
Yirgacheffe: A Declarative Approach to Geospatial
Data

Michael Winston Dales

University of Cambridge

Cambridge, United Kingdom

mwd24@cam.ac.uk

Alison Eyres

University of Cambridge

Cambridge, United Kingdom

ae491@cam.ac.uk

Patrick Ferris

University of Cambridge

Cambridge, United Kingdom

pf341@cam.ac.uk

Francesca A. Ridley

Newcastle University

Newcastle, United Kingdom

Francesca.Ridley@newcastle.ac.uk

Simon Tarr

IUCN (International Union for

Conservation of Nature)

Cambridge, United Kingdom

Simon.Tarr@iucn.org

Anil Madhavapeddy

University of Cambridge

Cambridge, United Kingdom

avsm2@cam.ac.uk

Abstract
We present Yirgacheffe, a declarative geospatial library that

allows spatial algorithms to be implemented concisely, sup-

ports parallel execution, and avoids common errors by au-

tomatically handling data (large geospatial rasters) and re-

sources (cores, memory, GPUs). Our primary user domain

comprises ecologists, where a typical problem involves clean-

ing messy occurrence data, overlaying it over tiled rasters,

combining layers, and deriving actionable insights from the

results. We describe the successes of this approach towards

driving key pipelines related to global biodiversity and de-

scribe the capability gaps that remain, hoping to motivate

more research into geospatial domain-specific languages.

CCS Concepts: • Information systems→ Geographic in-
formation systems; • Software and its engineering → Do-
main specific languages.

Keywords: Declarative, Geospatial, Python, Biodiversity

ACM Reference Format:
Michael Winston Dales, Alison Eyres, Patrick Ferris, Francesca A.

Ridley, Simon Tarr, and Anil Madhavapeddy. 2025. Yirgacheffe:

A Declarative Approach to Geospatial Data. In Proceedings of the
2nd ACM SIGPLAN International Workshop on Programming for
the Planet (PROPL ’25), October 12–18, 2025, Singapore, Singapore.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3759536.
3763806

1 Introduction
The fields of ecology and conservation science are rapidly

adopting data-driven approaches [35], and therefore it is vital

to empower their practitioners with useful computing tools.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

PROPL ’25, Singapore, Singapore
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2161-8/25/10

https://doi.org/10.1145/3759536.3763806

Ecologists are “vernacular” software developers: experts in

a domain other than computer science who need to write

software towards a scientific goal [36] but should not need to

become fully trained computer scientists along the way [13].

The design of geospatial libraries requires trading off sim-

plicity and flexibility [14]. Simple APIs let users have a clear

comprehension of what is possible, or they can be flexible

at the cost of being harder to master. For vernacular soft-

ware developers, requiring mastery is a distraction from their

primary task [34]. GDAL [15], a highly popular geospatial

package, has huge flexibility to process geospatial data, at the

cost of a large and verbose API that can be intimidating [40].

The high resolution of earth observation data also requires

resource management, including how to work with raster

data larger than available memory or how to parallelise batch

jobs across heterogenous CPUs and GPUs. Most geospatial

libraries shift the burden to the programmer to decide.

As time goes on, the core source code that implements

a particular ecological method starts to become obfuscated

from its original definition. Practical concerns such as load-

ing data, managing resources, and distributing jobs all take

over, inhibiting further iteration to the scientific work as the

programmers need to map the implementation back to the

method before they can resume.

To address these concerns, we have developed Yirgacheffe,

an open-source declarative geospatial library that allows

code to closely match the original methods, and automate

resource scheduling. Yirgacheffe has the following goals:

Abstract geospatial datasets as an opaque type. When

working with geospatial data, the dataset is usually loaded

and then operations applied on a per-pixel basis. Yirgach-

effe instead treats geospatial datasets as opaque types on

which operations are performed without requiring further

knowledge of how the data is stored.

Simplify geospatial operators. Geospatial data files can
cover arbitrary areas of the planet, with polygons of varying

resolutions. Yirgacheffe aligns the datasets and picks the

right union or intersection operations depending on the

calculation; something often described as confusing [40].

47

https://orcid.org/0009-0003-0832-4114
https://orcid.org/0000-0001-7866-7559
https://orcid.org/0000-0002-0778-8828
https://orcid.org/0000-0001-6068-7519
https://orcid.org/0000-0001-8464-1240
https://orcid.org/0000-0001-8954-2428
https://doi.org/10.1145/3759536.3763806
https://doi.org/10.1145/3759536.3763806
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3759536.3763806
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3759536.3763806&domain=pdf&date_stamp=2025-10-12


PROPL ’25, October 12–18, 2025, Singapore, Singapore M. W. Dales, A. Eyres, P. Ferris, F. A. Ridley, S. Tarr, and A. Madhavapeddy

Figure 1. A false colour global LIFE map [12] showing the increased risk of species extinction if a 1.8km
2
cell of land is

converted to arable. The full map takes a full day of computation on a modern AMD 128-core EPYC server.

Dynamically schedule resources. Geospatial raster lay-
ers used in detailed global analysis often require terabytes of

RAM. As a rule of thumb, a global raster at 100m per pixel

takes 150 GB per byte per pixel (a global map of float32 data
would be 600 GB). Therefore, for most real-world methods,

the loading of entire rasters is infeasible.

There are three main Python geospatial libraries: GDAL,

Rasterio, and Shapely. GDAL is the most flexible, working

with both raster and vector data of many types. The API

is comprehensive, but low-level. Users can manipulate byte

arrays from within an image or rasterize polygons, and then

use numpy to manipulate those data. GDAL does not provide

resource management for memory or parallelisation, nor

does it align datasets when reading data blocks. Rasterio

provides a simpler API than GDAL which is more Pythonic

in nature (GDAL being a SWIG interface over a C++ library);

however, it too works at the level of providing access to array

data read from areas of an image. Shapely is another Pythonic

library, but only works on vector datasets. Neither provide a

declarative interface to the data nor resource management.

There are also cloud-hosted services that come close to

meeting our objectives, such as Microsoft Planetary Com-

puter or Google Earth Engine (GEE) [16], which provide

higher-level abstractions free from pixel-based and hardware

concerns. The GEE APIs load both raster and geometry data

as opaque objects, and automatically align and scale data to

meet output requirements, but do not automatically clip to

the minimal necessary work area as per our requirements.

While GEE abstracts resource scheduling well, its resource

acquisition requires using Google’s proprietary hosted plat-

form. This makes the GEE API unsuitable for open-source

usage and a potentially bad choice for accessible and repro-

ducible science. Federated alternatives are emerging, such

as OpenEO [27] but still in their early stages.

For R, the Terra [19] library supplants the Raster [18] pack-

age. Terra shares design goals to ours and treats geospatial

datasets abstractly to avoid loading them entirely into mem-

ory, but does not automatically align datasets or support

parallelism/GPUs. It has some advantages over Yirgacheffe

for direct pixel access for methods that require this.

2 Case Studies
Yirgacheffe was developed incrementally alongside the im-

plementation of several large ecology pipelines, each pro-

cessing large volumes of high-resolution raster data. This

co-development, working closely with ecologists, provided

valuable insight into the domain requirements.

The LIFE metric [12] examines the impact of land-use

change on species extinction risk. LIFE considers 30k species

from the IUCN Red List of endangered species [21], and for

each analysis considers current, historic and a scenario spe-

cific species distributions generated at 100m per pixel from

similarly high resolution habitat and elevation maps. An

example output, for conversion of land to arable, is shown in

Figure 1. An overview of the pipeline can be seen in Figure 2.

The IUCN’s STAR metric [25] also uses the IUCN Red List

and high-resolution raster data to assess the impact of differ-

ent threat categories on species. We have taken this method

and developed our own implementation using Yirgacheffe.

Both LIFE and STAR make significant use of calculating

species’ Area Of Habitat (AOH), but with different species

characteristics that presented different challenges (§2.1).

48



Yirgacheffe: A Declarative Approach to Geospatial Data PROPL ’25, October 12–18, 2025, Singapore, Singapore

Fetching the elevation map

/data/habitat/pnv_raw.tif

habitat_process.py

make_restore_map.py

/data/habitat/jung_l2_raw.tif

make_current_map.py

/data/crosswalk.csv

make_arable_map.py

aohcalc.pyaohcalc.py aohcalc.py aohcalc.py

/data/habitat/current_raw.tif

habitat_process.py

make_diff_map.py make_diff_map.py

/data/habitat_maps/pnv//data/habitat_maps/current/

/data/habitat/restore.tif

habitat_process.py

/data/habitat_maps/restore/

/data/habitat/arable.tif

habitat_process.py

/data/habitat_maps/arable/ /data/area-per-pixel.tif

/data/habitat/restore_diff_area.tif

delta_p_scaled_area.py

/data/habitat/arable_diff_area.tif

delta_p_scaled_area.py

/data/elevation.tif

gdalwarpgdalwarp

/data/elevation-min-1k.tif/data/elevation-max-1k.tif/data/species-info/AMPHIBIA/

global_code_residents_pixel.py global_code_residents_pixel

/data/aohs/current/AMPHIBIA//data/aohs/restore/AMPHIBIA/ /data/aohs/arable/AMPHIBIA/ /data/aohs/pnv/AMPHIBIA/

/data/deltap/restore/0.25/AMPHIBIA/

raster_sum.py

/data/deltap_sum/restore/0.25/

/data/deltap/arable/0.25/AMPHIBIA/

raster_sum.py

/data/deltap_sum/arable/0.25/

/data/deltap_final/scaled_restore_0.25.tif /data/deltap_final/scaled_arable_0.25.tif

reclaimerreclaimer generate_crosswalk.py

make_area_map.py

reclaimer

extract_species_psql.py

Figure 2. The LIFE pipeline flows topdown, with pink being data download, yellow data transforms, green AOH calculations,

purple extinction risks, and blue human formatting. All tiers except the first use Yirgacheffe.

Yirgacheffe also underpins the PACT Tropical Moist For-

est Accreditation Method [1, 2] (TMF), which calculates

the change in sequestered carbon for avoided deforestation

projects. This pipeline requires working with a wider range

of input data formats, from GEDI point sampling data of

forests from space [11], polygons of conservation projects

and country borders, and high resolution (30m per pixel) land

cover change rasters over many years. This wide variety of

input styles, coupled with some of the statistical analysis in

the pipeline, was useful in highlighting some limits of the

approach Yirgacheffe takes.

2.1 Area Of Habitat
Both the STAR and LIFE metrics are centered on a species’

“Area Of Habitat” (AOH) calculations, measured indepen-

dently for thousands of species [5]. This algorithm takes

a range polygon of where on the globe a species might be

located, drawn by a human expert so as to minimize omis-

sion errors, and is combined with habitat preference and

elevation preference maps to minimize commission errors:

𝐴𝑂𝐻 = 𝑅 ∩ 𝐻 ∩ 𝐸 (1)

Where R is the species range, H is the location of suit-

able habitats, and E is location of suitable elevation. Those

habitat and elevation preference maps are derived from high-

resolution satellite data in combination with known species

preference data around their choice of habitats and observed

elevation occurrences:

𝐴𝑂𝐻 (𝑠) = {(𝑥,𝑦) ∈ 𝑅(𝑠) : 𝐿𝐶 (𝑥,𝑦) ∈ 𝐻 (𝑠)∧
𝑒𝑙𝑒𝑣 (𝑥,𝑦) ∈ [𝐸𝑚𝑖𝑛 (𝑠), 𝐸𝑚𝑎𝑥 (𝑠)]}

(2)

Whilst AOH is a relatively simple algorithm, the imple-

mentation gets more obfuscated when written to run at scale.

A sequence of data intensive operations have to happen,

starting with the conversion of data formats (range being

polygonal data, and elevation and habitat maps being raster

data), point data must be extracted, and then numerical meth-

ods applied to the results.

The Yirgacheffe based implementation of AOH is in List-

ing 1 and exemplifies our design goals: the geospatial datasets

are manipulated directly, allowing the code to show the

methodology more clearly; The layers are automatically

aligned and intersected; and finally both the raster layers,

49



PROPL ’25, October 12–18, 2025, Singapore, Singapore M. W. Dales, A. Eyres, P. Ferris, F. A. Ridley, S. Tarr, and A. Madhavapeddy

hundreds of GB each, are chunked automatically, and the

work distributed over multiple CPU cores.� �
1 species_info = json.load("info.json")
2 with yirgacheffe.read_raster("elevation.tif") as E:
3 with yirgacheffe.read_reader("habitat.tif") as H:
4 with yirgacheffe.read_shape("info.geojson") as R:
5 Ef = (E > info.elevation_min) &
6 (E < info.elevation_max)
7 Hf = H.is_in(info.habitats)
8 AOH = R & Hf & Ef
9 AOH.to_geotiff("aoh.tif", parallelism=True)� �
Listing 1. The Yirgacheffe implementation of AOH. Note

that it treats the polygon range data and rasters equally, and

the code matches closely the equation in Equation 2, other

than the loading and saving of data.

Without Yirgacheffe this formula becomes unwieldy even

using a library like numpy to avoid per-pixel operations

alongside GDAL. An equivalent snippet to Listing 1 is shown

in Appendix A and is much longer since it has to manually

process the data, chunk it into schedulable units, and re-

combine everything to save the results. Files must be read

incrementally requiring extra looping, offsets within files

must be calculated manually, increasing the opportunity for

errors. The parallel_save in the Yirgacheffe implemen-

tation also automatically takes advantage of multiple CPU

cores, processing species on average in 32% the time of the

GDAL version on the same inputs on an AMD EPYC 9534

CPU. Whilst a computer scientist could extract more sub-

stantial gains, Yirgacheffe does this without requiring users

to be parallelism aware.

3 Yirgacheffe Implementation
Yirgacheffe implements a declarative interface to geospatial

datasets using an API modeled on numerical libraries like

Numpy [17], leveraging the prior experience of the target

users. Internally it is built upon existing extensive and well

tested libraries like numpy and GDAL, but providing a more

opinionated and guided API to help both ease of use and

enable automatic resource management.

In Yirgacheffe users create various “layers” that represent

either raster data from GeoTIFFs [9], vector data from Geo-

JSON [6] or GeoPackage [32] datasets, H3 hex tiles [4], or

constant values. There are also “group layers” that take indi-

vidual layers and treat them like a single layer (e.g., useful

for tiled raster data). Layers will not be loaded directly, but

rather their contents are fetched lazily as required.

Users express numerical operations on and between layers

directly to either calculate new layers or aggregations (sum,

min, max, etc.), without having to refer to pixel data directly.

These operations are expressed using built in language oper-

ators where possible, similar to numpy’s approach for arrays,

making working with large datasets as natural as working

with scalar variables; this is in contrast to GEE’s OO-based

approach where operators are method calls on objects.

Operations supported by Yirgacheffe include conventional

Python arithmetic and logic operations, common numpy ar-

ray operations such as where and isin, and also includes an
operator for 2D convolution matrix processing based on that

of pytorch [33]. In the latter case Yirgacheffe will automati-

cally take care of bounds adjustments to compensate for the

kernel size.

Yirgacheffe will automatically align pixels within layers

used in calculations based on their geospatial location rather

than their location within each image array; appropriate

empty values will be synthesized if necessary. If layers are

not directly comparable, due to using a different map projec-

tion or a different pixel scale, Yirgacheffe deliberately does

not attempt to insert automatic transforms, as what is cor-

rect when scaling and transforming layers depends on the

problem being solved: for example, down-scaling a raster

containing area values might use mean values, but for eleva-

tion maps min or max might be more appropriate. Thus the

author of the method has to be involved in those decisions.

Yirgacheffe does provide scaling operations, but these must

be explicitly added by the user.

To allow arbitrary dimensions of the input data, Yirgach-

effe has to align the various input layers for the calculations

being done: whether the result be an intersection or a union

of the area of the input layers depends on the types of cal-

culation being performed. By default Yirgacheffe infers this

using a set of first-order rules, applying either a union or

an intersection of the data as appropriate for the underlying

operation: e.g., for multiplication we will take an intersec-

tion, as data outside defined areas will default to zero; for

addition it will take a union approach. These can be manu-

ally overridden if necessary, but having defaults that work

for most common cases keeps the code closer to the method,

and in our test cases it is rare that it has to be manually set.

As with loading data, Yirgacheffe evaluates calculations

on layers lazily. When a user writes an expression over a set

of layers in their Python code, the resultant variable value

is not the answer, but rather an opaque type that contains

the expression tree ready to be evaluated. The evaluation

of this tree will only happen when the expression is either

saved or aggregated. Metadata on the expression, such as

the resultant geospatial dimensions, can be queried on the

expression as if the layer had been calculated eagerly.

3.1 Resource Management
A key motivator for Yirgacheffe was to provide efficient use

of memory for the large LIFE pipeline. While the average

size of species ranges is small, a few larger species
1
caused

the pipeline to run out of memory when parallel processing.

1
For example, moose or bear species occupy the entire northern hemisphere

50



Yirgacheffe: A Declarative Approach to Geospatial Data PROPL ’25, October 12–18, 2025, Singapore, Singapore

In most of these pipelines, the data is read only once in

any given calculation; the later stages of the TMF that used

random spatial sampling are the exception. This observation

led us to effectively stream process expressions in Yirgach-

effe: the result area is sliced, and only the parts of the rasters

required for that slice are loaded, and any related polygon

area is rasterized, minimizing the computation’s memory

footprint. The optimal size of that slice is a consideration: too

small, and the overheads become significant, but we found

in practice processing a few hundred rows of these large

rasters lead to negligible performance loss versus loading

everything into memory ahead of time. The caveat to that,

observed in STAR which deals with marine birds, is species

with complex range polygons that follow coast lines: exces-

sive detail in these can slow down the slice rasterisation

significantly.

The internal chunking of a calculation also provides an-

other advantage: each of the slices being processed are inde-

pendent of each other, and so this also provides a mechanism

by which parallelism can be applied, albeit within the limited

constraints of the Python run-time environment. The Python

GIL [28] means that its runtime provides parallelism by us-

ing child processes rather than via shared-memory threads.

This causes issues for libraries like GDAL, and thus in turn

Yirgacheffe, as only primitive Python types can be passed

between processes by the run-time, which would break the

illusion Yirgacheffe makes of geospatial layers being sim-

ilarly primitive. Yirgacheffe works around this by using a

combination of shared memory for in flight computation

data and carefully selecting layer metadata to allow GDAL

objects to be closed and reopened on the other side.

3.2 CPU and GPU Support
Initially Yirgacheffe only used numpy for doing numeri-

cal processing. numpy is the standard numerical library for

Python and is quick and expressive, and is a library a typ-

ical data scientist using Python is comfortable with. This

allowed Yirgacheffe to develop incrementally along with the

case study pipelines: we provide a numpy_apply operator on
layers, which takes a function as an argument that is called

back with data chunks in numpy format. We could therefore

adopt Yirgacheffe for the handling of geospatial data before

the declarative interface was fully developed.

However, escape hatches that expose internal workings

come at a cost. One objective from the outset was to provide

multiple backends to Yirgacheffe, supporting not just CPU

compute, but also GPU, via CUPY [29] which abstracts the

NVIDIA CUDA GPU framework, and MLX [26], which ab-

stracts Apple’s Metal GPU library. To do this Yirgacheffe’s

backend has separate interpreters over the user-specified

operations to switch between numerical frameworks. How-

ever, any pipeline using the escape hatches in the API could

not take advantage of multiple backends until Yirgacheffe

supported a sufficient spread of numerical operators and the

pipelines were migrated to use those natively.

Although our aim is to avoid having users deal with hard-

ware decisions in their code, Yirgacheffe does not automat-

ically select the backend, because moving a computation

from CPU to GPU can have consequences on the precision

of results, which means the same pipeline might generate

different results on different hardware [39]. Unfortunately,

we have observed this behaviour with standard CPU libraries

also, due to the use of vector operations [30].

For a discrete GPU where system and graphics memory

are not shared, there is overhead involved when moving

computation to the GPU. We observed this while processing

AOH across a large number of species; for species with a

global reach (birds, or large mammals like bear or moose),

using CUDA provided a performance benefit, but for the

majority of land animals that have smaller ranges it was

slower to do the work on the discrete GPU. A unifiedmemory

architecture overcomes this, however is onlywidely available

on Apple hardware, but where possible the improvement is

notable: calculating the 34821 AOHs for a single scenario

in LIFE was approximately 1.6 times faster on an Apple M3

Ultra when using GPU vs CPU (for a discussion on why the

gains are relatively modest see Section 4.2).

4 Discussion
Whilst Yirgacheffe has successfully demonstrated that it is

possible to both provide APIs that support the task of geospa-

tial programming whilst abstracting away computer science

concerns, there were many problems we either didn’t have

time to solve, or need solved by some other solution over

making Yirgacheffe more complicated.

4.1 Language Level
Some aspects of Yirgacheffe can be improved at the interface

level of the library as it matures.

Alternative expressivity. Some computational ecology

algorithms are not currently served by Yirgacheffe, as it

currently focuses on the subset of geospatial problems that

involve pixel based comparisons over large areas. In the

TMF case study, the declarative interface of Yirgacheffe is

ill suited to doing random sampling over geospatial areas

for selecting the counter-factual pixels. Whilst from a code

point of view an API like that found in Terra would make

it possible to code up more cleanly, the similar chunking

approach it takes to Yirgacheffe would not help here, and

we need more support for different access patterns.

Partial results. Our simplified AOH algorithm (§2.1) di-

verges in LIFE and STAR as they use variations based on

IUCN guidelines, which then results in more complexity in

the implementation [8]. For example, the IUCN guidelines

recommend if the filtered habitat and elevation layers are

51



PROPL ’25, October 12–18, 2025, Singapore, Singapore M. W. Dales, A. Eyres, P. Ferris, F. A. Ridley, S. Tarr, and A. Madhavapeddy

empty, then they are ignored for AOH. This means the lay-

ers are evaluated twice in the AOH code, once as part of

testing for validity, and once again in the final calculation.

Either a caching layer, or a logic that would work at a higher

level in that simpler operators could potentially avoid this

overhead. Note that this isn’t the same as caching within a

single expression (it can be seen in Listing 1 that the eleva-

tion layer is used twice on line 5), but rather this is needed

across expressions also.

Managing side-effects. The ecology methods being im-

plemented typically do not have side-effects within their

methods descriptions. Yet when these are translated to im-

perative languages like Python, R or Julia, the code is lit-

tered with side effects in places that make it very hard to

test the code. As a Python library, Yirgacheffe does noth-

ing to address this, but discourages side-effecting code due

to its declarative style. As a separate project we are port-

ing Yirgacheffe to OCaml using modal types [23], paral-

lelism [10, 37] and effects [38] to explore this further: can

we build a functional, declarative DSL based on Yirgacheffe

that promotes coding that follows more closely the written

natural language method specifications that are found in the

scientific literature?

Interactive programming. The emerging space of live

programming environments [3, 31] is of huge interest to ver-

nacular programmers such as our target audience, as it could

make debugging and visualising intermediate results easier.

Some of these also provide agentic support to sequence tasks

in a user-friendly fashion [7], which would make assembling

Yirgacheffe programs easier for non CS-experts.

Floating point precision. Excessive precision in data can

lead to problems in both compute performance and storage

(§3.1). Due to the limited precision of floating point numbers,

we often see species ranges accurate to tens of km stored to

the nearest nanometer. This lack of nuance in floating point

representations can also lead people to infer more accuracy

in the data than was originally intended. This technique has

been applied in specific instances (e.g., for atmospheric mod-

eling [22]), but a context-aware variable precision floating

point type rather than IEEE floating point would make sense

for most geospatial pipelines.

4.2 Hardware Level
Hardware has become heterogeneous in recent years, with

multicore architectures and GPUs now widely available.

Axes of parallelism. When a method for the same al-

gorithm needs to be applied to many items of data, there

are two strategies: parallelise the algorithm and apply it in

turn to each data item, or apply the algorithm to many data

items in parallel. Yirgacheffe supports the former, but not the

latter, and for some methodologies the latter strategy is more

efficient. Whilst Yirgacheffe cannot automatically make this

scheduling decision for the programmer, the lack of support

for the second approach means the ecologist users must ei-

ther manually implement Python multiprocessing or move

to an external solution (e.g., GNU Parallel
2
or Littlejohn

3
).

Memory conservation. Yirgacheffe can manage the mem-

ory requirements of a single instance to ensure the machine

is kept safe, but risks still exist that the machine can run out

of memory. This leads at best to pipeline failure, or worse

to unnoticed failures that generate incorrect results due to

missing error handling in user code. Managing this is beyond

the direct scope of Yirgacheffe, as it requires either better

language support for parallelism, or ideally better coopera-

tion from the operating system’s scheduler [20]. Persisting

the data to disk volumes on Docker [24] would also allow

for easier debugging and sharing of intermediate results, but

requires careful attention to space usage and snapshotting

due to the huge amount of data involved in a typical pipeline.

Too many layers of abstraction: The layering of multi-

ple numerical libraries has a performance cost. For example,

we use the MLX library to provide Apple Metal support,

which like Yirgacheffe provides a declarative interface for

large opaque units of data (numpy style arrays). MLX lazily

evaluates operations, allowing it to build a GPU kernel that

covers as much of the operation as it can (e.g., to fit the entire

AOH calculation into a single kernel). However, Yirgacheffe

similarly builds up a lazy expression tree and evaluates it

in a depth-first fashion, meaning when using it as a back-

end, MLX never gets to see the full operation and can only

build kernels for single operators. This we believe is why we

only see the modest performance gains when using a GPU

outlined previously, and it is an area we intend to address

in future releases. MLX does not currently provide a pro-

grammatic interface to building expressions, but we could

compile Yirgacheffe expressions to Python code for MLX dy-

namically, allowing it then to do its compilation with a full

view of the expression whilst leaving Yirgacheffe to manage

the input data alignment and chunking.

5 Conclusions
Yirgacheffe is our declarative geospatial library that empow-

ers ecologists to solve data science problems more clearly

and concisely by handling both the geospatial and resource

scheduling required in this domain. It has been used to build

pipelines for calculating several global published conserva-

tion metrics that process petabytes of raster data.

However, many challenges still remain for the program-

ming language and systems research communities, such as

balancing expressivity with incremental results and more

flexibility for heterogenous hardware. We welcome contri-

butions at https://github.com/quantifyearth/yirgacheffe.

2
See https://www.gnu.org/software/parallel/

3
See https://github.com/quantifyearth/littlejohn

52

https://github.com/quantifyearth/yirgacheffe
https://www.gnu.org/software/parallel/
https://github.com/quantifyearth/littlejohn


Yirgacheffe: A Declarative Approach to Geospatial Data PROPL ’25, October 12–18, 2025, Singapore, Singapore

A Supplementary Source Code
The code below is the logic in Listing 1 without Yirgacheffe.� �
1 species_info = json.load("info.json")
2 elevation = gdal.Open("elevation.tif")
3 habitat = gdal.Open("habitat.tif")
4 range_polygon = ogr.Open("info.geojson")
5 habitat_left, habitat_xstep, _, habitat_top, _, habitat_ystep =

habitat.GetGeoTransform()
6 elevation_left, elevation_xstep, _, elevation_top, _,

elevation_ystep = elevation.GetGeoTransform()
7 layer = range_polygon.GetLayer()
8 envelopes = []
9

10 layer.ResetReading()
11 feature = layer.GetNextFeature()
12 while feature:
13 geometry = feature.GetGeometryRef()
14 if geometry:
15 envelopes.append(geometry.GetEnvelope())
16 feature = layer.GetNextFeature()
17 if len(envelopes) == 0:
18 raise ValueError('No geometry found')
19

20 abs_xstep, abs_ystep = abs(habitat_xstep), abs(habitat_ystep)
21 range_origin_x = floor(min(x[0] for x in envelopes) / abs_xstep)
22 range_origin_y = ceil(max(x[3] for x in envelopes) / abs_ystep)
23 range_left = range_origin_x * abs_xstep
24 range_top = range_origin_y * abs_ystep
25 range_right = ceil(max(x[1] for x in envelopes) / abs_xstep) *

abs_xstep
26 range_bottom = floor(min(x[2] for x in envelopes) / abs_ystep)

* abs_ystep
27 range_width = round((range_right - range_left) / abs_xstep)
28 range_height = round((range_top - range_bottom) / abs_ystep)
29

30 result = gdal.GetDriverByName("GTiff").Create(
31 output_path, range_width,
32 range_height, 1,
33 gdal.GDT_Byte, ['COMPRESS=LZW','BIGTIFF=YES'])
34

35 YSTEP = 512
36 for yoffset in range(0, range_height, YSTEP):
37 ystep = YSTEP if (yoffset + YSTEP) < range_height else

(range_height - yoffset)
38 dataset = gdal.GetDriverByName('mem').Create('mem',

range_width, ystep, 1, gdal.GDT_Byte, [])
39 dataset.SetProjection(habitat.GetProjection())
40 dataset.SetGeoTransform([
41 range_left, habitat_xstep,
42 0.0, range_top + (yoffset * habitat_ystep),
43 0.0, habitat_ystep
44 ])
45 gdal.RasterizeLayer(dataset, [1], layer, burn_values=[1],

options=["ALL_TOUCHED=TRUE"])
46 range_data = dataset.GetRasterBand(1).ReadAsArray(0, 0,

range_width, ystep)
47

48 habitat_data = habitat.GetRasterBand(1).ReadAsArray(
49 round((range_left - habitat_left) / habitat_xstep),
50 round((range_top - habitat_top) / habitat_ystep) +

yoffset,
51 range_width, ystep )
52 filtered_habitat_data = np.isin(habitat_data, info.habitats)
53 elevation_data = elevation.GetRasterBand(1).ReadAsArray(
54 round((range_left - elevation_left) / habitat_xstep),
55 round((range_top - elevation_top) / habitat_ystep) +

yoffset,
56 range_width, ystep )
57 filtered_elevation_data = (elevation_data >

info.elevation_min) & (elevation_data <
info.elevation_max)

58 aoh = filtered_habitat_data * filtered_elevation_data *
range_data

59 result.GetRasterBand(1).WriteArray(aoh, 0, yoffset)
60 result.Close()� �

References
[1] Balmford, A., Coomes, D., Dales, M., Ferris, P., Hartup, J., Jaf-

fer, S., Keshav, S., Lam, M., Madhavapeddy, A., Message, R., Rau,

E.-P., Swinfield, T., and Wheeler, C. PACT tropical moist forest

accreditation methodology. Tech. rep., University of Cambridge, 2023.

[2] Balmford, A., Keshav, S., Venmans, F., Coomes, D. A., Groom, B.,

Madhavapeddy, A., and Swinfield, T. Realizing the social value of

impermanent carbon credits. Nature Climate Change 13, 11 (nov 2023),
1172–1178.

[3] Blinn, A., Li, X., Kim, J. H., and Omar, C. Statically contextualizing

large language models with typed holes. Proc. ACM Program. Lang. 8,
OOPSLA2 (Oct. 2024).

[4] Brodsky, I. H3: Uber’s hexagonal hierarchical spatial index. https:
//www.uber.com/en-GB/blog/h3/, 2018.

[5] Brooks, T. M., Pimm, S. L., R., A. H., Buchanan, G. M., Butchart, S.

H. M., Foden, W., Hilton-Taylor, C., Hoffmann, M., Jenkins, C. N.,

Joppa, L., Li, B. V., Menon, V., Ocampo-Peñuela, N., and Rondinini,

C. Measuring terrestrial area of habitat (AOH) and its utility for the

IUCN red list. Trends in Ecology & Evolution (2019).

[6] Butler, H., Daly, M., Doyle, A., Gillies, S., Schaub, T., and Hagen,

S. The GeoJSON format. RFC 7946, Aug. 2016.

[7] Croisdale, G., Huang, E., Chung, J. J. Y., Guo, A., Wang, X., Henley,

A. Z., and Omar, C. Deckflow: Iterative specification on a multimodal

generative canvas, 2025.

[8] Dales, M. Area of habitat calculation code for biodiversity assessment

pipelines. https://github.com/quantifyearth/aoh-calculator, 2023.
[9] Devys, E., Habermann, T., Heazel, C., Lott, R., and Rouault, E. OGC

GeoTIFF standard. Tech. Rep. 19-008r4, Open Geospatial Consortium,

Sept. 2019.

[10] Dolan, S., White, L., and Madhavapeddy, A. Multicore OCaml. In

the 4th ACM OCaml Users and Developers Workshop (sep 2014).

[11] Dubayah, R., Armston, J., Healey, S. P., Bruening, J. M., Patterson,

P. L., Kellner, J. R., Duncanson, L., Saarela, S., Ståhl, G., Yang,

Z., et al. GEDI launches a new era of biomass inference from space.

Environmental Research Letters 17, 9 (2022), 095001.
[12] Eyres, A., Ball, T. S., Dales, M., Swinfield, T., Arnell, A., Baisero,

D., Durán, A. P., Green, J. M. H., Green, R. E., Madhavapeddy, A.,

and Balford, A. LIFE: A metric for mapping the impact of land-cover

change on global extinctions. Philosophical Transactions of The Royal
Society B (2025).

[13] Ferris, P., Dales, M., Swinfield, T., Jaffer, S., Keshav, S., and Mad-

havapeddy, A. Uncertainty at scale: how CS hinders climate research.

Undone Computer Science (2024).
[14] Gabriel, R. The Rise of "Worse is Better". https://dreamsongs.com/

RiseOfWorseIsBetter.html, 1991.
[15] GDAL/OGR contributors. GDAL/OGR Geospatial Data Abstraction

Software Library. Open Source Geospatial Foundation, 2024.

[16] Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau,

D., and Moore, R. Google Earth Engine: Planetary-scale geospatial

analysis for everyone. Remote Sensing of Environment 202 (2017), 18–27.
[17] Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R.,

Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith,

N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett,

M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., Gérard-

Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H.,

Gohlke, C., and Oliphant, T. E. Array programming with NumPy.

Nature 585, 7825 (Sept. 2020), 357–362.
[18] Hijmans, R. J. raster: Geographic Data Analysis and Modeling, 2025. R

package version 3.6-32.

[19] Hijmans, R. J. terra: Spatial Data Analysis, 2025. R package version

1.8-57.

[20] Humphries, J. T., Natu, N., Chaugule, A., Weisse, O., Rhoden, B.,

Don, J., Rizzo, L., Rombakh, O., Turner, P., and Kozyrakis, C. ghOSt:

53

https://www.uber.com/en-GB/blog/h3/
https://www.uber.com/en-GB/blog/h3/
https://github.com/quantifyearth/aoh-calculator
https://dreamsongs.com/RiseOfWorseIsBetter.html
https://dreamsongs.com/RiseOfWorseIsBetter.html


PROPL ’25, October 12–18, 2025, Singapore, Singapore M. W. Dales, A. Eyres, P. Ferris, F. A. Ridley, S. Tarr, and A. Madhavapeddy

Fast & flexible user-space delegation of Linux scheduling. In Proceed-
ings of the ACM SIGOPS 28th Symposium on Operating Systems Princi-
ples (New York, NY, USA, 2021), SOSP ’21, Association for Computing

Machinery, p. 588–604.

[21] IUCN. The IUCN red list of threatened species. version 2023-1. https:
//www.iucnredlist.org, 2023.

[22] Klöwer, M., Razinger, M., Dominguez, J. J., Düben, P. D., and

Palmer, T. N. Compressing atmospheric data into its real information

content. Nature Computational Science (2021), 713–724.
[23] Lorenzen, A., White, L., Dolan, S., Eisenberg, R. A., and Lindley,

S. Oxidizing OCaml with modal memory management. Proc. ACM
Program. Lang. 8, ICFP (Aug. 2024).

[24] Madhavapeddy, A., Scott, D. J., Ferris, P., Gibb, R. T., and Gaza-

gnaire, T. Functional networking for millions of Docker desktops

(experience report). Proceedings of ACM Programming Languages 9,
ICFP (aug 2025), 256:597–256:615.

[25] Mair, L., Bennun, L., Brooks, T., Butchart, S., Bolam, F., Burgess,

N., Ekstrom, J., Milner-Gulland, E., Hoffmann, M., Ma, K., Mac-

farlane, N., Raimondo, D., Rodrigues, A., Shen, X., Strassburg, B.,

Beatty, C., Gómez-Creutzberg, C., Iribarrem, A., Irmadhiany, M.,

Lacerda, E., Mattos, B., Parakkasi, K., Tognelli, M., Bennett, E.,

Bryan, C., Carbone, G., Chaudhary, A., Eiselin, M., da Fonseca, G.,

Galt, R., Geschke, A., Glew, L., Goedicke, R., Green, J., Gregory,

R., Hill, S., Hole, D., Hughes, J., Hutton, J., Keijzer, M., Navarro,

L., Nic Lughadha, E., Plumptre, A., Puydarrieux, P., Possingham,

H., Rankovic, A., Regan, E., Rondinini, C., Schneck, J., Siikamäki,

J., Sendashonga, C., Seutin, G., Sinclair, S., Skowno, A., Soto-

Navarro, C., Stuart, S., Temple, H., Vallier, A., Verones, F., Viana,

L., Watson, J., Bezeng, S., Böhm, M., Burfield, I., Clausnitzer, V.,

Clubbe, C., Cox, N., Freyhof, J., Gerber, L., Hilton-Taylor, C., Jenk-

ins, R., Joolia, A., Joppa, L., Koh, L., Lacher, T., Langhammer, P.,

Long, B., Mallon, D., Pacifici, M., Polidoro, B., Pollock, C., Rivers,

M., Roach, N., Rodríguez, J., Smart, J., Young, B., Hawkins, F., and

McGowan, P. A metric for spatially explicit contributions to science-

based species targets. Nature Ecology and Evolution 5, 6 (June 2021),
836–844.

[26] MLX contributors. MLX: An array framework for Apple silicon.

https://github.com/ml-explore/mlx.
[27] Mohr, M., Pebesma, E., Dries, J., Lippens, S., Janssen, B., Thiex,

D., Milcinski, G., Schumacher, B., Briese, C., Claus, M., Jacob, A.,

Sacramento, P., and Griffiths, P. Federated and reusable processing

of earth observation data. Scientific Data 12, 1 (Feb. 2025).
[28] Muttin, S., and Dash, D. Threading and multiprocessing module

and the limitations due to the GIL in Python. International Journal of
Scientific Research and Engineering Development (2021).

[29] Nishino, R., and Loomis, S. H. C. CuPy: A NumPy-compatible library

for NVIDIA GPU calculations. 31st Conference on Neural Information

Processing Systems 151, 7 (2017).
[30] BUG: Power calculation rounding error for array values on AMD EPYC

9534. https://github.com/numpy/numpy/issues/25269.
[31] Omar, C., Voysey, I., Chugh, R., and Hammer, M. A. Live functional

programming with typed holes. Proc. ACM Program. Lang. 3, POPL
(Jan. 2019).

[32] Open Geospatial Consortium. OGC GeoPackage encoding standard.

http://www.opengis.net/doc/IS/geopackage/1.4, 2024.
[33] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,

Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf,

A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,

Steiner, B., Fang, L., Bai, J., and Chintala, S. PyTorch: An imperative

style, high-performance deep learning library. In Proceedings of the
33rd International Conference on Neural Information Processing Systems
(2019).

[34] Pertseva, E., Chang, M., Zaman, U., and Coblenz, M. A theory of

scientific programming efficacy. In Proceedings of the IEEE/ACM 46th
International Conference on Software Engineering (New York, NY, USA,

2024), ICSE ’24, Association for Computing Machinery.

[35] Reynolds, S., Beery, S., Burgess, N., Burgman, M., Butchart, S.,

Cooke, S. J., Coomes, D. A., Danielsen, F., Minin, E. D., Durán, A. P.,

Gassert, F., Hinsley, A., Jaffer, S., Jones, J. P., Li, B. V., Aodha, O. M.,

Madhavapeddy, A., O’Donnell, S., Oxbury, B., Peck, L., Pettorelli,

N., Rodríguez, J. P., Shuckburgh, E., Strassburg, B., Yamashita, H.,

Miao, Z., and Sutherland, B. The potential for AI to revolutionize

conservation: a horizon scan. Trends in Ecology & Evolution (dec 2024),

S0169534724002866.

[36] Shaw, M. Myths and mythconceptions: what does it mean to be a pro-

gramming language, anyhow? Proceedings of the ACM on Programming
Languages 4, 234 (2020), 1–44.

[37] Sivaramakrishnan, K., Dolan, S., White, L., Jaffer, S., Kelly,

T., Sahoo, A., Parimala, S., Dhiman, A., and Madhavapeddy, A.

Retrofitting parallelism onto OCaml. Proceedings of the ACM on Pro-
gramming Languages 4, ICFP (aug 2020), 1–30.

[38] Sivaramakrishnan, K., Dolan, S., White, L., Kelly, T., Jaffer, S.,

and Madhavapeddy, A. Retrofitting effect handlers onto OCaml. In

Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation (jun 2021), ACM,

pp. 206–221.

[39] Whitehead, N., and Fit-Florea, A. Precision and Performance:

Floating Point and IEEE 754 Compliance for NVIDIA GPUs. Tech. rep.,

NVIDIA, 2011.

[40] Ziegler, P., and Chasins, S. E. A need-finding study with users of

geospatial data. In Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems (New York, NY, USA, 2023), CHI ’23,

Association for Computing Machinery.

Received 2025-07-07; accepted 2025-08-11

54

https://www.iucnredlist.org
https://www.iucnredlist.org
https://github.com/ml-explore/mlx
https://github.com/numpy/numpy/issues/25269
http://www.opengis.net/doc/IS/geopackage/1.4

	Abstract
	1 Introduction
	2 Case Studies
	2.1 Area Of Habitat

	3 Yirgacheffe Implementation
	3.1 Resource Management
	3.2 CPU and GPU Support

	4 Discussion
	4.1 Language Level
	4.2 Hardware Level

	5 Conclusions
	A Supplementary Source Code
	References

