Check for
Updates

Yirgacheffe: A Declarative Approach to Geospatial
Data

Michael Winston Dales
University of Cambridge
Cambridge, United Kingdom
mwd24@cam.ac.uk

Francesca A. Ridley
Newecastle University
Newecastle, United Kingdom
Francesca.Ridley@newcastle.ac.uk

Alison Eyres
University of Cambridge
Cambridge, United Kingdom
ae491@cam.ac.uk

Simon Tarr
TUCN (International Union for
Conservation of Nature)
Cambridge, United Kingdom

Patrick Ferris
University of Cambridge
Cambridge, United Kingdom
pf341@cam.ac.uk

Anil Madhavapeddy
University of Cambridge
Cambridge, United Kingdom
avsm2@cam.ac.uk

Simon.Tarr@iucn.org

Abstract

We present Yirgacheffe, a declarative geospatial library that
allows spatial algorithms to be implemented concisely, sup-
ports parallel execution, and avoids common errors by au-
tomatically handling data (large geospatial rasters) and re-
sources (cores, memory, GPUs). Our primary user domain
comprises ecologists, where a typical problem involves clean-
ing messy occurrence data, overlaying it over tiled rasters,
combining layers, and deriving actionable insights from the
results. We describe the successes of this approach towards
driving key pipelines related to global biodiversity and de-
scribe the capability gaps that remain, hoping to motivate
more research into geospatial domain-specific languages.

CCS Concepts: » Information systems — Geographic in-
formation systems; « Software and its engineering — Do-
main specific languages.

Keywords: Declarative, Geospatial, Python, Biodiversity

ACM Reference Format:

Michael Winston Dales, Alison Eyres, Patrick Ferris, Francesca A.
Ridley, Simon Tarr, and Anil Madhavapeddy. 2025. Yirgacheffe:
A Declarative Approach to Geospatial Data. In Proceedings of the
2nd ACM SIGPLAN International Workshop on Programming for
the Planet (PROPL °25), October 12—18, 2025, Singapore, Singapore.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3759536.
3763806

1 Introduction

The fields of ecology and conservation science are rapidly
adopting data-driven approaches [35], and therefore it is vital
to empower their practitioners with useful computing tools.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

PROPL 25, Singapore, Singapore

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2161-8/25/10
https://doi.org/10.1145/3759536.3763806

47

Ecologists are “vernacular” software developers: experts in
a domain other than computer science who need to write
software towards a scientific goal [36] but should not need to
become fully trained computer scientists along the way [13].

The design of geospatial libraries requires trading off sim-
plicity and flexibility [14]. Simple APIs let users have a clear
comprehension of what is possible, or they can be flexible
at the cost of being harder to master. For vernacular soft-
ware developers, requiring mastery is a distraction from their
primary task [34]. GDAL [15], a highly popular geospatial
package, has huge flexibility to process geospatial data, at the
cost of a large and verbose API that can be intimidating [40].

The high resolution of earth observation data also requires
resource management, including how to work with raster
data larger than available memory or how to parallelise batch
jobs across heterogenous CPUs and GPUs. Most geospatial
libraries shift the burden to the programmer to decide.

As time goes on, the core source code that implements
a particular ecological method starts to become obfuscated
from its original definition. Practical concerns such as load-
ing data, managing resources, and distributing jobs all take
over, inhibiting further iteration to the scientific work as the
programmers need to map the implementation back to the
method before they can resume.

To address these concerns, we have developed Yirgacheffe,
an open-source declarative geospatial library that allows
code to closely match the original methods, and automate
resource scheduling. Yirgacheffe has the following goals:

Abstract geospatial datasets as an opaque type. When
working with geospatial data, the dataset is usually loaded
and then operations applied on a per-pixel basis. Yirgach-
effe instead treats geospatial datasets as opaque types on
which operations are performed without requiring further
knowledge of how the data is stored.

Simplify geospatial operators. Geospatial data files can
cover arbitrary areas of the planet, with polygons of varying
resolutions. Yirgacheffe aligns the datasets and picks the
right union or intersection operations depending on the
calculation; something often described as confusing [40].


https://orcid.org/0009-0003-0832-4114
https://orcid.org/0000-0001-7866-7559
https://orcid.org/0000-0002-0778-8828
https://orcid.org/0000-0001-6068-7519
https://orcid.org/0000-0001-8464-1240
https://orcid.org/0000-0001-8954-2428
https://doi.org/10.1145/3759536.3763806
https://doi.org/10.1145/3759536.3763806
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3759536.3763806
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3759536.3763806&domain=pdf&date_stamp=2025-10-12

PROPL ’25, October 12-18, 2025, Singapore, Singapore

M. W. Dales, A. Eyres, P. Ferris, F. A. Ridley, S. Tarr, and A. Madhavapeddy

Figure 1. A false colour global LIFE map [12] showing the increased risk of species extinction if a 1.8km? cell of land is
converted to arable. The full map takes a full day of computation on a modern AMD 128-core EPYC server.

Dynamically schedule resources. Geospatial raster lay-
ers used in detailed global analysis often require terabytes of
RAM. As a rule of thumb, a global raster at 100m per pixel
takes 150 GB per byte per pixel (a global map of float32 data
would be 600 GB). Therefore, for most real-world methods,
the loading of entire rasters is infeasible.

There are three main Python geospatial libraries: GDAL,
Rasterio, and Shapely. GDAL is the most flexible, working
with both raster and vector data of many types. The API
is comprehensive, but low-level. Users can manipulate byte
arrays from within an image or rasterize polygons, and then
use numpy to manipulate those data. GDAL does not provide
resource management for memory or parallelisation, nor
does it align datasets when reading data blocks. Rasterio
provides a simpler API than GDAL which is more Pythonic
in nature (GDAL being a SWIG interface over a C++ library);
however, it too works at the level of providing access to array
data read from areas of an image. Shapely is another Pythonic
library, but only works on vector datasets. Neither provide a
declarative interface to the data nor resource management.

There are also cloud-hosted services that come close to
meeting our objectives, such as Microsoft Planetary Com-
puter or Google Earth Engine (GEE) [16], which provide
higher-level abstractions free from pixel-based and hardware
concerns. The GEE APIs load both raster and geometry data
as opaque objects, and automatically align and scale data to
meet output requirements, but do not automatically clip to
the minimal necessary work area as per our requirements.
While GEE abstracts resource scheduling well, its resource
acquisition requires using Google’s proprietary hosted plat-
form. This makes the GEE API unsuitable for open-source

48

usage and a potentially bad choice for accessible and repro-
ducible science. Federated alternatives are emerging, such
as OpenEO [27] but still in their early stages.

For R, the Terra [19] library supplants the Raster [18] pack-
age. Terra shares design goals to ours and treats geospatial
datasets abstractly to avoid loading them entirely into mem-
ory, but does not automatically align datasets or support
parallelism/GPUs. It has some advantages over Yirgacheffe
for direct pixel access for methods that require this.

2 Case Studies

Yirgacheffe was developed incrementally alongside the im-
plementation of several large ecology pipelines, each pro-
cessing large volumes of high-resolution raster data. This
co-development, working closely with ecologists, provided
valuable insight into the domain requirements.

The LIFE metric [12] examines the impact of land-use
change on species extinction risk. LIFE considers 30k species
from the IUCN Red List of endangered species [21], and for
each analysis considers current, historic and a scenario spe-
cific species distributions generated at 100m per pixel from
similarly high resolution habitat and elevation maps. An
example output, for conversion of land to arable, is shown in
Figure 1. An overview of the pipeline can be seen in Figure 2.

The IUCN’s STAR metric [25] also uses the IUCN Red List
and high-resolution raster data to assess the impact of differ-
ent threat categories on species. We have taken this method
and developed our own implementation using Yirgacheffe.
Both LIFE and STAR make significant use of calculating
species’ Area Of Habitat (AOH), but with different species
characteristics that presented different challenges (§2.1).



Yirgacheffe: A Declarative Approach to Geospatial Data

PROPL °25, October 12-18, 2025, Singapore, Singapore

make_diff map.py make_diff map.py

data/habitatarable_diff area.tif

N 0 —

[ ot sode sigen

ooy |

‘ ‘slobal_code_residents_pixel “‘

:

HIBIA/ ‘

delta_p_scaled_arca.py

delta_p_scaled_area.py

Figure 2. The LIFE pipeline flows topdown, with pink being data download, yellow data transforms, green AOH calculations,
purple extinction risks, and blue human formatting. All tiers except the first use Yirgacheffe.

Yirgacheffe also underpins the PACT Tropical Moist For-
est Accreditation Method [1, 2] (TMF), which calculates
the change in sequestered carbon for avoided deforestation
projects. This pipeline requires working with a wider range
of input data formats, from GEDI point sampling data of
forests from space [11], polygons of conservation projects
and country borders, and high resolution (30m per pixel) land
cover change rasters over many years. This wide variety of
input styles, coupled with some of the statistical analysis in
the pipeline, was useful in highlighting some limits of the
approach Yirgacheffe takes.

2.1 Area Of Habitat

Both the STAR and LIFE metrics are centered on a species’
“Area Of Habitat” (AOH) calculations, measured indepen-
dently for thousands of species [5]. This algorithm takes
a range polygon of where on the globe a species might be
located, drawn by a human expert so as to minimize omis-
sion errors, and is combined with habitat preference and
elevation preference maps to minimize commission errors:

AOH=RNHNE (1)

49

Where R is the species range, H is the location of suit-
able habitats, and E is location of suitable elevation. Those
habitat and elevation preference maps are derived from high-
resolution satellite data in combination with known species
preference data around their choice of habitats and observed
elevation occurrences:

AOH(s) = {(x,y) € R(s) : LC(x,y) € H(s)A
elev (x’ y) € [Emin (S)’ Emax(s)]}

Whilst AOH is a relatively simple algorithm, the imple-
mentation gets more obfuscated when written to run at scale.
A sequence of data intensive operations have to happen,
starting with the conversion of data formats (range being
polygonal data, and elevation and habitat maps being raster
data), point data must be extracted, and then numerical meth-
ods applied to the results.

The Yirgacheffe based implementation of AOH is in List-
ing 1 and exemplifies our design goals: the geospatial datasets
are manipulated directly, allowing the code to show the
methodology more clearly; The layers are automatically
aligned and intersected; and finally both the raster layers,

@)



PROPL ’25, October 12-18, 2025, Singapore, Singapore

hundreds of GB each, are chunked automatically, and the
work distributed over multiple CPU cores.

1 species_info = json.load("info.json")
2 with yirgacheffe.read_raster("elevation.tif") as E:
3 with yirgacheffe.read_reader("habitat.tif") as H:
4 with yirgacheffe.read_shape("info.geojson") as R:
5 Ef = (E > info.elevation_min) &
6 (E < info.elevation_max)
Hf = H.is_in(info.habitats)
8 AOH = R & Hf & Ef
9 AOH.to_geotiff("aoh.tif", parallelism=True)

Listing 1. The Yirgacheffe implementation of AOH. Note
that it treats the polygon range data and rasters equally, and
the code matches closely the equation in Equation 2, other
than the loading and saving of data.

Without Yirgacheffe this formula becomes unwieldy even
using a library like numpy to avoid per-pixel operations
alongside GDAL. An equivalent snippet to Listing 1 is shown
in Appendix A and is much longer since it has to manually
process the data, chunk it into schedulable units, and re-
combine everything to save the results. Files must be read
incrementally requiring extra looping, offsets within files
must be calculated manually, increasing the opportunity for
errors. The parallel_save in the Yirgacheffe implemen-
tation also automatically takes advantage of multiple CPU
cores, processing species on average in 32% the time of the
GDAL version on the same inputs on an AMD EPYC 9534
CPU. Whilst a computer scientist could extract more sub-
stantial gains, Yirgacheffe does this without requiring users
to be parallelism aware.

3 Yirgacheffe Implementation

Yirgacheffe implements a declarative interface to geospatial
datasets using an API modeled on numerical libraries like
Numpy [17], leveraging the prior experience of the target
users. Internally it is built upon existing extensive and well
tested libraries like numpy and GDAL, but providing a more
opinionated and guided API to help both ease of use and
enable automatic resource management.

In Yirgacheffe users create various “layers” that represent
either raster data from GeoTIFFs [9], vector data from Geo-
JSON [6] or GeoPackage [32] datasets, H3 hex tiles [4], or
constant values. There are also “group layers” that take indi-
vidual layers and treat them like a single layer (e.g., useful
for tiled raster data). Layers will not be loaded directly, but
rather their contents are fetched lazily as required.

Users express numerical operations on and between layers
directly to either calculate new layers or aggregations (sum,
min, max, etc.), without having to refer to pixel data directly.
These operations are expressed using built in language oper-
ators where possible, similar to numpy’s approach for arrays,
making working with large datasets as natural as working

50

M. W. Dales, A. Eyres, P. Ferris, F. A. Ridley, S. Tarr, and A. Madhavapeddy

with scalar variables; this is in contrast to GEE’s OO-based
approach where operators are method calls on objects.

Operations supported by Yirgacheffe include conventional
Python arithmetic and logic operations, common numpy ar-
ray operations such as where and isin, and also includes an
operator for 2D convolution matrix processing based on that
of pytorch [33]. In the latter case Yirgacheffe will automati-
cally take care of bounds adjustments to compensate for the
kernel size.

Yirgacheffe will automatically align pixels within layers
used in calculations based on their geospatial location rather
than their location within each image array; appropriate
empty values will be synthesized if necessary. If layers are
not directly comparable, due to using a different map projec-
tion or a different pixel scale, Yirgacheffe deliberately does
not attempt to insert automatic transforms, as what is cor-
rect when scaling and transforming layers depends on the
problem being solved: for example, down-scaling a raster
containing area values might use mean values, but for eleva-
tion maps min or max might be more appropriate. Thus the
author of the method has to be involved in those decisions.
Yirgacheffe does provide scaling operations, but these must
be explicitly added by the user.

To allow arbitrary dimensions of the input data, Yirgach-
effe has to align the various input layers for the calculations
being done: whether the result be an intersection or a union
of the area of the input layers depends on the types of cal-
culation being performed. By default Yirgacheffe infers this
using a set of first-order rules, applying either a union or
an intersection of the data as appropriate for the underlying
operation: e.g., for multiplication we will take an intersec-
tion, as data outside defined areas will default to zero; for
addition it will take a union approach. These can be manu-
ally overridden if necessary, but having defaults that work
for most common cases keeps the code closer to the method,
and in our test cases it is rare that it has to be manually set.

As with loading data, Yirgacheffe evaluates calculations
on layers lazily. When a user writes an expression over a set
of layers in their Python code, the resultant variable value
is not the answer, but rather an opaque type that contains
the expression tree ready to be evaluated. The evaluation
of this tree will only happen when the expression is either
saved or aggregated. Metadata on the expression, such as
the resultant geospatial dimensions, can be queried on the
expression as if the layer had been calculated eagerly.

3.1 Resource Management

A key motivator for Yirgacheffe was to provide efficient use
of memory for the large LIFE pipeline. While the average
size of species ranges is small, a few larger species! caused
the pipeline to run out of memory when parallel processing.

1For example, moose or bear species occupy the entire northern hemisphere



Yirgacheffe: A Declarative Approach to Geospatial Data

In most of these pipelines, the data is read only once in
any given calculation; the later stages of the TMF that used
random spatial sampling are the exception. This observation
led us to effectively stream process expressions in Yirgach-
effe: the result area is sliced, and only the parts of the rasters
required for that slice are loaded, and any related polygon
area is rasterized, minimizing the computation’s memory
footprint. The optimal size of that slice is a consideration: too
small, and the overheads become significant, but we found
in practice processing a few hundred rows of these large
rasters lead to negligible performance loss versus loading
everything into memory ahead of time. The caveat to that,
observed in STAR which deals with marine birds, is species
with complex range polygons that follow coast lines: exces-
sive detail in these can slow down the slice rasterisation
significantly.

The internal chunking of a calculation also provides an-
other advantage: each of the slices being processed are inde-
pendent of each other, and so this also provides a mechanism
by which parallelism can be applied, albeit within the limited
constraints of the Python run-time environment. The Python
GIL [28] means that its runtime provides parallelism by us-
ing child processes rather than via shared-memory threads.
This causes issues for libraries like GDAL, and thus in turn
Yirgacheffe, as only primitive Python types can be passed
between processes by the run-time, which would break the
illusion Yirgacheffe makes of geospatial layers being sim-
ilarly primitive. Yirgacheffe works around this by using a
combination of shared memory for in flight computation
data and carefully selecting layer metadata to allow GDAL
objects to be closed and reopened on the other side.

3.2 CPU and GPU Support

Initially Yirgacheffe only used numpy for doing numeri-
cal processing. numpy is the standard numerical library for
Python and is quick and expressive, and is a library a typ-
ical data scientist using Python is comfortable with. This
allowed Yirgacheffe to develop incrementally along with the
case study pipelines: we provide a numpy_apply operator on
layers, which takes a function as an argument that is called
back with data chunks in numpy format. We could therefore
adopt Yirgacheffe for the handling of geospatial data before
the declarative interface was fully developed.

However, escape hatches that expose internal workings
come at a cost. One objective from the outset was to provide
multiple backends to Yirgacheffe, supporting not just CPU
compute, but also GPU, via CUPY [29] which abstracts the
NVIDIA CUDA GPU framework, and MLX [26], which ab-
stracts Apple’s Metal GPU library. To do this Yirgacheffe’s
backend has separate interpreters over the user-specified
operations to switch between numerical frameworks. How-
ever, any pipeline using the escape hatches in the API could
not take advantage of multiple backends until Yirgacheffe

51

PROPL °25, October 12-18, 2025, Singapore, Singapore

supported a sufficient spread of numerical operators and the
pipelines were migrated to use those natively.

Although our aim is to avoid having users deal with hard-
ware decisions in their code, Yirgacheffe does not automat-
ically select the backend, because moving a computation
from CPU to GPU can have consequences on the precision
of results, which means the same pipeline might generate
different results on different hardware [39]. Unfortunately,
we have observed this behaviour with standard CPU libraries
also, due to the use of vector operations [30].

For a discrete GPU where system and graphics memory
are not shared, there is overhead involved when moving
computation to the GPU. We observed this while processing
AOH across a large number of species; for species with a
global reach (birds, or large mammals like bear or moose),
using CUDA provided a performance benefit, but for the
majority of land animals that have smaller ranges it was
slower to do the work on the discrete GPU. A unified memory
architecture overcomes this, however is only widely available
on Apple hardware, but where possible the improvement is
notable: calculating the 34821 AOHs for a single scenario
in LIFE was approximately 1.6 times faster on an Apple M3
Ultra when using GPU vs CPU (for a discussion on why the
gains are relatively modest see Section 4.2).

4 Discussion

Whilst Yirgacheffe has successfully demonstrated that it is
possible to both provide APIs that support the task of geospa-
tial programming whilst abstracting away computer science
concerns, there were many problems we either didn’t have
time to solve, or need solved by some other solution over
making Yirgacheffe more complicated.

4.1 Language Level

Some aspects of Yirgacheffe can be improved at the interface
level of the library as it matures.

Alternative expressivity. Some computational ecology
algorithms are not currently served by Yirgacheffe, as it
currently focuses on the subset of geospatial problems that
involve pixel based comparisons over large areas. In the
TMF case study, the declarative interface of Yirgacheffe is
ill suited to doing random sampling over geospatial areas
for selecting the counter-factual pixels. Whilst from a code
point of view an API like that found in Terra would make
it possible to code up more cleanly, the similar chunking
approach it takes to Yirgacheffe would not help here, and
we need more support for different access patterns.

Partial results. Our simplified AOH algorithm (§2.1) di-
verges in LIFE and STAR as they use variations based on
TUCN guidelines, which then results in more complexity in
the implementation [8]. For example, the IUCN guidelines
recommend if the filtered habitat and elevation layers are



PROPL ’25, October 12-18, 2025, Singapore, Singapore

empty, then they are ignored for AOH. This means the lay-
ers are evaluated twice in the AOH code, once as part of
testing for validity, and once again in the final calculation.
Either a caching layer, or a logic that would work at a higher
level in that simpler operators could potentially avoid this
overhead. Note that this isn’t the same as caching within a
single expression (it can be seen in Listing 1 that the eleva-
tion layer is used twice on line 5), but rather this is needed
across expressions also.

Managing side-effects. The ecology methods being im-
plemented typically do not have side-effects within their
methods descriptions. Yet when these are translated to im-
perative languages like Python, R or Julia, the code is lit-
tered with side effects in places that make it very hard to
test the code. As a Python library, Yirgacheffe does noth-
ing to address this, but discourages side-effecting code due
to its declarative style. As a separate project we are port-
ing Yirgacheffe to OCaml using modal types [23], paral-
lelism [10, 37] and effects [38] to explore this further: can
we build a functional, declarative DSL based on Yirgacheffe
that promotes coding that follows more closely the written
natural language method specifications that are found in the
scientific literature?

Interactive programming. The emerging space of live
programming environments [3, 31] is of huge interest to ver-
nacular programmers such as our target audience, as it could
make debugging and visualising intermediate results easier.
Some of these also provide agentic support to sequence tasks
in a user-friendly fashion [7], which would make assembling
Yirgacheffe programs easier for non CS-experts.

Floating point precision. Excessive precision in data can
lead to problems in both compute performance and storage
(§3.1). Due to the limited precision of floating point numbers,
we often see species ranges accurate to tens of km stored to
the nearest nanometer. This lack of nuance in floating point
representations can also lead people to infer more accuracy
in the data than was originally intended. This technique has
been applied in specific instances (e.g., for atmospheric mod-
eling [22]), but a context-aware variable precision floating
point type rather than IEEE floating point would make sense
for most geospatial pipelines.

4.2 Hardware Level

Hardware has become heterogeneous in recent years, with
multicore architectures and GPUs now widely available.

Axes of parallelism. When a method for the same al-
gorithm needs to be applied to many items of data, there
are two strategies: parallelise the algorithm and apply it in
turn to each data item, or apply the algorithm to many data
items in parallel. Yirgacheffe supports the former, but not the
latter, and for some methodologies the latter strategy is more
efficient. Whilst Yirgacheffe cannot automatically make this

52

M. W. Dales, A. Eyres, P. Ferris, F. A. Ridley, S. Tarr, and A. Madhavapeddy

scheduling decision for the programmer, the lack of support
for the second approach means the ecologist users must ei-
ther manually implement Python multiprocessing or move
to an external solution (e.g., GNU Parallel® or Littlejohn®).

Memory conservation. Yirgacheffe can manage the mem-
ory requirements of a single instance to ensure the machine
is kept safe, but risks still exist that the machine can run out
of memory. This leads at best to pipeline failure, or worse
to unnoticed failures that generate incorrect results due to
missing error handling in user code. Managing this is beyond
the direct scope of Yirgacheffe, as it requires either better
language support for parallelism, or ideally better coopera-
tion from the operating system’s scheduler [20]. Persisting
the data to disk volumes on Docker [24] would also allow
for easier debugging and sharing of intermediate results, but
requires careful attention to space usage and snapshotting
due to the huge amount of data involved in a typical pipeline.

Too many layers of abstraction: The layering of multi-
ple numerical libraries has a performance cost. For example,
we use the MLX library to provide Apple Metal support,
which like Yirgacheffe provides a declarative interface for
large opaque units of data (numpy style arrays). MLX lazily
evaluates operations, allowing it to build a GPU kernel that
covers as much of the operation as it can (e.g., to fit the entire
AOH calculation into a single kernel). However, Yirgacheffe
similarly builds up a lazy expression tree and evaluates it
in a depth-first fashion, meaning when using it as a back-
end, MLX never gets to see the full operation and can only
build kernels for single operators. This we believe is why we
only see the modest performance gains when using a GPU
outlined previously, and it is an area we intend to address
in future releases. MLX does not currently provide a pro-
grammatic interface to building expressions, but we could
compile Yirgacheffe expressions to Python code for MLX dy-
namically, allowing it then to do its compilation with a full
view of the expression whilst leaving Yirgacheffe to manage
the input data alignment and chunking,.

5 Conclusions

Yirgacheffe is our declarative geospatial library that empow-
ers ecologists to solve data science problems more clearly
and concisely by handling both the geospatial and resource
scheduling required in this domain. It has been used to build
pipelines for calculating several global published conserva-
tion metrics that process petabytes of raster data.
However, many challenges still remain for the program-
ming language and systems research communities, such as
balancing expressivity with incremental results and more
flexibility for heterogenous hardware. We welcome contri-
butions at https://github.com/quantifyearth/yirgacheffe.

2See https://www.gnu.org/software/parallel/
3See https://github.com/quantifyearth/littlejohn


https://github.com/quantifyearth/yirgacheffe
https://www.gnu.org/software/parallel/
https://github.com/quantifyearth/littlejohn

Yirgacheffe: A Declarative Approach to Geospatial Data

A Supplementary Source Code

The code below is the logic in Listing 1 without Yirgacheffe.

1
2
3
4
5

59

60

species_info = json.load("info.json")
elevation = gdal.Open("elevation.tif")
habitat = gdal.Open("habitat.tif")
range_polygon = ogr.Open("info.geojson")

habitat_left, habitat_xstep, _, habitat_top, _, habitat_ystep =
habitat.GetGeoTransform()
elevation_left, elevation_xstep, _, elevation_top, _,

elevation_ystep = elevation.GetGeoTransform()
layer = range_polygon.GetlLayer()
envelopes = []

layer.ResetReading()
feature = layer.GetNextFeature()
while feature:
geometry = feature.GetGeometryRef ()
if geometry:
envelopes.append(geometry.GetEnvelope())
feature = layer.GetNextFeature()
if len(envelopes) ==
raise ValueError('No geometry found')

abs_xstep, abs_ystep = abs(habitat_xstep), abs(habitat_ystep)

range_origin_x = floor(min(x[@] for x in envelopes) / abs_xstep)

range_origin_y = ceil(max(x[3] for x in envelopes) / abs_ystep)

range_left = range_origin_x * abs_xstep

range_top = range_origin_y * abs_ystep

range_right = ceil(max(x[1] for x in envelopes) / abs_xstep) *
abs_xstep

range_bottom = floor(min(x[2] for x in envelopes) / abs_ystep)
* abs_ystep

range_width = round((range_right - range_left) / abs_xstep)

range_height = round((range_top - range_bottom) / abs_ystep)

result = gdal.GetDriverByName("GTiff").Create(
output_path, range_width,
range_height, 1,
gdal.GDT_Byte, ['COMPRESS=LZW', 'BIGTIFF=YES'])

YSTEP = 512
for yoffset in range(@, range_height, YSTEP):
ystep = YSTEP if (yoffset + YSTEP) < range_height else
(range_height - yoffset)
dataset = gdal.GetDriverByName('mem').Create('mem’
range_width, ystep, 1, gdal.GDT_Byte, [])
dataset.SetProjection(habitat.GetProjection())
dataset.SetGeoTransform([
range_left, habitat_xstep,
0.0, range_top + (yoffset * habitat_ystep),
0.0, habitat_ystep
D
gdal.RasterizelLayer(dataset, [1], layer, burn_values=[1],
options=["ALL_TOUCHED=TRUE"])
range_data = dataset.GetRasterBand(1).ReadAsArray(@, 9,
range_width, ystep)

habitat_data = habitat.GetRasterBand(1).ReadAsArray(
round((range_left - habitat_left) / habitat_xstep),
round((range_top - habitat_top) / habitat_ystep) +
yoffset,
range_width, ystep )
filtered_habitat_data = np.isin(habitat_data, info.habitats)
elevation_data = elevation.GetRasterBand(1).ReadAsArray(
round((range_left - elevation_left) / habitat_xstep),
round((range_top - elevation_top) / habitat_ystep) +
yoffset,
range_width, ystep )
filtered_elevation_data = (elevation_data >
info.elevation_min) & (elevation_data <
info.elevation_max)
aoh = filtered_habitat_data * filtered_elevation_data *
range_data
result.GetRasterBand(1).WriteArray(aoh, 0, yoffset)
result.Close()

53

(1]

[2

—

3

—

[4

—

[5

—

G

—

[7

—

[8

—

[9

—

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

(18]
[19]

[20]

PROPL °25, October 12-18, 2025, Singapore, Singapore

References

BaLmFORD, A., CooMEs, D., DALES, M., FERRI1s, P., HARTUP, J., JAF-
FER, S., KESHAV, S., LAM, M., MADHAVAPEDDY, A., MESSAGE, R., RAU,
E.-P., SWINFIELD, T., AND WHEELER, C. PACT tropical moist forest
accreditation methodology. Tech. rep., University of Cambridge, 2023.
BALMFORD, A., KEsHAV, S., VENMANS, F., CooMEs, D. A., GrRoom, B.,
MADHAVAPEDDY, A., AND SWINFIELD, T. Realizing the social value of
impermanent carbon credits. Nature Climate Change 13, 11 (nov 2023),
1172-1178

BrINN, A, L1, X., K1y, J. H., AND OMAR, C. Statically contextualizing
large language models with typed holes. Proc. ACM Program. Lang. 8,
OOPSLA2 (Oct. 2024).

Bropsky, I. H3: Uber’s hexagonal hierarchical spatial index. https:
//www.uber.com/en-GB/blog/h3/, 2018.

Brooks, T. M, Pimm, S. L, R., A. H,, BucHANAN, G. M., BUTCHART, S.
H. M., Fopen, W., HILTON-TAYLOR, C., HOFFMANN, M., JENKINS, C. N.,
Jorra, L., L1, B. V., MENON, V., OcaMPO-PENUELA, N., AND RONDININI,
C. Measuring terrestrial area of habitat (AOH) and its utility for the
TUCN red list. Trends in Ecology & Evolution (2019).

BUTLER, H., DALY, M., DOYLE, A., GILLIES, S., SCHAUB, T., AND HAGEN,
S. The GeoJSON format. RFC 7946, Aug. 2016.

CROISDALE, G., HuANG, E., CHUNG, ]J. ]. Y., Guo, A., WANG, X., HENLEY,
A.Z., AND OMAR, C. Deckflow: Iterative specification on a multimodal
generative canvas, 2025.

DALEs, M. Area of habitat calculation code for biodiversity assessment
pipelines. https://github.com/quantifyearth/aoh-calculator, 2023.
DEevys, E.,, HABERMANN, T., HEAZEL, C., LOoTT, R., AND RovAULT, E. OGC
GeoTIFF standard. Tech. Rep. 19-008r4, Open Geospatial Consortium,
Sept. 2019

DoLAN, S., WHITE, L., AND MADHAVAPEDDY, A. Multicore OCaml. In
the 4th ACM OCaml Users and Developers Workshop (sep 2014).
DusBavam, R., ARMSTON, J., HEALEY, S. P., BRUENING, J. M., PATTERSON,
P. L., KELLNER, J. R, DUNCANSON, L., SAARELA, S., STAHL, G., YANG,
Z., ET AL. GEDI launches a new era of biomass inference from space.
Environmental Research Letters 17,9 (2022), 095001.

EYRES, A., BALL, T. S., DALES, M., SWINFIELD, T., ARNELL, A., BAISERO,
D., DURAN, A. P, GREEN, J. M. H., GREEN, R. E., MADHAVAPEDDY, A.,
AND BALFORD, A. LIFE: A metric for mapping the impact of land-cover
change on global extinctions. Philosophical Transactions of The Royal
Society B (2025).

FERRIs, P., DALES, M., SWINFIELD, T., JAFFER, S., KESHAV, S., AND MAD-
HAVAPEDDY, A. Uncertainty at scale: how CS hinders climate research.
Undone Computer Science (2024).

GABRIEL, R. The Rise of "Worse is Better". https://dreamsongs.com/
RiseOf WorselsBetter.html, 1991.

GDAL/OGR coNTRIBUTORS. GDAL/OGR Geospatial Data Abstraction
Software Library. Open Source Geospatial Foundation, 2024.
GORELICK, N., HANCHER, M., DixoN, M., ILYUSHCHENKO, S., THAU,
D., AND MOORE, R. Google Earth Engine: Planetary-scale geospatial
analysis for everyone. Remote Sensing of Environment 202 (2017), 18-27.
Harris, C. R.,, MiLLmAN, K. J., VAN DER WALT, S. J., GOMMERSs, R.,
VIRTANEN, P., COURNAPEAU, D., WIESER, E., TAYLOR, J., BERG, S., SMITH,
N. J,, Kern, R, Picus, M., HOYER, S., vaN KERkwIJK, M. H., BRETT,
M., HALDANE, A,, DEL Rio, J. F., WIEBE, M., PETERSON, P., GERARD-
MARCHANT, P., SHEPPARD, K., REDDY, T., WECKESSER, W., ABBASI, H.,
GOHLKE, C., AND OLIPHANT, T. E. Array programming with NumPy.
Nature 585, 7825 (Sept. 2020), 357-362.

Hijmans, R. J. raster: Geographic Data Analysis and Modeling, 2025. R
package version 3.6-32.

Hijmans, R. J. terra: Spatial Data Analysis, 2025. R package version
1.8-57.

HumpHRIES, J. T., NaTU, N., CHAUGULE, A., WEISSE, O., RHODEN, B.,
Don, J., Rizzo, L., RomBAKH, O., TURNER, P., AND Kozyrakis, C. ghOSt:


https://www.uber.com/en-GB/blog/h3/
https://www.uber.com/en-GB/blog/h3/
https://github.com/quantifyearth/aoh-calculator
https://dreamsongs.com/RiseOfWorseIsBetter.html
https://dreamsongs.com/RiseOfWorseIsBetter.html

PROPL ’25, October 12-18, 2025, Singapore, Singapore

[21

[22

[23

[24

[25

[26

[27

[28

[29

]

—

]

]

]

]
]

[t

—

Fast & flexible user-space delegation of Linux scheduling. In Proceed-
ings of the ACM SIGOPS 28th Symposium on Operating Systems Princi-
ples (New York, NY, USA, 2021), SOSP ’21, Association for Computing
Machinery, p. 588-604.

IUCN. The IUCN red list of threatened species. version 2023-1. https:
//www.iucnredlist.org, 2023.

KLOWER, M., RAZINGER, M., DOMINGUEZ, J. J., DUBEN, P. D., AND
PALMER, T. N. Compressing atmospheric data into its real information
content. Nature Computational Science (2021), 713-724.

LORENZEN, A., WHITE, L., DOLAN, S., EISENBERG, R. A., AND LINDLEY,
S. Oxidizing OCaml with modal memory management. Proc. ACM
Program. Lang. 8, ICFP (Aug. 2024).

MADHAVAPEDDY, A., SCOTT, D. J., FERRIs, P., GiBB, R. T., AND GAzA-
GNAIRE, T. Functional networking for millions of Docker desktops
(experience report). Proceedings of ACM Programming Languages 9,
ICFP (aug 2025), 256:597-256:615.

MAIR, L., BENNUN, L., BRooks, T., BUTCHART, S., BoLAaM, F., BURGESS,
N., EKSTROM, J., MILNER-GULLAND, E., HOFFMANN, M., Ma, K., Mac-
FARLANE, N., RAIMONDO, D., RODRIGUES, A., SHEN, X., STRASSBURG, B.,
BeATTY, C., GOMEZ-CREUTZBERG, C., IRIBARREM, A., IRMADHIANY, M.,
LACERDA, E., MATTOS, B., PARAKKASI, K., TOGNELLI, M., BENNETT, E.,
BryaN, C., CARBONE, G., CHAUDHARY, A., EISELIN, M., DA FONSECA, G.,
GALT, R., GESCHKE, A., GLEW, L., GOEDICKE, R., GREEN, ]., GREGORY,
R., Hivt, S., Hoig, D, HuGHEs, J., HuTTON, J., KE[JZER, M., NAVARRO,
L., Nic LUGHADHA, E., PLUMPTRE, A., PUYDARRIEUX, P., POSSINGHAM,
H., Rankovic, A., REGAN, E., RONDININT, C., SCHNECK, J., STIKAMAKI,
J., SENDASHONGA, C., SEUTIN, G., SINCLAIR, S., SKOWNO, A., SOTO-
NAVARRO, C., STUART, S., TEMPLE, H., VALLIER, A., VERONES, F., VIANA,
L., WaTsoN, J., BEZENG, S., BouM, M., BURFIELD, 1., CLAUSNITZER, V.,
CLUBBE, C., Cox, N., FREYHOF, J., GERBER, L., HILTON-TAYLOR, C., JENK-
INS, R, JooLia, A., Joppa, L., Kon, L., LACHER, T., LANGHAMMER, P.,
Long, B., MALLON, D., Pacrrict, M., PoLipoRO, B., PoLLocK, C., RIVERS,
M., RoacH, N., RODRIGUEZ, J., SMART, J., YOUNG, B., HAwkIns, F., AND
McGowan, P. A metric for spatially explicit contributions to science-
based species targets. Nature Ecology and Evolution 5, 6 (June 2021),
836-844.

MLX coNTRIBUTORs. MLX: An array framework for Apple silicon.
https://github.com/ml-explore/mlx.

MoHR, M., PEBEsSMA, E., Driks, J., LIPPENS, S., JANSSEN, B., THIEX,
D., MiLcINsKI, G., SCHUMACHER, B., BRIESE, C., CLAUS, M., JACOB, A.,
SACRAMENTO, P., AND GRIFFITHS, P. Federated and reusable processing
of earth observation data. Scientific Data 12, 1 (Feb. 2025).

MUTTIN, S., AND DasH, D. Threading and multiprocessing module
and the limitations due to the GIL in Python. International Journal of
Scientific Research and Engineering Development (2021).

NisHINO, R., AND Loowmis, S. H. C. CuPy: A NumPy-compatible library
for NVIDIA GPU calculations. 31st Conference on Neural Information

54

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

M. W. Dales, A. Eyres, P. Ferris, F. A. Ridley, S. Tarr, and A. Madhavapeddy

Processing Systems 151, 7 (2017).

BUG: Power calculation rounding error for array values on AMD EPYC
9534. https://github.com/numpy/numpy/issues/25269.

OMAR, C., Voysey, L., CHUGH, R., AND HAMMER, M. A. Live functional
programming with typed holes. Proc. ACM Program. Lang. 3, POPL
(Jan. 2019).

OPEN GEOSPATIAL CONSORTIUM. OGC GeoPackage encoding standard.
http://www.opengis.net/doc/1S/geopackage/1.4, 2024.

PAszkE, A., Gross, S., MAssA, F., LERER, A., BRADBURY, J., CHANAN, G.,
KiLLgeN, T., LIN, Z., GIMELSHEIN, N., ANTIGA, L., DESMAISON, A., KOPF,
A., YANG, E., DEVITO, Z., RAISON, M., TEJANI, A., CHILAMKURTHY, S.,
STEINER, B., FANG, L., BAL J., AND CHINTALA, S. PyTorch: An imperative
style, high-performance deep learning library. In Proceedings of the
33rd International Conference on Neural Information Processing Systems
(2019).

PERTSEVA, E., CHANG, M., ZAMAN, U., AND COBLENZ, M. A theory of

scientific programming efficacy. In Proceedings of the IEEE/ACM 46th
International Conference on Software Engineering (New York, NY, USA,

2024), ICSE ’24, Association for Computing Machinery.

REYNOLDS, S., BEERY, S., BURGESS, N., BURGMAN, M., BUTCHART, S.,
COOKE, S. J., CooMEs, D. A., DANIELSEN, F., MININ, E. D., DURAN, A. P,,
GASSERT, F.,, HINSLEY, A., JAFFER, S., JONES, J. P.,, L1, B. V., AopHA, O. M,,
MADHAVAPEDDY, A., O’'DONNELL, S., OXBURY, B., PECK, L., PETTORELLI,
N., RODRIGUEZ, J. P., SHUCKBURGH, E., STRASSBURG, B., YAMASHITA, H.,
Mi1ao, Z., AND SUTHERLAND, B. The potential for Al to revolutionize
conservation: a horizon scan. Trends in Ecology & Evolution (dec 2024),
S50169534724002866.

SHAw, M. Myths and mythconceptions: what does it mean to be a pro-
gramming language, anyhow? Proceedings of the ACM on Programming
Languages 4, 234 (2020), 1-44.

SIVARAMAKRISHNAN, K., DoLAN, S., WHITE, L., JAFFER, S., KELLy,
T., SAHOO, A., PARIMALA, S., DHIMAN, A., AND MADHAVAPEDDY, A.
Retrofitting parallelism onto OCaml. Proceedings of the ACM on Pro-
gramming Languages 4, ICFP (aug 2020), 1-30.

SIVARAMAKRISHNAN, K., DoLAN, S., WHITE, L., KELLy, T., JAFFER, S.,
AND MADHAVAPEDDY, A. Retrofitting effect handlers onto OCaml. In
Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation (jun 2021), ACM,
pp. 206-221.

WHITEHEAD, N., AND FIT-FLOREA, A. Precision and Performance:
Floating Point and IEEE 754 Compliance for NVIDIA GPUs. Tech. rep.,
NVIDIA, 2011.

ZIEGLER, P., AND CHASINS, S. E. A need-finding study with users of
geospatial data. In Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems (New York, NY, USA, 2023), CHI ’23,
Association for Computing Machinery.

Received 2025-07-07; accepted 2025-08-11


https://www.iucnredlist.org
https://www.iucnredlist.org
https://github.com/ml-explore/mlx
https://github.com/numpy/numpy/issues/25269
http://www.opengis.net/doc/IS/geopackage/1.4

	Abstract
	1 Introduction
	2 Case Studies
	2.1 Area Of Habitat

	3 Yirgacheffe Implementation
	3.1 Resource Management
	3.2 CPU and GPU Support

	4 Discussion
	4.1 Language Level
	4.2 Hardware Level

	5 Conclusions
	A Supplementary Source Code
	References

