/. Ref: page 16

[106] EVANS, D., AND LAROCHELLE, D. Improving security using extensible
lightweight static analysis. IEEE Software 19, 1 (January–February 2002), 42–
51. Ref: page 69

[107] FIELDING, R., GETTYS, J., MOGUL, J., FRYSTYK, H., MASINTER, L., LEACH,
P., AND BERNERS-LEE, T. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616
(Draft Standard), June 1999. Updated by RFC 2817. Available from: http:
//www.ietf.org/rfc/rfc2616.txt. Ref: page 80

[108] FINDLER, R. B., AND FELLEISEN, M. Contracts for higher-order functions. In
Proceedings of the International Conference in Functional Programming (ICFP)

(October 2002), ACM Press. Ref: page 22

[109] FISHER, K., AND GRUBER, R. Pads: a domain-specific language for processing
ad hoc data. In Proceedings of the 2005 ACM SIGPLAN Conference on Program-

ming Language Design and Implementation (PLDI) (New York, NY, USA, 2005),
ACM Press, pp. 295–304. doi:10.1145/1065010.1065046. Ref: page 50, 79

[110] FISHER, K., MANDELBAUM, Y., AND WALKER, D. The next 700 data descrip-
tion languages. In Proceedings of the ACM SIGPLAN - SIGACT Symposium on

Principles of Programming Languages (POPL) (January 2006). Ref: page 50

[111] FLANAGHAN, C. Hybrid type checking. In Principles of Programming Languages

(POPL) (2006). Ref: page 22

168

http://www.research.ibm.com/trl/projects/security/ssp/
http://www.research.ibm.com/trl/projects/security/ssp/
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://dx.doi.org/10.1145/1065010.1065046

BIBLIOGRAPHY

[112] FOSTER, J. N., GREENWALD, M. B., KIRKEGAARD, C., PIERCE, B. C.,
AND SCHMITT, A. Schema-directed data synchronization. Technical Re-
port MS-CIS-05-02, University of Pennsylvania, March 2005. Supercedes MS-
CIS-03-42. Available from: http://www.cis.upenn.edu/∼bcpierce/
papers/sync-tr.pdf. Ref: page 52

[113] FOSTER, J. N., GREENWALD, M. B., MOORE, J. T., PIERCE, B. C., AND

SCHMITT, A. Combinators for bi-directional tree transformations: a linguistic
approach to the view update problem. In Proceedings of the 32nd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL) (New
York, NY, USA, 2005), ACM Press, pp. 233–246. doi:10.1145/1040305.1040325.
Ref: page 52

[114] FRISCH, A. Regular tree language recognition with static information. In Work-

shop on Programming Language Technologies for XML (PLAN-X) (January 2004).
Available from: http://www.cduce.org/papers/reg.pdf. Ref: page
52

[115] FURR, M., AND FOSTER, J. S. Checking type safety of foreign function
calls. SIGPLAN Notices 40, 6 (2005), 62–72. Originally in PLDI 2005.
doi:10.1145/1064978.1065019. Ref: page 69

[116] GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. Design Patterns: El-

ements of Reusable Object-Oriented Software, 1 ed. Addison-Wesley Professional
Computing Series, January 1995. Ref: page 54, 66

[117] GANSNER, E. R., AND NORTH, S. C. An open graph visualization system and
its applications to software engineering. Software—Practice and Experience 30,
11 (2000), 1203–1233. Ref: page 106

[118] GARRIGUE, J. Programming with polymorphic variants. In 1998 ACM

SIGPLAN Workshop on ML (Baltimore, Maryland, USA, September 1998).
Available from: http://www.math.nagoya-u.ac.jp/∼garrigue/

papers/variants.ps.gz. Ref: page 30

[119] GARRIGUE, J. Code reuse through polymorphic variants. In Workshop

on Foundations of Software Engineering (Sasaguri, Japan, November 2000).

169

http://www.cis.upenn.edu/~bcpierce/papers/sync-tr.pdf
http://www.cis.upenn.edu/~bcpierce/papers/sync-tr.pdf
http://dx.doi.org/10.1145/1040305.1040325
http://www.cduce.org/papers/reg.pdf
http://dx.doi.org/10.1145/1064978.1065019
http://www.math.nagoya-u.ac.jp/~garrigue/papers/variants.ps.gz
http://www.math.nagoya-u.ac.jp/~garrigue/papers/variants.ps.gz

BIBLIOGRAPHY

Available from: http://www.math.nagoya-u.ac.jp/∼garrigue/

papers/fose2000.html. Ref: page 30

[120] GARRIGUE, J. Private rows: abstracting the unnamed. (draft), June 2005. Avail-
able from: http://wwwfun.kurims.kyoto-u.ac.jp/∼garrigue/

papers/privaterows.pdf. Ref: page 101

[121] GETCHELL, A., AND SATALURI, S. A Revised Catalog of Available X.500 Im-
plementations. RFC 1632 (Informational), May 1994. Obsoleted by RFC 2116.
Available from: http://www.ietf.org/rfc/rfc1632.txt. Ref: page
49

[122] GORDON, M. J. C., MILNER, R., MORRIS, L., NEWEY, M. C., AND

WADSWORTH, C. P. A metalanguage for interactive proof in LCF. In Proceed-

ings of the 5th ACM SIGACT-SIGPLAN Symposium on Principles of Program-

ming Languages (POPL) (New York, NY, USA, 1978), ACM Press, pp. 119–130.
doi:10.1145/512760.512773. Ref: page 19

[123] GOVINDAVAJHALA, S., AND APPEL, A. W. Using memory errors to attack a
virtual machine. In Proceedings of the 2003 IEEE Symposium on Security and

Privacy (SP) (Washington, DC, USA, 2003), IEEE Computer Society, p. 154. Ref:
page 71

[124] GRAF, S., AND SAIDI, H. Construction of abstract state graphs with PVS. In
Proceedings of the 9th International Conference on Computer Aided Verification

(CAV) (London, UK, 1997), Springer-Verlag, pp. 72–83. Ref: page 40, 46

[125] GREENBERG, A., HJALMTYSSON, G., MALTZ, D. A., MYERS, A., REXFORD,
J., XIE, G., YAN, H., ZHAN, J., AND ZHANG, H. A clean slate 4D approach to
network control and management. SIGCOMM Computer Communications Review

35, 5 (2005), 41–54. doi:10.1145/1096536.1096541. Ref: page 6, 42

[126] GRIFFIN, T. G., AND SOBRINHO, J. L. Metarouting. In Proceedings of the 2005

Conference on Applications, Technologies, Architectures, and Protocols for Com-

puter Communications (SIGCOMM) (New York, NY, USA, 2005), ACM Press,
pp. 1–12. doi:10.1145/1080091.1080094. Ref: page 155

[127] GUNAWI, H. S., ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H.
Deploying safe user-level network services with icTCP. In Proceedings of the

170

http://www.math.nagoya-u.ac.jp/~garrigue/papers/fose2000.html
http://www.math.nagoya-u.ac.jp/~garrigue/papers/fose2000.html
http://wwwfun.kurims.kyoto-u.ac.jp/~garrigue/papers/privaterows.pdf
http://wwwfun.kurims.kyoto-u.ac.jp/~garrigue/papers/privaterows.pdf
http://www.ietf.org/rfc/rfc1632.txt
http://dx.doi.org/10.1145/512760.512773
http://dx.doi.org/10.1145/1096536.1096541
http://dx.doi.org/10.1145/1080091.1080094

BIBLIOGRAPHY

6th Symposium on Operating Systems Design and Implementation (OSDI) (2004),
USENIX, pp. 317—332. Ref: page 57

[128] GUSTAFSSON, P., AND SAGONAS, K. Native code compilation of Erlang’s bit
syntax. In Proceedings of ACM SIGPLAN Erlang Workshop (November 2002),
ACM Press, pp. 6–15. Ref: page 26

[129] HAREL, D., LACHOVER, H., NAAMAD, A., PNUELI, A., POLITI, M., SHER-
MAN, R., AND A. SHTUL-TRAURING. Statemate: a working environment for
the development of complex reactive systems. In Proceedings of the 10th Inter-

national Conference on Software Engineering (ICSE) (Los Alamitos, CA, USA,
1988), IEEE Computer Society Press, pp. 396–406. Ref: page 104

[130] HAVELUND, K., AND PRESSBURGER, T. Model checking JAVA programs using
JAVA pathfinder. International Journal on Software Tools for Technology Transfer

2, 4 (2000), 366–381. Ref: page 40

[131] HAYDEN, M. The Ensemble System. Tr98-1662, Cornell University,
1998. Available from: http://www.nuprl.org/documents/Hayden/

ensemblesystem.html. Ref: page 6, 51, 56

[132] HENSBERGEN, E. V. Plan 9 remote resource protocol (experimental-
draft-9p2000-protocol), March 2005. Available from: http://v9fs.

sourceforge.net/rfc/. Ref: page 89

[133] HENZINGER, T. A., JHALA, R., MAJUMDAR, R., NECULA, G. C., SUTRE, G.,
AND WEIMER, W. Temporal-safety proofs for systems code. In Proceedings of

the 14th International Conference on Computer Aided Verification (CAV) (London,
UK, 2002), Springer-Verlag, pp. 526–538. Ref: page 40, 45, 104, 112

[134] HICKS, M., KAKKAR, P., MOORE, J. T., GUNTER, C. A., AND NETTLES, S.
Plan: A packet language for active networks. SIGPLAN Notices 34, 1 (1999),
86–93. doi:10.1145/291251.289431. Ref: page 51

[135] HINDLEY, J. R. The principal type-scheme of an object in combinatory logic.
Transactions of American Mathematics Society 146 (1969), 29–60. Ref: page 20

[136] HOARE, C. A. R. Communicating sequential processes. Communications of the

ACM 21, 8 (1978), 666–677. doi:10.1145/359576.359585. Ref: page 44

171

http://www.nuprl.org/documents/Hayden/ensemblesystem.html
http://www.nuprl.org/documents/Hayden/ensemblesystem.html
http://v9fs.sourceforge.net/rfc/
http://v9fs.sourceforge.net/rfc/
http://dx.doi.org/10.1145/291251.289431
http://dx.doi.org/10.1145/359576.359585

BIBLIOGRAPHY

[137] HOLLAND, D. A., LIM, A. T., AND SELTZER, M. I. An architecture a day keeps
the hacker away. SIGARCH Computer Architecture News 33, 1 (2005), 34–41.
doi:10.1145/1055626.1055632. Ref: page 5

[138] HOLZMANN, G. J. The SPIN Model Checker. Addison-Wesley, September 2003.
Ref: page 34, 36, 38, 103

[139] HOLZMANN, G. J., AND PELED, D. Partial order reduction of the state space. In
Proceedings of the 1st SPIN Workshop on the Model Checking of Software (1995).
Ref: page 35, 124

[140] HOLZMANN, G. J., AND SMITH, M. An automated verification method for dis-
tributed systems software based on model extraction. IEEE Transactions on Soft-

ware Engineering 28, 4 (April 2002), 364–377. Ref: page 40

[141] HOSOYA, H., AND PIERCE, B. C. XDuce: A statically typed XML process-
ing language. ACM Transactions on Internet Technology 3, 2 (2003), 117–148.
doi:10.1145/767193.767195. Ref: page 52

[142] HUDAK, P. Conception, evolution, and application of functional pro-
gramming languages. ACM Computing Surveys 21, 3 (1989), 359–411.
doi:10.1145/72551.72554. Ref: page 21

[143] HUDAK, P., AND WADLER, P. Report on the functional programming language
Haskell. YALEU/DCS/RR 656, Yale University, 1988. Ref: page 20

[144] HUGHES, J. Why functional programming matters. Computer Journal 32, 2
(1989), 98–107. Ref: page 23

[145] HUTTON, G. Frequently asked questions for comp.lang.functional [online].
November 2002. Available from: http://www.cs.nott.ac.uk/∼gmh/

faq.html. Ref: page 18, 21

[146] INRIA-ROCQUENCOURT. The Coq proof assistant [online]. Available from:
http://coq.inria.fr/. Ref: page 54, 66

[147] INTERNET ENGINEERING STEERING GROUP. Guidelines for the use
of formal languages in IETF specifications [online]. October 2001.
Available from: http://www.ietf.org/IESG/STATEMENTS/

pseudo-code-in-specs.txt. Ref: page 11

172

http://dx.doi.org/10.1145/1055626.1055632
http://dx.doi.org/10.1145/767193.767195
http://dx.doi.org/10.1145/72551.72554
http://www.cs.nott.ac.uk/~gmh/faq.html
http://www.cs.nott.ac.uk/~gmh/faq.html
http://coq.inria.fr/
http://www.ietf.org/IESG/STATEMENTS/pseudo-code-in-specs.txt
http://www.ietf.org/IESG/STATEMENTS/pseudo-code-in-specs.txt

BIBLIOGRAPHY

[148] ISO. Estelle—a formal description technique based on an extended state transition
model. ISO 9074, International Organisation for Standardization, Geneva, 1997.
Ref: page 104

[149] JACOBSON, V. Congestion avoidance and control. In Proceedings of the Con-

ference on Applications, Technologies, Architectures, and Protocols for Computer

Communication (SIGCOMM) (New York, NY, USA, 1988), ACM Press, pp. 314–
329. doi:10.1145/52324.52356. Ref: page 2

[150] JACOBSON, V., LERES, C., AND MCCANNE, S. Packet capture with tcpdump
and pcap [online]. Available from: http://www.tcpdump.org/. Ref: page
89

[151] JENSEN, K. Coloured Petri Nets: a high level language for system design and
analysis. In Proceedings on Advances in Petri Nets (APN) (New York, NY, USA,
1991), Springer-Verlag New York, pp. 342–416. Ref: page 45

[152] JIM, T., MORRISETT, G., GROSSMAN, D., HICKS, M., CHENEY, J., AND

WANG, Y. Cyclone: A safe dialect of C. In Proceedings of the 2002 USENIX

Annual Technical Conference (General Track) (June 2002), USENIX, pp. 275–
288. Ref: page 5

[153] JOHNSON, C. A., AND TESCH, B. US eCommerce: 2005 to 2010. Tech. rep.,
Forrester Research, 2005. Available from: http://www.forrester.com/
Research/Document/Excerpt/0,7211,37626,00.html. Ref: page
1

[154] JOHNSON, S. C. Yacc: Yet Another Compiler Compiler. Computer Science
Technical Report 32, Bell Laboratories, Murray Hill, New Jersey, USA, 1975.
Ref: page 48, 108

[155] JONES, G. Programming in Occam. Prentice-Hall, Hertfordshire, United King-
dom, 1986. Ref: page 37, 44, 104

[156] JONES, R., AND LINS, R. Garbage Collection: Algorithms for Auto-

matic Dynamic Memory Management, 2nd ed. John Wiley and Sons, 1999.
Available from: http://www.cs.kent.ac.uk/people/staff/rej/

gcbook/gcbook.html. Ref: page 21

173

http://dx.doi.org/10.1145/52324.52356
http://www.tcpdump.org/
http://www.forrester.com/Research/Document/Excerpt/0,7211,37626,00.html
http://www.forrester.com/Research/Document/Excerpt/0,7211,37626,00.html
http://www.cs.kent.ac.uk/people/staff/rej/gcbook/gcbook.html
http://www.cs.kent.ac.uk/people/staff/rej/gcbook/gcbook.html

BIBLIOGRAPHY

[157] JONES, S. L. P., Ed. Haskell 98 Language and Libraries: The Revised Re-

port. Cambridge University Press, April 2003. Available from: http://www.
haskell.org/report/. Ref: page 20

[158] JONES, S. L. P. Wearing the hair shirt: a retrospective on Haskell [online].
2003. Available from: http://research.microsoft.com/∼simonpj/
papers/haskell-retrospective/. Ref: page 24

[159] JONES, S. P. The Implementation of Functional Programming Languages. Pren-
tice Hall, 1987. Available from: http://research.microsoft.com/
∼simonpj/papers/slpj-book-1987/. Ref: page 20

[160] JUNG, J., SIT, E., BALAKRISHNAN, H., AND MORRIS, R. DNS performance
and the effectiveness of caching. In Proceedings of the 1st ACM SIGCOMM Work-

shop on Internet Measurement (IMW) (New York, NY, USA, 2001), ACM Press,
pp. 153–167. doi:10.1145/505202.505223. Ref: page 147, 149

[161] JÜNGER, M., AND MUTZEL, P., Eds. Graph Drawing Software (Mathematics

and Visualization), 1 ed. Springer, October 2003. Ref: page 68, 189

[162] KALOXYLOS, A. G. An Estelle to Promela compiler. Master’s thesis, Heriot-Watt
University, 1994. Ref: page 40

[163] KAY, J., AND PASQUALE, J. The importance of non-data touching pro-
cessing overheads in TCP/IP. In Proceedings of the Conference on Appli-

cations, Technologies, Architectures, and Protocols for Computer Communi-

cation (SIGCOMM) (New York, NY, USA, 1993), ACM Press, pp. 259–268.
doi:10.1145/166237.166262. Ref: page 95

[164] KC, G. S., AND KEROMYTIS, A. D. e-nexsh: Achieving an effectively non-
executable stack and heap via system-call policing. In Proceedings of 21st Annual

Computer Security Applications Conference (ACSAC) (2005), IEEE Computer So-
ciety, pp. 286–302. Ref: page 5, 16

[165] KENNEDY, A., AND SYME, D. Design and implementation of generics for the .net
common language runtime. In Proceedings of the ACM SIGPLAN 2001 Confer-

ence on Programming Language Design and Implementation (PLDI) (New York,
NY, USA, 2001), ACM Press, pp. 1–12. doi:10.1145/378795.378797. Ref: page
26

174

http://www.haskell.org/report/
http://www.haskell.org/report/
http://research.microsoft.com/~simonpj/papers/haskell-retrospective/
http://research.microsoft.com/~simonpj/papers/haskell-retrospective/
http://research.microsoft.com/~simonpj/papers/slpj-book-1987/
http://research.microsoft.com/~simonpj/papers/slpj-book-1987/
http://dx.doi.org/10.1145/505202.505223
http://dx.doi.org/10.1145/166237.166262
http://dx.doi.org/10.1145/378795.378797

BIBLIOGRAPHY

[166] KERNIGHAN, B. W., AND RITCHIE, D. M. The C Programming Language,
2nd ed. Prentice Hall, 1988. Ref: page 12

[167] KHALIDI, Y. A., AND THADANI, M. N. An efficient zero-copy I/O framework
for UNIX. Tech. rep., Mountain View, CA, USA, 1995. Ref: page 60

[168] KLEENE, S. C. λ-definability and recursiveness. Duke Mathematics Journal, 2
(1936), 340–353. Ref: page 18

[169] KLENSIN, J. Simple Mail Transfer Protocol. RFC 2821 (Proposed Standard), Apr.
2001. Available from: http://www.ietf.org/rfc/rfc2821.txt. Ref:
page 80

[170] KOBAYASHI, N. Quasi-linear types. In Proceedings of the 26th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL) (New
York, NY, USA, 1999), ACM Press, pp. 29–42. doi:10.1145/292540.292546. Ref:
page 22, 51

[171] KOHLER, E., KAASHOEK, M. F., AND MONTGOMERY, D. R. A readable
TCP in the Prolac protocol language. In Proceedings of the conference on

Applications, Technologies, Architectures, and Protocols for Computer Com-

munication (SIGCOMM) (New York, NY, USA, 1999), ACM Press, pp. 3–13.
doi:10.1145/316188.316200. Ref: page 50

[172] KUPERMAN, B. A., BRODLEY, C. E., OZDOGANOGLU, H., VIJAYKU-
MAR, T. N., AND JALOTE, A. Detection and prevention of stack buffer
overflow attacks. Communications of the ACM 48, 11 (2005), 50–56.
doi:10.1145/1096000.1096004. Ref: page 16

[173] LANDIN, P. J. The next 700 programming languages. Communications of the

ACM 9, 3 (1966), 157–166. doi:10.1145/365230.365257. Ref: page 19

[174] LEA, D., AND MARLOWE, J. Interface-based protocol specification of open sys-
tems using psl. In Proceedings of the 9th European Conference on Object-Oriented

Programming (ECOOP) (London, UK, 1995), Springer-Verlag, pp. 374–398. Ref:
page 54

[175] LEE, J., AND DEGENER, J. ANSI C yacc grammar [online]. 1995. Available
from: http://www.lysator.liu.se/c/ANSI-C-grammar-y.html.
Ref: page 49

175

http://www.ietf.org/rfc/rfc2821.txt
http://dx.doi.org/10.1145/292540.292546
http://dx.doi.org/10.1145/316188.316200
http://dx.doi.org/10.1145/1096000.1096004
http://dx.doi.org/10.1145/365230.365257
http://www.lysator.liu.se/c/ANSI-C-grammar-y.html

BIBLIOGRAPHY

[176] LEE, P., AND LEONE, M. Optimizing ML with run-time code generation. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI) (New York, NY, USA, 1996), ACM Press, pp. 137–
148. doi:10.1145/231379.231407. Ref: page 55

[177] LEMON, T., AND CHESHIRE, S. Encoding Long Options in the Dynamic Host
Configuration Protocol (DHCPv4). RFC 3396 (Proposed Standard), Nov. 2002.
Available from: http://www.ietf.org/rfc/rfc3396.txt. Ref: page
39

[178] LEROY, X. The Zinc experiment: An economical implementation of the ML
language. 117, INRIA, 1990. Ref: page 56

[179] LEROY, X. Formal certification of a compiler back-end, or programming a com-
piler with a proof assistant. In Principles of Programming Languages (POPL)

(January 2006), p. to appear. Ref: page 54, 66, 67

[180] LEROY, X. OCaml-Call/CC: Continuations for OCaml [online]. 2006. Available
from: http://pauillac.inria.fr/∼xleroy/software.html. Ref:
page 56

[181] LEROY, X., DOLIGEZ, D., GARRIGUE, J., RÉMY, D., AND VOUILLON, J.
The Objective Caml system [online]. 2005. Available from: http://caml.
inria.fr/. Ref: page 27, 28

[182] LHEE, K.-S., AND CHAPIN, S. J. Buffer overflow and format string overflow
vulnerabilities. Software—Practice and Experience 33, 5 (2003), 423–460. Ref:
page 16

[183] LITAN, A. Increased phishing and online attacks cause dip in consumer con-
fidence. Tech. Rep. G00129146, Gartner, 2005. Available from: http://

gartner11.gartnerweb.com/DisplayDocument?doc cd=129146.
Ref: page 1

[184] MADHAVAPEDDY, A., MYCROFT, A., SCOTT, D., AND SHARP, R. The case for
abstracting security policies. In The 2003 International Conference on Security

and Management (SAM) (June 2003). Ref: page 16, 48

176

http://dx.doi.org/10.1145/231379.231407
http://www.ietf.org/rfc/rfc3396.txt
http://pauillac.inria.fr/~xleroy/software.html
http://caml.inria.fr/
http://caml.inria.fr/
http://gartner11.gartnerweb.com/DisplayDocument?doc_cd=129146
http://gartner11.gartnerweb.com/DisplayDocument?doc_cd=129146

BIBLIOGRAPHY

[185] MALLORY, T., AND KULLBERG, A. Incremental updating of the Internet check-
sum. RFC 1141 (Informational), Jan. 1990. Updated by RFC 1624. Available
from: http://www.ietf.org/rfc/rfc1141.txt. Ref: page 80

[186] MANNA, Z., AND PNUELI, A. The Temporal Logic of Reactive and Concurrent

Systems. Springer-Verlag New York, New York, NY, USA, 1992. Ref: page 42

[187] MARLOW, S. Developing a high-performance web server in Concurrent
Haskell. Journal of Functional Programming 12, 4+5 (July 2002), 359–
374. Available from: http://www.haskell.org/∼simonmar/papers/
web-server-jfp.pdf. Ref: page 56

[188] MATSUMOTO, Y. The Ruby language [online]. 2006. Available from: http:
//www.ruby-lang.org/. Ref: page 26

[189] MCCANN, P. J., AND CHANDRA, S. Packet types: Abstract specification
of network protocol messages. In Proceedings of the Conference on Appli-

cations, Technologies, Architectures, and Protocols for Computer Communi-

cation (SIGCOMM) (New York, NY, USA, 2000), ACM Press, pp. 321–333.
doi:10.1145/347059.347563. Ref: page 50, 79

[190] MCCANNE, S., AND JACOBSON, V. The BSD packet filter: A new architecture
for user-level packet capture. In Proceedings of the USENIX Winter Technical

Conference (1993), USENIX, pp. 259–270. Ref: page 60

[191] MCCARTHY, J. Recursive functions of symbolic expressions and their compu-
tation by machine, part i. Communications of the ACM 3, 4 (1960), 184–195.
doi:10.1145/367177.367199. Ref: page 18

[192] MCCARTHY, J. A basis for a mathematical theory of computation. Computer

Programming and Formal Systems (1963), 33–70. Ref: page 18

[193] MCCARTHY, J. History of LISP. In The 1st ACM SIGPLAN Conference on

History of Programming Languages (New York, NY, USA, 1978), ACM Press,
pp. 217–223. doi:10.1145/800025.808387. Ref: page 19

[194] MCKUSICK, M. K., AND NEVILLE-NEIL, G. V. The Design and Implementa-

tion of the FreeBSD Operating System. Addison-Wesley Professional Computing
Series, August 2004. Ref: page 59

177

http://www.ietf.org/rfc/rfc1141.txt
http://www.haskell.org/~simonmar/papers/web-server-jfp.pdf
http://www.haskell.org/~simonmar/papers/web-server-jfp.pdf
http://www.ruby-lang.org/
http://www.ruby-lang.org/
http://dx.doi.org/10.1145/347059.347563
http://dx.doi.org/10.1145/367177.367199
http://dx.doi.org/10.1145/800025.808387

BIBLIOGRAPHY

[195] MENAGE, P. B. Resource Control of Untrusted Code in an Open Programmable

Network. PhD thesis, University of Cambridge, June 2000. Ref: page 51

[196] MEYER, B. Eiffel: The Language, 2nd edition ed. Prentice Hall, 1992. Ref: page
22

[197] MEYER, B. Object-Oriented Software Construction, 2nd edition ed. Prentice Hall
Professional Technical Reference, 1997. Ref: page 22

[198] MEYER, R. A., MARTIN, J. M., AND BAGRODIA, R. L. Slow memory: the rising
cost of optimism. In Proceedings of the Fourteenth Workshop on Parallel and

Distributed Simulation (PADS) (Washington, DC, USA, 2000), IEEE Computer
Society, pp. 45–52. Ref: page 59

[199] MICROSOFT CORP. Microsoft Windows [online]. 2006. Available from: http:
//www.microsoft.com/windows/. Ref: page 14

[200] MILLER, T. C., AND DE RAADT, T. strlcpy and strlcat - consistent, safe, string
copy and concatenation. In USENIX Annual Technical Conference, FREENIX

Track (Monterey, California, USA, 1999), USENIX, pp. 175–178. Available from:
http://www.usenix.org/events/usenix99/. Ref: page 98

[201] MILLS, H. D. Software development. IEEE Transactions on Software Engineer-

ing 2, 4 (1976), 265–273. Ref: page 53

[202] MILLS, H. D., AND LINGER, R. C. Data structured programming: Program
design without arrays and pointers. IEEE Transactions on Software Engineering

12, 2 (1986), 192–197. Ref: page 53

[203] MILNER, R. A theory of type polymorphism in programming. Journal of Com-

puter and System Sciences 17, 3 (1978), 348–375. Ref: page 20, 22

[204] MILNER, R. A Calculus of Communicating Systems. Springer-Verlag New York,
Secaucus, NJ, USA, 1982. Ref: page 44

[205] MILNER, R. Communicating and Mobile Systems: The Pi Calculus. Springer
Verlag, May 1999. doi:10.2277/0521658691. Ref: page 44

[206] MILNER, R., TOFTE, M., HARPER, R., AND MACQUEEN, D. The Definition of

Standard ML - Revised, 2 ed. MIT Press, May 1997. Ref: page 20, 22, 26

178

http://www.microsoft.com/windows/
http://www.microsoft.com/windows/
http://www.usenix.org/events/usenix99/
http://dx.doi.org/10.2277/0521658691

BIBLIOGRAPHY

[207] MOCKAPETRIS, P. Domain names - concepts and facilities. RFC 1034 (Standard),
Nov. 1987. Updated by RFCs 1101, 1183, 1348, 1876, 1982, 2065, 2181, 2308,
2535, 4033, 4034, 4035, 4343. Available from: http://www.ietf.org/

rfc/rfc1034.txt. Ref: page 143, 145

[208] MOCKAPETRIS, P. Domain names - implementation and specification. RFC 1035
(Standard), Nov. 1987. Updated by RFCs 1101, 1183, 1348, 1876, 1982, 1995,
1996, 2065, 2136, 2181, 2137, 2308, 2535, 2845, 3425, 3658, 4033, 4034, 4035,
4343. Available from: http://www.ietf.org/rfc/rfc1035.txt. Ref:
page 80, 143, 144, 145

[209] MOORE, D. DNS server survey [online]. 2004. Available from: http://

mydns.bboy.net/survey/. Ref: page 4, 143

[210] MOORE, D., PAXSON, V., SAVAGE, S., SHANNON, C., FORD, S. S., AND

WEAVER, N. The spread of the sapphire/slammer worm. Available On-
line, 2003. Available from: http://www.cs.berkeley.edu/∼nweaver/
sapphire/. Ref: page 3

[211] MORGAN, C. Programming from Specifications, 2 ed. Prentice Hall, June 1994.
Ref: page 54

[212] MOZILLA.ORG. Mozilla web browser [online]. 2006. Available from: http:
//www.mozilla.org/. Ref: page 124

[213] MURATA, T. Petri Nets: Properties, analysis and applications. In Proceedings of

the IEEE (Apr. 1989), vol. 77, pp. 541–580. doi:10.1109/5.24143. Ref: page 44

[214] NECULA, G. C. Proof-carrying code. In Proceedings of the 24th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL) (Paris,
France, 1997), ACM Press, pp. 106–119. doi:10.1145/263699.263712. Ref: page
22, 46

[215] NECULA, G. C., MCPEAK, S., AND WEIMER, W. Ccured: Type-safe retrofitting
of legacy code. In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (POPL) (Portland, Oregon, 2002), ACM
Press, pp. 128–139. doi:10.1145/503272.503286. Ref: page 46

179

http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1035.txt
http://mydns.bboy.net/survey/
http://mydns.bboy.net/survey/
http://www.cs.berkeley.edu/~nweaver/sapphire/
http://www.cs.berkeley.edu/~nweaver/sapphire/
http://www.mozilla.org/
http://www.mozilla.org/
http://dx.doi.org/10.1109/5.24143
http://dx.doi.org/10.1145/263699.263712
http://dx.doi.org/10.1145/503272.503286

BIBLIOGRAPHY

[216] NIELSON, F., AND NIELSON, H. R. Type and effect systems. In Correct System

Design (1999), pp. 114–136. Available from: http://www.cs.ucla.edu/
∼palsberg/tba/papers/nielson-nielson-csd99.pdf. Ref: page
22

[217] ODLYZKO, A. M. Internet traffic growth: sources and implications. In Opti-

cal Transmission Systems and Equipment for WDM Networking II (August 2003),
vol. 5247, International Society for Optical Engineering, pp. 1–15. Ref: page 2

[218] OKASAKI, C. Purely Functional Data Structures. Cambridge University Press,
1999. doi:10.1017/S0956796899009995. Ref: page 19, 24, 146

[219] O’MALLEY, S., PROEBSTING, T., AND MONTZ, A. B. Usc: a universal stub
compiler. In Proceedings of the Conference on Communications Architectures,

Protocols and Applications (SIGCOMM) (New York, NY, USA, 1994), ACM
Press, pp. 295–306. doi:10.1145/190314.190341. Ref: page 50

[220] PAXSON, V., Ed. Proceedings of the 12th USENIX Security Symposium (August
2003), USENIX. Ref: page 181

[221] PELAEZ, R. S. Linux kernel rootkits: Protecting the system’s ring-zero. Giac
unix security administrator (gcux), SANS Institute, 2004. Available from: http:
//www.sans.org/rr/whitepapers/honors/1500.php. Ref: page 14

[222] PETRI, C. A. Kommunikation mit Automaten. PhD thesis, Fakultt Matematik und
Physik, Technische Universitt Darmstadt, 1962. Ref: page 44

[223] PIERCE, B. C. Types and Programming Languages. The MIT Press, 2002. Avail-
able from: http://www.cis.upenn.edu/∼bcpierce/tapl/. Ref: page
21

[224] POSTEL, J. Internet Protocol. RFC 791 (Standard), Sept. 1981. Updated by RFC
1349. Available from: http://www.ietf.org/rfc/rfc791.txt. Ref:
page 10, 80

[225] POSTEL, J. Transmission Control Protocol. RFC 793 (Standard), Sept. 1981.
Updated by RFC 3168. Available from: http://www.ietf.org/rfc/

rfc793.txt. Ref: page 10, 12, 55

180

http://www.cs.ucla.edu/~palsberg/tba/papers/nielson-nielson-csd99.pdf
http://www.cs.ucla.edu/~palsberg/tba/papers/nielson-nielson-csd99.pdf
http://dx.doi.org/10.1017/S0956796899009995
http://dx.doi.org/10.1145/190314.190341
http://www.sans.org/rr/whitepapers/honors/1500.php
http://www.sans.org/rr/whitepapers/honors/1500.php
http://www.cis.upenn.edu/~bcpierce/tapl/
http://www.ietf.org/rfc/rfc791.txt
http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc793.txt

BIBLIOGRAPHY

[226] POSTEL, J., AND REYNOLDS, J. File Transfer Protocol. RFC 959 (Standard),
Oct. 1985. Updated by RFCs 2228, 2640, 2773. Available from: http://www.
ietf.org/rfc/rfc959.txt. Ref: page 80

[227] POTTIER, F., AND SIMONET, V. Information flow inference for ML. ACM Trans-

actions on Programming Languages and Systems (TOPLAS) 25, 1 (2003), 117–
158. doi:10.1145/596980.596983. Ref: page 71

[228] POULSON, K. Slammer worm crashed Ohio nuke plant net [online]. August
2003. Available from: http://www.theregister.co.uk/2003/08/

20/slammer worm crashed ohio nuke/. Ref: page 3

[229] PROVOS, N. Improving host security with system call policies. In Paxson [220],
pp. 257–272. Ref: page 5, 16, 48, 70

[230] PROVOS, N., FRIEDL, M., AND HONEYMAN, P. Preventing privilege escalation.
In Paxson [220], pp. 231–242. Ref: page 66, 118, 129

[231] PROVOS, N., AND HONEYMAN, P. Scanssh: Scanning the internet for ssh servers.
In Proceedings of the 15th Conference on Systems Administration (LISA) (San
Diego, California, USA, December 2001), USENIX, pp. 25–30. Ref: page 4, 128

[232] QIN, F., LU, S., AND ZHOU, Y. SafeMem: Exploiting ECC-memory for detecting
memory leaks and memory corruption during production runs. In Proceedings of

the 11th International Symposium on High-Performance Computer Architecture

(HPCA) (Washington, DC, USA, 2005), IEEE Computer Society, pp. 291–302.
doi:10.1109/HPCA.2005.29. Ref: page 6

[233] RATZER, A. V., WELLS, L., LASSEN, H. M., LAURSEN, M., QVORTRUP, J. F.,
STISSING, M. S., WESTERGAARD, M., CHRISTENSEN, S., AND JENSEN, K.
Cpn tools for editing, simulating, and analysing coloured petri nets. In Proceedings

of the 24th International Conference on Applications and Theory of Petri Nets

(2003), vol. 2679, Springer-Verlag, pp. 450–462. Ref: page 45

[234] RAVENBROOK. The memory management reference [online]. Available from:
http://www.memorymanagement.org/. Ref: page 21

[235] REISIG, W. Deterministic buffer synchronization of sequential processes. Acta

Informatica 18, 2 (July 1982), 117–134. Ref: page 44

181

http://www.ietf.org/rfc/rfc959.txt
http://www.ietf.org/rfc/rfc959.txt
http://dx.doi.org/10.1145/596980.596983
http://www.theregister.co.uk/2003/08/20/slammer_worm_crashed_ohio_nuke/
http://www.theregister.co.uk/2003/08/20/slammer_worm_crashed_ohio_nuke/
http://dx.doi.org/10.1109/HPCA.2005.29
http://www.memorymanagement.org/

BIBLIOGRAPHY

[236] REKHTER, Y., AND LI, T. A Border Gateway Protocol 4 (BGP-4). RFC 1771
(Draft Standard), Mar. 1995. Obsoleted by RFC 4271. Available from: http:
//www.ietf.org/rfc/rfc1771.txt. Ref: page 80

[237] REYNOLDS, J., AND POSTEL, J. Request For Comments reference guide.
RFC 1000, Aug. 1987. Available from: http://www.ietf.org/rfc/

rfc1000.txt. Ref: page 80

[238] SAIDI, H., AND SHANKAR, N. Abstract and model check while you prove. In
Proceedings of the 11th International Conference on Computer Aided Verification

(CAV) (London, UK, 1999), Springer-Verlag, pp. 443–454. Ref: page 46

[239] SALTZER, J. H., REED, D. P., AND CLARK, D. D. End-to-end arguments in
system design. ACM Transactions on Computer Systems 2, 4 (1984), 277–288.
doi:10.1145/357401.357402. Ref: page 2, 80, 102

[240] SCHECHTER, S. E., JUNG, J., STOCKWELL, W., AND MCLAIN, C. Inoculating
ssh against address-harvesting. In Proceedings of the 13th Annual Symposium on

Network and Distributed System Security (NDSS) (San Diego, California, USA,
February 2006), Internet Society. Ref: page 129

[241] SCHLYTER, J., AND GRIFFIN, W. Using DNS to Securely Publish Secure Shell
(SSH) Key Fingerprints. RFC 4255 (Proposed Standard), Jan. 2006. Available
from: http://www.ietf.org/rfc/rfc4255.txt. Ref: page 130

[242] SCHNEIDER, F. B. Enforceable security policies. ACM Transactions on Informa-

tion Systems Security 3, 1 (2000), 30–50. doi:10.1145/353323.353382. Ref: page
47, 112

[243] SCHUBA, C. L., KRSUL, I. V., KUHN, M. G., SPAFFORD, E. H., SUNDARAM,
A., AND ZAMBONI, D. Analysis of a denial of service attack on TCP. In Pro-

ceedings of the 1997 IEEE Symposium on Security and Privacy (SP) (Washington,
DC, USA, 1997), IEEE Computer Society, p. 208. Ref: page 69

[244] SCHWARZ, B., CHEN, H., WAGNER, D., LIN, J., TU, W., MORRISON, G., AND

WEST, J. Model checking an entire Linux distribution for security violations. In
Proceedings of 21st Annual Computer Security Applications Conference (ACSAC)

(2005), IEEE Computer Society, pp. 13–22. Available from: http://www.cs.
berkeley.edu/∼daw/papers/mops-full.pdf. Ref: page 40

182

http://www.ietf.org/rfc/rfc1771.txt
http://www.ietf.org/rfc/rfc1771.txt
http://www.ietf.org/rfc/rfc1000.txt
http://www.ietf.org/rfc/rfc1000.txt
http://dx.doi.org/10.1145/357401.357402
http://www.ietf.org/rfc/rfc4255.txt
http://dx.doi.org/10.1145/353323.353382
http://www.cs.berkeley.edu/~daw/papers/mops-full.pdf
http://www.cs.berkeley.edu/~daw/papers/mops-full.pdf

BIBLIOGRAPHY

[245] SCOTT, D., AND SHARP, R. Abstracting application-level web security. In Pro-

ceedings of the 11th International Conference on World Wide Web (New York, NY,
USA, 2002), ACM Press, pp. 396–407. doi:10.1145/511446.511498. Ref: page 3,
15, 70

[246] SCOTT, D. J. Abstracting Application-Level Security Policy for Ubiquitous Com-

puting. PhD thesis, University of Cambridge, 2005. Ref: page 140

[247] SDL. SDL forum society. Tech. Rep. Recommendation Z.100, International
Telecommunications Union, Geneva, 1993. Available from: http://www.

sdl-forum.org/. Ref: page 104

[248] SEKAR, R., VENKATAKRISHNAN, V., BASU, S., BHATKAR, S., AND DUVAR-
NEY, D. C. Model-carrying code: a practical approach for safe execution of un-
trusted applications. In Proceedings of the Nineteenth ACM symposium on Op-

erating Systems Principles (New York, NY, USA, 2003), ACM Press, pp. 15–28.
doi:10.1145/945445.945448. Ref: page 48

[249] SENDMAIL CONSORTIUM. Sendmail [online]. 2006. Available from: http:
//www.sendmail.org/. Ref: page 4

[250] SHACHAM, H., PAGE, M., PFAFF, B., GOH, E.-J., MODADUGU, N., AND

BONEH, D. On the effectiveness of address-space randomization. In Pro-

ceedings of the 11th ACM Conference on Computer and Communications

Security (CCS) (New York, NY, USA, 2004), ACM Press, pp. 298–307.
doi:10.1145/1030083.1030124. Ref: page 17

[251] SHINWELL, M., BILLINGS, J., SEWELL, P., AND STRNISA, R. HashCaml: type-
safe marshalling for O’Caml [online]. 2006. Available from: http://www.cl.
cam.ac.uk/∼mrs30/talks/hashcaml.pdf. Ref: page 57

[252] SIPSER, M. Introduction to the Theory of Computation, 1 ed. PWS Publishing,
1997. Ref: page 49, 81

[253] SKYPE TECHNOLOGIES S.A. Skype telephony software [online]. 2005. Available
from: http://www.skype.com. Ref: page 3, 17

[254] SMITH, G., AND VOLPANO, D. Polymorphic typing of variables and references.
ACM Transactions on Programming Languages and Systems 18, 3 (May 1996),
254–267. Ref: page 32

183

http://dx.doi.org/10.1145/511446.511498
http://www.sdl-forum.org/
http://www.sdl-forum.org/
http://dx.doi.org/10.1145/945445.945448
http://www.sendmail.org/
http://www.sendmail.org/
http://dx.doi.org/10.1145/1030083.1030124
http://www.cl.cam.ac.uk/~mrs30/talks/hashcaml.pdf
http://www.cl.cam.ac.uk/~mrs30/talks/hashcaml.pdf
http://www.skype.com

BIBLIOGRAPHY

[255] SPAFFORD, E. H. The Internet worm program: an analysis. SIGCOMM Computer

Communications Review 19, 1 (1989), 17–57. doi:10.1145/66093.66095. Ref:
page 14

[256] STANIFORD, S., PAXSON, V., AND WEAVER, N. How to own the in-
ternet in your spare time. In Proceedings of the 11th USENIX Secu-

rity Symposium (August 2002), D. Boneh, Ed., USENIX, pp. 149–167.
Available from: http://www.usenix.org/publications/library/

proceedings/sec02/staniford.html. Ref: page 14, 16

[257] STEVENS, W. R., FENNER, B., AND RUDOFF, A. M. Unix Network Program-

ming: The Sockets Network API, 1 ed. Addison Wesley, December 2003. Ref:
page 47, 89

[258] SUH, G. E., LEE, J. W., ZHANG, D., AND DEVADAS, S. Secure program ex-
ecution via dynamic information flow tracking. In Proceedings of the 11th Inter-

national Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS) (New York, NY, USA, 2004), ACM Press, pp. 85–
96. doi:10.1145/1024393.1024404. Ref: page 6

[259] SUN MICROSYSTEMS. Security vulnerability in ping [online]. November 2004.
Available from: http://sunsolve.sun.com/search/document.do?

assetkey=1-26-57675-1. Ref: page 95, 192

[260] TAHA, W. A gentle introduction to multi-stage programming. In Domain-Specific

Program Generation (Dagstuhl Castle, Germany, March 2004), vol. 3016 of Lec-

ture Notes in Computer Science, Springer, pp. 30–50. Ref: page 55

[261] TAKANEN, A., LAAKSO, M., ERONEN, J., AND RÖNING, J. Running mali-
cious code by exploiting buffer overflows: A survey of publicly available exploits.
In Proceedings of the 1st European Anti-Malware Conference (EICAR) (March
2000). Available from: http://www.ee.oulu.fi/research/ouspg/

protos/sota/EICAR2000-overflow-survey. Ref: page 14

[262] THE OPENBSD PROJECT. OpenSSH [online]. Available from: http://www.
openssh.com/. Ref: page 4, 128

[263] THE OPENBSD PROJECT. Systems using OpenSSH [online]. 2005. Available
from: http://www.openssh.com/users.html. Ref: page 4

184

http://dx.doi.org/10.1145/66093.66095
http://www.usenix.org/publications/library/proceedings/sec02/staniford.html
http://www.usenix.org/publications/library/proceedings/sec02/staniford.html
http://dx.doi.org/10.1145/1024393.1024404
http://sunsolve.sun.com/search/document.do?assetkey=1-26-57675-1
http://sunsolve.sun.com/search/document.do?assetkey=1-26-57675-1
http://www.ee.oulu.fi/research/ouspg/protos/sota/EICAR2000-overflow-survey
http://www.ee.oulu.fi/research/ouspg/protos/sota/EICAR2000-overflow-survey
http://www.openssh.com/
http://www.openssh.com/
http://www.openssh.com/users.html

BIBLIOGRAPHY

[264] THE OPENSSL PROJECT. Openssl: The open source toolkit for ssl/tls [online].
Available from: http://www.openssl.org/. Ref: page 131

[265] THOMPSON, K. Reflections on trusting trust. Communications of the ACM 27, 8
(1984), 761–763. doi:10.1145/358198.358210. Ref: page 71

[266] TREND MICRO. Vulnerability exploits break records. Tech. rep., Trend Mi-
cro, January 2004. Available from: http://www.trendmicro.com/en/

security/white-papers/overview.htm. Ref: page 1

[267] TURING, A. M. On computable numbers with an application to the entschei-
dungsproblem. In Proceedings of the London Mathematical Society (1936), no. 42
in 2, pp. 230–265. Ref: page 34, 44

[268] TURING, A. M. Computability and λ-definability. Journal of Symbolic Logic, 2
(1937), 153–163. Ref: page 18

[269] TURNER, D. A. The semantic elegance of applicative languages. In Conference

on Functional Programming Languages and Computer Architecture (New York,
NY, USA, 1981), ACM Press, pp. 85–92. Ref: page 20

[270] TURNER, D. A. Miranda: a non-strict functional language with polymorphic
types. In Functional Programming Languages and Computer Architecture (New
York, NY, USA, 1985), Springer-Verlag New York, pp. 1–16. Ref: page 20

[271] VAN RENESSE, R., BIRMAN, K., HAYDEN, M., VAYSBURD, A., AND KARR, D.
Building adaptive systems using Ensemble. Software—Practice and Experience

28, 9 (1998), 963–979. Ref: page 6, 56

[272] VAN ROSSUM, G. The Python programming language [online]. Available from:
http://www.python.org. Ref: page 19, 26

[273] VANINWEGEN, M. The Machine-Assisted Proof Of Programming Language

Properties. PhD thesis, University of Pennsylvania, 1996. Ref: page 26

[274] VENKATRAMAN, B. R., AND NEWMAN-WOLFE, R. E. Capacity estimation
and auditability of network covert channels. In Proceedings of the 1995 IEEE

Symposium on Security and Privacy (SP) (Washington, DC, USA, May 1995),
IEEE Computer Society, pp. 186–198. Ref: page 70

185

http://www.openssl.org/
http://dx.doi.org/10.1145/358198.358210
http://www.trendmicro.com/en/security/white-papers/overview.htm
http://www.trendmicro.com/en/security/white-papers/overview.htm
http://www.python.org

BIBLIOGRAPHY

[275] VISSER, W., HAVELUND, K., BRAT, G., AND PARK, S. Model checking pro-
grams. In Proceedings of the 15th IEEE International Conference on Automated

Software Engineering (ASE) (Washington, DC, USA, 2000), IEEE Computer So-
ciety, p. 3. Ref: page 40

[276] VIXIE, P. Extension Mechanisms for DNS (EDNS0). RFC 2671 (Proposed
Standard), Aug. 1999. Available from: http://www.ietf.org/rfc/

rfc2671.txt. Ref: page 143

[277] WADLER, P. Deforestation: Transforming programs to eliminate trees. In Pro-

ceedings of the Second European Symposium on Programming (ESOP) (Amster-
dam, The Netherlands, The Netherlands, 1988), North-Holland Publishing Co.,
pp. 231–248. doi:10.1016/0304-3975(90)90147-A. Ref: page 60

[278] WADSWORTH, C. P. Semantics and Pragmatics of the Lambda Calculus. PhD
thesis, Oxford University, 1971. Ref: page 24

[279] WAGNER, D., AND SOTO, P. Mimicry attacks on host-based intrusion detection
systems. In Proceedings of the 9th ACM Conference on Computer and Commu-

nications Security (CCS) (August 2002), V. Atluri, Ed., ACM, pp. 255–264. Ref:
page 17, 48

[280] WAKEMAN, I., JEFFREY, A., OWEN, T., AND PEPPER, D. Safetynet: a language-
based approach to programmable networks. Computer Networks 36, 1 (2001),
101–114. doi:10.1016/S1389-1286(01)00154-2. Ref: page 51

[281] WEAVER, N., PAXSON, V., STANIFORD, S., AND CUNNINGHAM, R. A tax-
onomy of computer worms. In Proceedings of the 2003 ACM workshop on

Rapid Malcode (WORM) (New York, NY, USA, 2003), ACM Press, pp. 11–18.
doi:10.1145/948187.948190. Ref: page 14

[282] WEAVER, N., STANIFORD, S., AND PAXSON, V. Very fast containment of scan-
ning worms. In Proceedings of the 13th USENIX Security Symposium (August
2004), M. Blaze, Ed., USENIX, pp. 29–44. Ref: page 16

[283] WICKLINE, P., LEE, P., AND PFENNING, F. Run-time code generation and
modal-ML. In Proceedings of the ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI) (New York, NY, USA, 1998), ACM
Press, pp. 224–235. doi:10.1145/277650.277727. Ref: page 55

186

http://www.ietf.org/rfc/rfc2671.txt
http://www.ietf.org/rfc/rfc2671.txt
http://dx.doi.org/10.1016/0304-3975(90)90147-A
http://dx.doi.org/10.1016/S1389-1286(01)00154-2
http://dx.doi.org/10.1145/948187.948190
http://dx.doi.org/10.1145/277650.277727

BIBLIOGRAPHY

[284] WIGER, U., ASK, G., AND BOORTZ, K. World-class product certification using
Erlang. In Proceedings of the ACM SIGPLAN workshop on Erlang (New York,
NY, USA, 2002), ACM Press, pp. 24–33. doi:10.1145/592849.592853. Ref: page
21

[285] WIRTH, N. Program development by stepwise refinement. Communications of the

ACM 14, 4 (April 1971), 221–227. Available from: http://www.acm.org/
classics/dec95/. Ref: page 53

[286] WOO, T. Y., BINDIGNAVLE, R., SU, S., AND LAM, S. S. SNP: An interface for
secure network programming. In Proceedings of the USENIX Summer Technical

Conference (August 1994), USENIX. Available from: http://www.usenix.
org/publications/library/proceedings/bos94/woo.html.
Ref: page 3

[287] XI, H. Dependent Types in Practical Programming. PhD thesis, Carnegie Mel-
lon University, September 1998. Available from: http://www.cs.bu.edu/
∼hwxi/academic/papers/thesis.2.ps. Ref: page 22, 70

[288] XI, H., AND PFENNING, F. Eliminating array bound checking through depen-
dent types. In Proceedings of the ACM SIGPLAN Conference on Programming

Language Design and Implementation (New York, NY, USA, 1998), ACM Press,
pp. 249–257. doi:10.1145/277650.277732. Ref: page 70

[289] YANG, J., TWOHEY, P., ENGLER, D., AND MUSUVATHI, M. Using model check-
ing to find serious file system errors. In Proceedings of the 6th Symposium on Op-

erating Systems Design and Implementation (OSDI) (December 2004), pp. 273—
288. Ref: page 40

[290] YEONG, W., HOWES, T., AND KILLE, S. X.500 Lightweight Directory Access
Protocol. RFC 1487 (Historic), July 1993. Obsoleted by RFCs 1777, 3494. Avail-
able from: http://www.ietf.org/rfc/rfc1487.txt. Ref: page 49

[291] YLONEN, T., AND LONVICK, C. The Secure Shell (SSH) Authentication Pro-
tocol. RFC 4252 (Proposed Standard), Jan. 2006. Available from: http:

//www.ietf.org/rfc/rfc4252.txt. Ref: page 129, 141

187

http://dx.doi.org/10.1145/592849.592853
http://www.acm.org/classics/dec95/
http://www.acm.org/classics/dec95/
http://www.usenix.org/publications/library/proceedings/bos94/woo.html
http://www.usenix.org/publications/library/proceedings/bos94/woo.html
http://www.cs.bu.edu/~hwxi/academic/papers/thesis.2.ps
http://www.cs.bu.edu/~hwxi/academic/papers/thesis.2.ps
http://dx.doi.org/10.1145/277650.277732
http://www.ietf.org/rfc/rfc1487.txt
http://www.ietf.org/rfc/rfc4252.txt
http://www.ietf.org/rfc/rfc4252.txt

BIBLIOGRAPHY

[292] YLONEN, T., AND LONVICK, C. The Secure Shell (SSH) Connection Pro-
tocol. RFC 4254 (Proposed Standard), Jan. 2006. Available from: http:

//www.ietf.org/rfc/rfc4254.txt. Ref: page 129, 141

[293] YLONEN, T., AND LONVICK, C. The Secure Shell (SSH) Protocol Archi-
tecture. RFC 4251 (Proposed Standard), Jan. 2006. Available from: http:

//www.ietf.org/rfc/rfc4251.txt. Ref: page 80, 129

[294] YLONEN, T., AND LONVICK, C. The Secure Shell (SSH) Transport Layer
Protocol. RFC 4253 (Proposed Standard), Jan. 2006. Available from: http:
//www.ietf.org/rfc/rfc4253.txt. Ref: page 129

[295] ZAKAS, N. C., MCPEAK, J., AND FAWCETT, J. Professional Ajax, 1 ed. Wrox,
February 2006. Ref: page 124

[296] ZEILENGA, K. Lightweight Directory Access Protocol version 2 (LDAPv2) to
Historic Status. RFC 3494 (Informational), Mar. 2003. Available from: http:
//www.ietf.org/rfc/rfc3494.txt. Ref: page 49

188

http://www.ietf.org/rfc/rfc4254.txt
http://www.ietf.org/rfc/rfc4254.txt
http://www.ietf.org/rfc/rfc4251.txt
http://www.ietf.org/rfc/rfc4251.txt
http://www.ietf.org/rfc/rfc4253.txt
http://www.ietf.org/rfc/rfc4253.txt
http://www.ietf.org/rfc/rfc3494.txt
http://www.ietf.org/rfc/rfc3494.txt

APPENDIX A

Sample Application: ping

This Appendix describes how all the tools described in this dissertation can fit together to
construct a simple network ping client. The client includes an MPL specification to parse
IPv4 and ICMP headers, and an simple SPL specification to enforce the ping automaton.

We first define the network format of the ping packets. Our application will read
using the raw socket interface (as the usual C implementations also do), which provides
a packet consisting of the IPv4 header, the ICMP header, and then the ping payload. The
MPL definitions are listed later, for IPv4 (§C.2) and ICMP (§C.3).

We then define a simple automaton for the application which gives it three main
modes of operation: (i) initialising; (ii) transmitting a packet; or (iii) waiting for a packet
or a timeout. We also define a separate “never” automaton which defines the packets
which should never be received by the client (at least until support is added for them in
the main code-base). The state-machine graphical rendering (using Graphviz [161] and
the SPL compiler DOT output) can be seen in Figure A.1.

189

Chapter A. Sample Application: ping

automaton ping () { SPL

Init;
multiple {

Transmit Icmp EchoRequest;
either {

Timeout;
} or {

Receive Icmp EchoReply;
}

}
}
automaton never () {

either { Receive Icmp DestinationUnreachable; }
or { Receive Icmp EchoRequest; }
or { Receive Icmp Redirect; }
or { Receive Icmp RouterAdvertisement; }
or { Receive Icmp RouterSolicitation; }
or { Receive Icmp SourceQuench; }
or { Receive Icmp TimeExceeded; }
or { Receive Icmp TimestampRequest; }

}

Next, we define some utility functions to handle initialising and driving the automaton
based on network activity:

let auto = ref (Automaton.init ()) OCAML

let tick s = auto := Automaton.tick !auto s
let icmp xmit and tick o s addr =

tick (o#xmit statecall :> Statecalls.t);
Mpl stdlib.sendto o#env s addr

let icmp recv and tick env =
let o = Icmp.unmarshal env in
tick (Icmp.recv statecall o);
o

let timeout read fd timeout fn =
match Unix.select [fd] [] [] timeout with
|[s], , → fn ()
| → tick ‘Timeout

The tick function accepts a statecall and updates the global automaton with a tick,
raising an exception if the transition is invalid, or just continuing otherwise. The next
two functions icmp xmit and tick and icmp recv and tick ensure that all network
traffic via the MPL interface also ticks the automaton. The final function timeout read

waits for data to be available, and ticks the automaton with a timeout message if none
is, and otherwise calls the function argument. This group of functions represents the
entire MPL/SPL “bridge” interface, which makes sure that all network traffic drives the

190

S_or_12

S_multentry_5

{Timeout} (4)

S_final_2

{Timeout} (4)

{Transmit_Icmp_EchoRequest} (2)

S_or_14

{Transmit_Icmp_EchoRequest} (2) {Receive_Icmp_EchoReply} (6)

{Receive_Icmp_EchoReply} (6)

S_initial_1

{Init} (0)

{Init} (0)

Figure A.1: Automaton for the sample ping application

embedded automaton. Even if the application is extended later to handle more packet
types, this bridge does not need to be modified since the auto-generated code from the
MPL and SPL compilers is compatible and uses extensible polymorphic variants.

let sequence = ref 0 OCAML

let create ping env =
Mpl stdlib.reset env;
incr sequence;
let icdata = Icmp.EchoRequest.t

code:0 checksum:0 identifier:345 sequence:!sequence
data:(‘Str “foobar”) env in

let csum, = Ip utils.icmp checksum icdata#env in
icdata#set checksum csum;
icdata

We also define the create ping function to construct ICMP echo request packets.
The above fragment is obviously simplified—in reality, the function would also param-
eterise the packet contents. Finally, we define the main body of code to handle sending
pings:

191

Chapter A. Sample Application: ping

let s = socket PF INET SOCK RAW 1 in (? 1 is IPPROTO ICMP ?) OCAML

let addr = ADDR INET (inet addr of string !ip, 0) in
let senv = Mpl stdlib.new env (String.create 4000) in
let renv = Mpl stdlib.new env (String.create 4000) in
tick ‘Init;
while true do

icmp xmit and tick (create ping senv) s addr;
timeout read s 4. (fun () →
let faddr = Mpl stdlib.recvfrom renv s [] in
let ip = Ipv4.unmarshal renv in

Ip utils.data env ip (fun env →
match ip#protocol with
|‘ICMP → begin

match icmp recv and tick env with
|‘EchoReply icmp →

icmp#prettyprint;
| → raise Unknown ICMP Packet

end
| → raise Unknown IP Packet
);

);
sleep 1;

done

The program first opens a raw socket, creates MPL environments, and invokes the Init

statecall. Recall from the SPL automaton that once the Init statecall is called, it cannot
happen again for the lifetime of the automaton. Although not of prime importance in this
fragment, it becomes important when dealing with privilege dropping1.

Finally, the ping enters an infinite loop, where it constructs a ping packet and transmits
it, waits for a reply, and pattern-matches the response to determine if it is an Echo Reply
packet, using the standard OCaml construct for this purpose.

This is all that is needed to create a simple ping client. In a real implementation, of
course, there would be more code for argument parsing for the command-line and better
error handling, but these are left as an exercise to the reader.

1ping is traditionally run with root privileges to be able to open raw sockets, and should drop those
privileges after initialisation since they are no longer required [259].

192

APPENDIX B

MPL User Manual

This Appendix describes the MPL language and compiler in more detail. The MPL
compiler internally represents the specification using the Abstract Syntax Tree (AST)
shown in Table B.1. In our notation, (a × b) represents a tuple, and ident represents a
capitalized string (e.g. Foo).

B.1 Well-Formed Specifications

Although MPL is a domain-specific language which prohibits constructs such as user-
defined function calls or recursion, it is still possible to specify malformed packets (i.e.
impossible conversions or incomplete information) by using the syntax presented above.
The MPL compiler performs static checks to ensure that: (i) types and expressions used
in a packet are self-consistent (i.e. a string field is not classified as an integer); (ii) names
are unique at all scopes to avoid aliasing issues; and (iii) enough information has been
specified to perform both marshalling and unmarshalling of packets precisely. The checks
for a well-formed specification are done in two phases; the first checks that all variables,
statements and attributes except for value (which has different scoping rules described in
§B.2). The second phase performs a global scope check to ensure that value expressions
can be resolved correctly during packet creation.

An MPL specification consists of one or more MPL packets, and each packet has an
optional list of state variables. State variables of are of type int (32-bit) or bool, and
can only be used as guards in classify clauses. Names of state variables are distinct from

193

Chapter B. MPL User Manual

n ← string variable name
e ← n | and(e1, e2) | or(e1, e2) | not(e) expression
| true | false | integer | string
| (e1 > e2) | (e1 ≥ e2) | (e1 < e2) | (e1 ≤ e2)
| (e1 + e2) | (e1 − e2) | (e1 × e2) | (e1 ÷ e2)
| (e1 = e2) | (e1..e2) | builtin function(n, e)

v ← n× ident variant type mapping
t ← byte | uint16 | uint32 | uint64 | . . . normal variable type
| (bit | byte | . . .)× e array variable type

a ← value(e) value attribute
| const(e) constant attribute
| align(e) alignment attribute
| min(e) minimum attribute
| max(e) maximum attribute
| default(e) default attribute
| variant(v1 . . . vl) (l > 0) variant attribute

g ← e× n× (f1 . . . fn) (n > 0) guard expression
f ← var(n× t× (a0 . . . ak)) (k ≥ 0) variable binding
| classify(n× (g1 . . . gj)) (j > 0) variable classification
| array(n× (f1 . . . fn)) (n > 0) array declaration
| label(n) (n > 0) label marker

s ← int | bool state variables
p ← (s1 . . . si)× (f1 . . . fn) (i ≥ 0, n > 0) packet

Table B.1: Abstract Syntax Tree used to represent MPL specifications

bit[x] built-in int(x)
byte[x] built-in opaque

byte built-in int(8)
uint16 built-in int(16)
uint32 built-in int(32)
uint64 built-in int(64)

string8 custom (DNS) string
string32 custom (SSH) string

mpint custom (SSH) opaque
boolean custom (SSH) bool

Table B.2: Mapping of wire types to MPL types

194

B.1. Well-Formed Specifications

the other variable bindings discussed below.

A packet consists of a sequence of named fields, each of which have a single wire type.
The wire type represents the network representation of a value, and maps to one of the
following MPL types: bool, int, string, and opaque. Some wire types are built into
MPL and others can be added on a per-protocol basis, as shown in Table B.2. Mapping to
an MPL type allows the contents of that variable to be used in MPL expressions such as
length expressions or classification pattern matches. The opaque type represents abstract
data (such as multiple-precision integers in SSH) that cannot be further manipulated in
an MPL spec. As a special exception, a variable can have the wire type label, which
binds it as a position marker in the packet at that point but does not modify the parsing
state.

Variables of type bit must have a constant integer length also specified to represent
the number of bits. Successive bit variables form a bit-field of any length, but it must

be aligned to 8-bits when the bit-field ends (by a non-bit variable or the end of the
packet). Bit-fields are allowed to contain classify clauses, but the bit-alignment at the
end of each classification branch must be equal (note that bit-alignment is modulo-8 and
so one classification branch could include many more bits, as long as the final alignment
is the same as other branches). Variables of type byte can optionally have an integer
length to convert them into a byte array. This length can be constant or an expression
consisting of earlier int variables.

Every variable can be tagged with an optional list of attributes. The precise meanings
of the attributes are discussed later (§B.2), but first we define how they can be well-
formed. An array variable (e.g. byte[x]) can only have the align attribute, which accepts
an integer argument which is a multiple of 8. For each normal variable with some type
α, each the following attributes can optionally be specified: (i) const, value or default
which contain an expression of type α; (ii) min or max which accept int arguments and
are only allowed when (α ← int); and (iii) variant which contains a list of constant
expressions of type α. Any int types also have a precision from 1–64 bits, and any
constants specified in relation to that variable are range-checked appropriately.

Expressions can also include built-in functions (see bottom-left of Table B.3) from the
following: (i) remaining takes no arguments and returns an int; (ii) offset and sizeof
accepts a single variable name argument and returns an int; and (iii) array length

accepts a single variable name argument which is bound to an array variable (see below)
and returns an int. remaining can only be used in the length specifier to arrays, and the
other functions only in attribute expressions.

195

Chapter B. MPL User Manual

Table B.3: Primitive type rules for MPL expressions

true bool
false bool
string string

number int

const ∀α.α× α→ unit
value ∀α.α× α→ unit

default ∀α.α× α→ unit
align int × int→ unit

min int × int→ unit
max int × int→ unit

variant ∀α.α× [α]→unit

offset variable→ int
sizeof variable→ int

array length variable→ int
remaining unit→ int

(unary) − int→ int
(unary) + int→ int

and bool × bool→ bool
or bool × bool→ bool

not bool→ bool

.. int × int → int × int
= int × int→ bool
> int × int→ bool
< int × int→ bool

>= int × int→ bool
<= int × int→ bool

+ int × int→ int
− int × int→ int
∗ int × int→ int
/ int × int→ int

In addition to variable declarations, statements can also specify: (i) a classify clause;
(ii) an array; (iii) a packet; or (iv) unit (representing no action). The classify clause
accepts one argument, a variable of type (∀α | α 6= opaque), and a pattern match con-
sisting of a list of named constant α expressions with an optional bool guard expression
(guard expressions can only contain state variables). If the classify has type int, then the
range operator (represented by “..”) can also be used. All pattern match names must be
distinct in a given classify clause. An array is named and accepts an int expression and
a sub-block of statements. A packet represents an external MPL packet (which must be
found in the path of the MPL compiler) and must specify a list of arguments of equivalent
types to any state variables required by that packet.

Expressions are forbidden from referring to variables inside a classify clause1. Vari-
able scoping in expressions is handled differently for value attributes from other expres-
sions. Normal expressions can refer to previously declared variables, and value expres-
sions (only used when creating new packets) can refer to any variables in the specification.

1This restriction is actually due to implementation limitations of our current compiler, and could be
relaxed in the future if every path in a classify contained a variable of the same name and type.

196

B.2. Semantics

B.2 Semantics
We now describe the meaning of every element in an MPL specification. A specification
consists of a list of statements (represented by f in the AST in Table B.1):

Variable Binding: A variable name n is bound to type t, which can either be a built-in
or custom type (see Table B.2 and §5.2.3). The type can also have an optional size
specifier, which indicates that it is a bit or byte array of data. A variable can have
the following attributes attached to it:

Value e: The expression e is always assigned as the value of the variable when a
new packet is being created. The variable is no longer exported to the external
code interface.

Const ec: The constant expression ec always represents the value of this variable
when a new packet is being created, and may optionally be checked against
received traffic. The variable is no longer exported to the external code inter-
face.

Min/Max n: The integer n represents the minimum or maximum range of this
variable when it is being created. The range can also be optionally enforced
for received packets.

Default ec: The constant expression ec is offered as a convenient default value
when a new packet is being created, but it can be overridden by the user if
required.

Variant v1 . . . vn: A list of mappings which convert expressions (of the type of the
variable) into a string label. The labels are exposed in the external interface
instead of the raw values themselves.

Align n: Ensures that created byte arrays always end at the bit-boundary specified
by n. A common value in Internet protocols is 32 to ensure alignment of data
packets for efficiency reasons on 32-bit architectures. Added padding bytes
always have the value 0. This check can optionally be enabled for received
traffic.

Classify (n× (g1 . . . gj)): The value of variable n (which must been previously bound
with a variable binding) decides the structure of the packet that follows. Each
pattern match g contains: (i) a constant expression ec indicating the value to pattern
match n against; (ii) a string label giving a name for this portion of the classified

197

Chapter B. MPL User Manual

packet; (iii) an optional boolean guard expression which can use the values of
the packet state variables to decide whether to pattern match or not; and (iv) a
list of further statements (f1 . . . fn) to evaluate upon a successful pattern match.
Any statements which follow after the classify block are appended to each of the
statement blocks (f1 . . . fn) and evaluated after them.

Array (e× (f1 . . . fn)): The integer expression e represents a fixed-length number of
records. The records are represented by the statements (f1 . . . fn).

Label: Labels are used to bind markers within a packet, and expose these markers to the
external code interface. They are used (for example) to delimit the header and body
portions of a packet, or to dynamically calculate the size of a classification block
by placing labels before and after it.

Expressions have access to the following built-in functions (within the limits of our
well-formedness rules in §B.1):

sizeof v: Returns the size in bytes of the variable v.

offset v: Returns the offset in bytes after the end of the variable v. The packet is assumed
to start from offset 0.

remaining: Returns the number of bytes remaining in the packet currently being parsed.
Can only be used in the size specifier to a byte array.

array length v: Returns the number of elements in an array variable bound with the
array keyword. Is not meaningful with any other variable types.

198

APPENDIX C

MPL Protocol Listings

C.1 Ethernet
packet ethernet { MPL

dest mac: byte[6];

src mac: byte[6];

length: uint16 value(offset(end of packet)-offset(length));

classify (length) {
|46..1500:”E802 2” →

data: byte[length];

|0x800:“IPv4” →
data: byte[remaining()];

|0x806:“Arp” →
data: byte[remaining()];

|0x86dd:“IPv6” →
data: byte[remaining()];

};
end of packet: label;

}

C.2 IPv4
packet ipv4 { MPL

version: bit[4] const(4);

199

Chapter C. MPL Protocol Listings

ihl: bit[4] min(5) value(offset(options) / 4);

tos precedence: bit[3] variant {
|0 ⇒ Routine |1 → Priority

|2 → Immediate |3 → Flash

|4 → Flash override |5 → ECP

|6 → Internetwork control |7 → Network control

};
tos delay: bit[1] variant {|0 ⇒ Normal |1 → Low};
tos throughput: bit[1] variant {|0 ⇒ Normal |1 → Low};
tos reliability: bit[1] variant {|0 ⇒ Normal |1 → Low};
tos reserved: bit[2] const(0);

length: uint16 value(offset(data));

id: uint16;

reserved: bit[1] const(0);

dont fragment: bit[1] default(0);

can fragment: bit[1] default(0);

frag offset: bit[13] default(0);

ttl: byte;

protocol: byte variant {|1→ICMP |2→IGMP |6→TCP |17→UDP};
checksum: uint16 default(0);

src: uint32;

dest: uint32;

options: byte[(ihl × 4) - offset(dest)] align(32);

header end: label;

data: byte[length-(ihl×4)];

}

C.3 ICMP
packet icmp { MPL

ptype: byte;

code: byte default(0);

checksum: uint16 default(0);

classify (ptype) {
|0:“EchoReply” →

identifier: uint16;

sequence: uint16;

data: byte[remaining()];

200

C.4. DNS

|3:“DestinationUnreachable” →
reserved: uint32 const(0);

ip header: byte[remaining()];

|4:“SourceQuench” →
reserved: uint32 const(0);

ip header: byte[remaining()];

|5:“Redirect” →
gateway ip: uint32;

ip header: byte[remaining()];

|8:“EchoRequest” →
identifier: uint16;

sequence: uint16;

data: byte[remaining()];

|9:“RouterAdvertisement” → ();

|10:“RouterSolicitation” → ();

|11:“TimeExceeded” →
reserved: uint32 const(0);

ip header: byte[remaining()];

|13:“TimestampRequest” →
identifier: uint16;

sequence: uint16;

origin timestamp: uint32;

receive timestamp: uint32;

transmit timestamp: uint32;

};
}

C.4 DNS
packet dns { MPL

id: uint16;

qr: bit[1] variant { |0 → Query |1 → Answer };
opcode: bit[4] variant { |0 → Query |1 → IQuery |2 → Status

|3 → Reserved |4 → Notify |5 → Update };
authoritative: bit[1];

truncation: bit[1];

rd: bit[1];

ra: bit[1];

201

Chapter C. MPL Protocol Listings

zv: bit[3] const(0);

rcode: bit[4] variant {|0 ⇒ NoError |1 → FormErr

|2 → ServFail |3 → NXDomain |4 → NotImp |5 → Refused

|6 → YXDomain |7 → YXRRSet |8 → NXRRSet |9 → NotAuth

|10 → NotZone |16 → BadVers |17 → BadKey |18 → BadTime

|19 → BadMode |20 → BadName |21 → BadAlg};
qdcount: uint16 value(array length(questions));

ancount: uint16 value(array length(answers));

nscount: uint16 value(array length(authority));

arcount: uint16 value(array length(additional));

questions: array (qdcount) {
qname: dns label;

qtype: uint16 variant {|1 → A |2 → NS |3 → MD |4 → MF

|5→ CNAME |6→ SOA |7 → MB |8 → MG |9 → MR

|10 → NULL |11 → WKS |12 → PTR |13 → HINFO

|14 → MINFO |15 → MX |16 → TXT |17 → RP

|33 → SRV |38 → A6 |252 → AXFR |253 → MAILB

|254 → MAILA |255 → ANY};
qclass: uint16 variant {|1 ⇒ IN |2 → CSNET

|3 → CHAOS |4 → HS |255 → ANY};
};
answers: array (ancount) {

rr: packet dns rr();

};
authority: array (nscount) {

rr: packet dns rr();

};
additional: array (arcount) {

rr: packet dns rr();

};
}
packet dns rr { MPL

name: dns label comp;

atype: uint16;

aclass: uint16 variant {|1 ⇒ IN |2 → CSNET |3 → CHAOS |4 → HS };
ttl: uint32;

rdlength: uint16 value(offset(ans end) - offset(ans start));

202

C.4. DNS

ans start: label;

classify (atype) {
|1:“A” →

ip: uint32;

|2:“NS” →
hostname: dns label comp;

|3:“MD” →
madname: dns label;

|5:“CNAME” →
cname: dns label;

|6:“SOA” →
primary ns: dns label comp;

admin mb: dns label comp;

serial: uint32;

refresh: uint32;

retry: uint32;

expiration: uint32;

minttl: uint32;

|12:“PTR” →
ptrdname: dns label comp;

|15:“MX” →
preference: uint16;

hostname: dns label comp;

|16:“TXT” →
data: string8;

misc: byte[rdlength - offset(data) + offset(ans start)];

|29:“LOC” →
version: byte const(0);

size: byte;

horiz pre: byte;

vert pre: byte;

latitude: uint32;

longitude: uint32;

altitude: uint32;

| :“Unknown” →
data: byte[rdlength];

};

203

Chapter C. MPL Protocol Listings

ans end: label;

}

C.5 SSH
packet transport { MPL

ptype: byte;

classify (ptype) {
|1:“Disconnect” → reason code: uint32 variant {

|1 → Host not allowed |2 → Protocol error

|3 → Kex failed |4 → Reserved |5 → MAC error

|6 → Compression error |7 → Service not available

|8 → Protocol unsupported |9 → Bad host key

|10 → Connection lost |11 → By application

|12 → Too many connections |13 → Auth cancelled

|14 → No more auth methods |15 → Illegal user name };
description: string32;

language: string32;

|2:“Ignore” → data: string32;

|3:“Unimplemented” → seq num: uint32;

|4:“Debug” →
always display: boolean;

message: string32;

language: string32;

|5:“ServiceReq” →
stype: string32;

classify (stype) {
|“ssh-userauth”:“UserAuth” → ();

|“ssh-connection”:“Connection” → ();

};
|6:“ServiceAccept” →

stype: string32;

classify (stype) {
|“ssh-userauth”:“UserAuth” → ();

|“ssh-connection”:“Connection” → ();

};
|20:“KexInit” →

cookie: byte[16];

204

C.5. SSH

kex algorithms: string32;

server host key algorithms: string32;

encryption algorithms client to server: string32;

encryption algorithms server to client: string32;

mac algorithms client to server: string32;

mac algorithms server to client: string32;

compression algorithms client to server: string32;

compression algorithms server to client: string32;

languages client to server: string32;

languages server to client: string32;

kex packet follows: boolean;

reserved: uint32 const(0);

|21:“NewKeys” → ();

};
}
packet auth (bool passwd ns) { MPL

ptype: byte;

classify (ptype) {
|50:“Req” →

user name: string32;

service: string32;

authtype: string32;

classify (authtype) {
|“none”:“None” → ();

|“publickey”:“PublicKey” →
bcheck: boolean;

classify (bcheck) {
|false:“Check” →

algorithm: string32;

blob: string32;

|true:“Request” →
algorithm: string32;

publickey: string32;

signature: string32;

};
|“password”:“Password” →

bcheck: boolean;

205

Chapter C. MPL Protocol Listings

classify (bcheck) {
|false:“Request” →

password: string32;

|true:“Change” →
old password: string32;

new password: string32;

};
};

|51:“Failure” →
auth continue: string32;

partial success: boolean;

|52:“Success” → ();

|53:“Banner” →
banner: string32;

language: string32;

|60:“ChangeReq” when (passwd ns) →
prompt: string32;

language: string32;

|60:”PublicKey OK” when (!passwd ns) → ();

};
}

206

APPENDIX D

SPL Specifications

D.1 SSH Transport and Authentication
automaton transport (bool encrypted, bool serv auth) SPL

{
during {

always allow (Transmit Transport Debug, Receive Transport Debug,

Transmit Transport Ignore, Receive Transport Ignore) {
multiple {

either {
either {

Transmit Transport KexInit;

Receive Transport KexInit;

} or (encrypted) {
Receive Transport KexInit;

Transmit Transport KexInit;

}
either {

Expect DHInit;

Receive Dhgroupsha1 Init;

Transmit Dhgroupsha1 Reply;

} or {
Expect GexInit;

207

Chapter D. SPL Specifications

Receive Dhgexsha1 Request;

Transmit Dhgexsha1 Group;

Receive Dhgexsha1 Init;

Transmit Dhgexsha1 Reply;

}
Receive Transport NewKeys;

Transmit Transport NewKeys;

encrypted = true;

} or (encrypted && !serv auth) {
Receive Transport ServiceReq UserAuth;

Transmit Transport ServiceAccept UserAuth;

serv auth = true;

}
}

}
} handle {

either {
Signal HUP;

} or {
either {

Receive Transport Disconnect;

} or {
optional { Signal QUIT; }
Transmit Transport Disconnect;

exit;

}
} or {
Receive Transport Unimplemented;

}
}

}
automaton auth (bool success, bool failed)

{
Transmit Transport ServiceAccept UserAuth;

during {
do {

always allow (Transmit Auth Banner) {

208

D.1. SSH Transport and Authentication

either {
Receive Auth Req None;

Transmit Auth Failure;

} or {
Receive Auth Req Password Request;

either {
Transmit Auth Success;

success = true;

} or {
Transmit Auth Failure;

}
} or {

Receive Auth Req PublicKey Request;

either {
Transmit Auth Success;

success = true;

} or {
Transmit Auth Failure;

}
} or {

Receive Auth Req PublicKey Check;

either {
Transmit Auth PublicKey OK;

} or {
Transmit Auth Failure;

}
} or {

Notify Auth Permanent Failure;

failed = true;

}
}

} until (success || failed);

} handle {
Transmit Transport Disconnect;

exit;

}
}

209

Chapter D. SPL Specifications

D.2 SSH Channels
// Automaton representing an interactive channel session SPL

automaton

interactive (bool done pty, bool done exec, bool got eof, bool sent eof)

{
multiple {

either (!done pty) {
Receive Channel Request Pty;

either {
Expect Pty Success;

optional { Transmit Channel Success; }
done pty = true;

} or {
Transmit Channel Failure;

}
} or (!done exec) {

Receive Channel Request Shell;

either {
Expect Shell Success;

optional { Transmit Channel Success; }
done exec = true;

} or {
Transmit Channel Failure;

}
} or (!done exec) {

Receive Channel Request Exec;

either {
Expect Exec Success;

optional { Transmit Channel Success; }
done exec = true;

} or {
Transmit Channel Failure;

}
} or (done exec) {

either {
Receive Channel WindowAdjust;

210

D.2. SSH Channels

} or {
Transmit Channel WindowAdjust;

} or (!got eof) {
Receive Channel Data;

} or (!got eof) {
Receive Channel ExtendedData;

} or (!sent eof) {
Transmit Channel Data;

} or (!sent eof) {
Transmit Channel ExtendedData;

} or (!got eof) {
Receive Channel EOF;

got eof = true;

} or (!sent eof) {
Transmit Channel EOF;

sent eof = true;

} or {
Receive Channel Close;

optional { Transmit Channel Close; }
exit;

} or {
Transmit Channel Close;

sent eof = true;

}
}

}
}
automaton never ()

{
either { Receive Channel OpenConfirmation; }
or { Transmit Channel Request Pty; }
or { Receive Channel Success; }
or { Transmit Channel Success; }
or { Transmit Channel Request Shell; }
or { Transmit Channel Request Exec; }
or { Transmit Channel Request X11; }
or { Transmit Channel Request ExitStatus; }

211

Chapter D. SPL Specifications

or { Receive Channel Request Env; }
or { Receive Channel Request ExitSignal; }
or { Receive Channel Request ExitStatus; }
or { Receive Channel Request LocalFlowControl; }
or { Receive Channel Request Signal; }
or { Receive Channel Request Subsystem; }
or { Receive Channel Request WindowChange; }
or { Receive Channel Request X11; }
or { Receive Channel Failure; }

}

212

	Introduction
	Internet Growth
	Security and Reliability Concerns
	Firewalls Prove Insufficient
	The Internet Server Monoculture

	Motivation for Rewriting Internet Servers
	Contributions

	Background
	Internet Security
	History
	Language Issues
	The Rise of the Worm
	Defences Against Internet Attacks

	Functional Programming
	History
	Type Systems
	Features
	Evolution

	Objective Caml
	Strong Abstraction
	Polymorphic Variants
	Mutable Data and References
	Bounds Checking

	Model Checking
	Spin and Promela
	System Verification using Spin
	Model Creation and Extraction

	Summary

	Related Work
	Control Plane
	Formal Models of Concurrency
	Model Extraction
	Dynamic Enforcement and Instrumentation

	Data Plane
	Data Description Languages
	Active Networks
	The View-Update Problem

	General Purpose Languages
	Software Engineering
	Meta-Programming
	Functional Languages for Networking

	Summary

	Architecture
	Goals
	Data Abstractions
	Language Support

	The Melange Architecture
	Meta Packet Language (MPL)
	Statecall Specification Language (SPL)

	Threat Model
	Summary

	Meta Packet Language
	Language
	Parsing IPv4: An Example
	Theoretical Space
	Syntax
	Semantics

	Basis Library
	Packet Environments
	Basic Types
	Custom Types

	OCaml Interface
	Packet Sinks
	Packet Sources
	Packet Proxies

	Evaluation
	Experimental Setup
	Experiments and Results

	Discussion
	Summary

	Statecall Policy Language
	Statecall Policy Language
	A Case Study using ping
	Syntax
	Typing Rules

	Intermediate Representation
	Control Flow Automaton
	Multiple Automata
	Optimisation

	Outputs
	OCaml
	Promela
	HTML and Javascript

	Summary

	Case Studies
	Secure Shell (SSH)
	Performance
	SSH Packet Format
	SSH State Machines
	AJAX Debugger
	Model Checking

	Domain Name System
	DNS Packet Format
	An Authoritative Deens Server
	Performance

	Code Size
	Summary

	Conclusions
	Future Work

	Sample Application: ping
	MPL User Manual
	Well-Formed Specifications
	Semantics

	MPL Protocol Listings
	Ethernet
	IPv4
	ICMP
	DNS
	SSH

	SPL Specifications
	SSH Transport and Authentication
	SSH Channels

