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Abstract

Satellite remote sensing (RS) enables a wide array of downstream Earth ob-
servation (EO) applications, including climate modeling, carbon account-
ing, and strategies for conservation and sustainable land use. We present
TESSERA, a novel Remote Sensing Foundation Model (RSFM) that uses
Self-Supervised Learning (SSL) to generate global, robust representations
at 10m scale from pixel-level satellite time series data. TESSERA com-
bines information from only optical and SAR data streams using two par-
allel Transformer-based encoders: one dedicated to Sentinel-1 SAR polar-
izations and another to Sentinel-2 MSI data (10 selected spectral bands)
to create representations that are then fused using a multilayer perceptron
(MLP), resulting in a global representation map covering the years 2017
to 2024. Our precomputed representations set a new state-of-the-art per-
formance benchmark and our open-source approach democratizes access to
high-performance, high-resolution representations. We benchmark the per-
formance of TESSERA in five diverse tasks, comparing our work with state-
of-the-art task-specific models and other foundation models. Our results
show that TESSERA outperforms both traditional RS baselines and the lead-
ing geospatial foundation models in these diverse downstream tasks.

Monitoring Earth’s dynamic systems through satellite Earth Observation (EO) is critical for ad-
dressing global challenges including food security, biodiversity loss, climate change, and disaster
mitigation. Petabytes of EO data are available from sensors in various modalities, and declining
launch costs promise exponential growth in the future. However, practitioners face a fundamental
bottleneck: the scarcity of large, accurately labeled datasets required for supervised training. Direct
use of EO data also presents challenges as the data quality is affected by cloud cover, atmospheric ef-
fects, sensor biases, and non-uniform temporal sampling, preventing full utilization of this valuable
resource.

Users of EO data usually mitigate cloudiness by annual or seasonal compositing and then use super-
vised training of a neural network to map from composited images to tasks-specific classification,
such as crop identification. However, compositing removes the critical temporal signal and training
a task-specific neural network is computationally onerous. More recent EO approaches tackle the
second problem by adopting the paradigm of foundation models, creating general-purpose models
pre-trained on a broad set of EO data. For example, Visual Foundation Models (VFMs) have been
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engineered to interpret a wide array of geospatial data types, including multispectral, hyperspectral,
and SAR imagery. Their development follows several paths, including supervised pre-training on
large labeled datasets for spatiotemporal analysis [13, 12, 83, 11], and various self-supervised learn-
ing (SSL) strategies that learn from the inherent structure of the data itself. These SSL techniques
include generative methods, such as masked autoencoders [19, 55, 69, 32, 62, 48, 61, 28, 77, 74,
30, 72, 37, 79] and diffusion-based models [92, 42, 64], and contrastive methods which learn effi-
cient representations by comparing data samples [7, 54, 5, 52, 43, 14, 29, 38, 85]. Subsequently,
these general-purpose models are adapted and fine-tuned for specific remote sensing tasks such as
high-resolution segmentation [84, 87, 88, 16, 91].

Whilst existing SSL approaches offer rich multi-dimensional ‘representations’ from unlabeled data
through auxiliary tasks that reveal latent patterns [8, 51], they still do not address the problem of
loss of the temporal signal during compositing. In recent work Lisaius et al [49] have demonstrated
that the Barlow Twins method [90] is an elegant approach, grounded in redundancy reduction prin-
ciples [10], to preserve the temporal signal in latent representations. Building on this insight, we
introduce TESSERA, a foundation model for EO data that creates 128-dimensional latent represen-
tations at global scale to enable state-of-the-art performance across a diverse array of complex tasks.
Our experiments demonstrate that TESSERA-learned representations outperform baseline methods
in tasks as diverse as estimating canopy height in rainforests in Borneo, detecting crop types in Aus-
tria, and identifying fire scars in California. Crucially, our model is open source, enabling ease of
adoption and reproducibility. Our global representation map also enables users to keep their data
private rather than having to upload it to a centralized repository.

1 Our Model

TESSERA processes unlabeled time series from Sentinel-1 SAR and Sentinel-2 Multispectral In-
strument (MSI) data. It is a remote sensing foundation model designed for pixel-wise feature ex-
traction from Sentinel-1 and Sentinel-2 imagery. It comprises two main components: a dual-branch
encoder and a projector network (see Fig. 1 for a detailed diagram). For each 10-meter pixel globally,
it generates a compact, 128-dimensional embedding that encapsulates that pixel’s annual temporal
and spectral characteristics. A primary goal of this work is the production of global, annual, 10-
meter resolution representation maps covering the years 2017 to 2024. These pre-computed maps
significantly lower the barrier of entry for a wide array of downstream Earth observation applica-
tions, by providing readily usable, information-rich features. The core methodology is based on
a self-supervised learning paradigm, leveraging the complementary information from optical and
SAR data streams.

The fundamental input unit for TESSERA is termed the “d-pixel”. For multi-spectral (from Sentinel-
2) or SAR backscatter (from Sentinel-1) observations each d-pixel uniquely represents a single geo-
graphic 10-meter pixel by structuring the repeat observations from the complete annual time series
of the modality into a two-dimensional array (i.e, timesteps by channels). This format explicitly
preserves the temporal evolution and spectral/backscatter signatures inherent in the satellite data.
The d-pixel design also intrinsically accommodates common observational gaps, such as those due
to cloud cover, by masking invalid data points, which are then handled during subsequent processing
stages. See Appendix A.4 and Supplementary Fig. 1.

1.1 Dual-encoder

TESSERA employs a multi-modal architecture to process and integrate information from the
Sentinel-1 and Sentinel-2 observations. The model consists of specialized encoders for each modal-
ity followed by a projection head for self-supervised learning.

The model features two separate, parallel Transformer-based encoders: one for Sentinel-1 SAR
backscatter data (VV and VH polarizations) and another for Sentinel-2 MSI data (10 selected spec-
tral bands). Each encoder processes the temporal sequence of a d-pixel, utilizing multi-head self-
attention mechanisms to capture complex temporal dependencies and patterns specific to each data
modality. Positional encodings derived from the Day-of-Year (DOY) are incorporated to provide
temporal context. An attention-pooling layer within each encoder aggregates the temporal features
into a fixed-size vector representing the annual signature for that modality. See Appendix A.7 and
Supplementary Figure 1 for architectural details.
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Figure 1: Architecture and data processing pipeline of the TESSERA foundation model. a,
Overview of the end-to-end workflow. Spatially aligned time-series data from Sentinel-2 MSI and
Sentinel-1 SAR are first extracted for each pixel location, forming modality-specific ‘d-pixels’. For
self-supervised training, two distinct augmentations are created from each d-pixel and processed
through a dual-branch architecture with shared weights within each branch. The resulting 128-
dimensional representations from both modalities are fused by a multilayer perceptron MLP. The
fused features are then expanded to 16,384 dimensions by a large projector network. A modified
Barlow Twins loss (LBT + LMIX ) is calculated on the cross-correlation matrix of these projected
features, optimizing the model to learn invariant and decorrelated representations. b, Detailed struc-
ture of a single encoder branch. A d-pixel, represented as a matrix of temporal steps versus spectral
bands (e.g., 40 time-steps × 2 bands for Sentinel-1), is first embedded. A DOY-based temporal
positional encoding is added to these embeddings. The resulting sequence is then processed by an
8-block Transformer Encoder. Finally, a GRU pooling layer aggregates the temporal features to pro-
duce a single 128-dimensional representation for that modality, which is then passed to the fusion
MLP shown in panel a.

1.2 Projector

The modality-specific representations derived from the dual encoders are first fused using a multi-
layer perceptron (MLP). This fused representation, which serves as the final 128-dimensional pixel
embedding for downstream tasks, is then quantized before being fed into a high-dimensional projec-
tor network. This projector, a significantly larger MLP, expands the dimensionality of the fused rep-
resentation1 to facilitate effective redundancy reduction during the self-supervised learning phase.

1.3 Model Training

The TESSERA model learns its representations through a self-supervised pretraining process on
a large-scale, unlabeled global dataset. It is trained by optimizing a modified Barlow Twins loss
function [90]. The core principle is to learn embeddings that are invariant to differing or incomplete
views of the same pixel’s data (e.g., different sets of cloud-free observation dates) while minimizing
redundancy between the learned feature dimensions. This is achieved by generating two distinct

1This is a critical step inspired by Barlow Twins [90]
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augmented views for each input d-pixel, primarily through independent sparse temporal sampling
of annual Sentinel-1 and Sentinel-2 observations, rather than applying artificial distortions or aug-
mentations. The model then learns to reconcile these partial views. The loss function includes the
standard Barlow Twins terms for invariance and redundancy reduction, augmented with an addi-
tional mix-up regularization term to enhance robustness and inter-sample interaction during training
(see Appendix A.7.2 for the full loss function, Equation 12).

The pretraining phase utilizes a vast global dataset comprising approximately 0.8 billion d-pixels,
sampled from Sentinel-1 and Sentinel-2 imagery. A crucial element for successful generalization
was a specific multi-level data sampling, shuffling, and batching strategy. This ensured that each
training mini-batch contained a highly diverse set of d-pixels from various geographic locations
and acquisition conditions, preventing model overfitting and promoting the learning of universally
applicable features. The model was trained for one epoch over this dataset using distributed training
techniques.

1.4 Model Inference and Global Representation Maps

Following pretraining, the TESSERA dual-encoder (with frozen weights and excluding the projec-
tor) is used to generate the final 128-dimensional representation for every 10-meter pixel globally,
for each year from 2017 to 2024. This involves processing the annual Sentinel-1 and Sentinel-2 time
series for each pixel through the trained encoders. The primary output of this inference stage is a set
of annual, global, 10-meter resolution TESSERA representation maps. These maps are designed as
readily usable, multi-channel geospatial data layers. This “Model-as-Data” approach significantly
lowers the barrier to entry for end-users, as these rich, pre-computed features can be directly ingested
by downstream models without the need for raw satellite data processing or running the TESSERA
model itself.

2 Downstream Tasks

The effectiveness and generalizability of the TESSERA representations are rigorously evaluated
across a diverse range of downstream remote sensing tasks. These include, but are not limited
to, pixel-wise classification (e.g., crop type mapping), pixel-wise regression (e.g., canopy height
estimation), and patch-based dense predictions (e.g., semantic segmentation and land change detec-
tion). For all such evaluations, the pretrained TESSERA encoder acts as a fixed feature extractor.
Lightweight, task-specific model heads (e.g., shallow MLPs or UNet-style decoders) are then trained
using these fixed representations. This approach typically requires substantially less labeled data and
computational resources compared to training deep models from scratch, highlighting the transfer
learning capabilities of TESSERA. See Appendix A.9 and Supplementary Fig. 9 for the general
downstream application workflow.

2.1 Crop Type Classification Evaluation

To validate the effectiveness of TESSERA representations for agriculture, we performed a rigorous
evaluation on a crop type classification task. We used the official Austrian INVEKOS dataset for the
2021-2022 growing season [1], which contains 17 aggregated crop classes.

Our evaluation methodology centered on comparing the performance of a lightweight classification
head trained on TESSERA representations against two key baselines: (1) a traditional Random For-
est classifier trained on engineered temporal features from raw satellite data, and (2) the PRESTO
foundation model [79], where we applied the same lightweight head to its embeddings for a direct
comparison. We assessed performance using multiple metrics, including F1 scores, under varying
data availability scenarios, from 30% of labeled data down to one-shot learning. We also evaluated
performance on a patch-based semantic segmentation task against several other foundation mod-
els. Further details on data processing, model architectures, and training protocols are provided in
Section B.
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2.2 Crop classification

Agricultural monitoring through EO is a cornerstone of managing global food security, providing
critical data to stakeholders in the agricultural sector [86]. Crop type classification inform vital
agricultural decisions by allowing accurate estimates of crop area and yield, and facilitating low-
cost monitoring of diseases and pests over vast regions [31]. However, this task is notably more
complex than many other land cover classification challenges, as it requires discerning subtle spec-
tral and temporal variations that differentiate various crop classes [31]. For years, classifiers like
Random Forest (RF) applied to hand-crafted composite time-series data have served as a standard
baseline [31, 63].

Recent advances have shifted towards foundation models, which, unlike bespoke machine learning
models that require region-specific training, offer generalizable representations that can be applied
universally [4, 41]. Here, we demonstrate that TESSERA’s pre-computed representations set a new
state-of-the-art. We compare TESSERA against two critical benchmarks: the traditional RF base-
line and the leading pixel-based foundation model, PRESTO (Pretrained Remote Sensing Trans-
former) [79], a transformer-based model utilizing multi-modal inputs. Our results show TESSERA
not only substantially outperforms both, but also offers a more streamlined and efficient application
workflow.

To evaluate performance, we used the INVEKOS Austrian crop dataset from the 2021–2022 growing
season, an extensive data set that covers 1850 km2 east of Vienna with 154 different crop types,
which we consolidated into 17 classes based on phenology and data availability [1]. TESSERA
consistently surpasses both baselines across all training regimes, especially in low-data settings
crucial for operational deployment where labeled data is scarce (Fig. 2). In pixel-wise classification
tasks with training data splits from 1% to 30%, a simple multilayer perceptron (MLP) trained on
TESSERA representations achieves higher average and balanced F1 scores than both RF and an
identical MLP trained on PRESTO embeddings, with performance gains frequently exceeding 10%
and 30%, respectively (Fig. 2a). TESSERA also maintains statistically significant advantages in
one-shot and few-shot scenarios (Fig. 2b). Furthermore, TESSERA’s utility extends to patch-based
semantic segmentation, where it consistently achieves higher mIoU and macro F1 scores compared
to other leading foundation models across various patch sizes (Fig. 2c).

These performance gains are rooted in the superior quality of the learned representations. A UMAP
analysis of the embedding space reveals that TESSERA’s representations form tighter, more seman-
tically coherent clusters by crop class compared to those from PRESTO (Fig. 2d). This improved
separability highlights TESSERA’s strength as a foundational tool for agricultural applications. No-
tably, using TESSERA’s compact, pre-computed 128-dimensional representations eliminates the
need for the complex data preparation and feature engineering required by traditional methods like
RF, democratizing access to high-performance crop classification.

2.3 Canopy height estimation

Canopy height is a key structural attribute of forests, closely linked to above-ground biomass and
carbon stocks, and therefore important for climate mitigation efforts and carbon accounting frame-
works like REDD+ [57, 26]. It reflects ecosystem function [56], forest age, and successional stage,
while also serving as a proxy for habitat quality and vertical complexity—important determinants
of biodiversity patterns and species richness [20, 15, 73]. Accurate, scalable canopy height mod-
els (CHMs) enable detection of forest degradation and disturbance arising from selective logging,
disease outbreaks and storm damage.

Despite substantial progress in global canopy height mapping, current approaches exhibit limita-
tions that restrict their reliability and applicability. GEDI, a spaceborne LiDAR system, provides
spatially sparse measurements of canopy height that are used to train models for generating maps
from optical and radar data; however, GEDI does not sample high latitudes [21], and produces unre-
liable estimates in mountainous terrain [27]. Radar-based CHMs (e.g., TanDEM-X) achieve global
coverage but are affected by canopy height saturation in dense forests and depend on high-quality
terrain models to isolate canopy height accurately. Optical data, while widely available, lacks in-
herent sensitivity to vertical structure and requires indirect proxies or fusion with information from
active sensors [82, 50] - yet none of the three most widely used global CHM models currently
implement sensor fusion [46, 68, 78]. Most approaches instead rely on a single sensor type and de-
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Figure 2: TESSERA representations achieve state-of-the-art performance in crop type classi-
fication. The evaluation was conducted on the 2022 Austrian INVEKOS dataset. a, Average and
Balanced F1 scores for pixel-wise classification as a function of the training data ratio. TESSERA
embeddings, coupled with a simple MLP, consistently outperform a Random Forest model trained on
raw time-series data and the PRESTO foundation model. b, Overall F1 score in few-shot learning
scenarios. TESSERA maintains a significant performance advantage even with very few training
samples per class. Error bars represent the standard deviation over multiple runs. c, Patch-based
semantic segmentation performance comparison. TESSERA representations, used with a UPer-
Net head, achieve higher mean Intersection over Union (mIoU) and Balanced F1 scores than other
foundation models across various patch sizes and training data ratios. d, UMAP visualization of
the embedding spaces for TESSERA and PRESTO for 17 crop classes. TESSERA’s embeddings
exhibit clearer separation and more coherent clustering, as supported by superior Silhouette and
Davies-Bouldin scores, indicating a more semantically meaningful representation space.

rive height predictions either from temporal composites or from large numbers of hand-engineered
features (e.g., > 500 features in Potapov et al. [68]), which may generalize poorly across ecosys-
tems. These models tend to under-predict tall canopies, especially in tropical forests where the
majority of above-ground carbon is stored, and face challenges from persistent cloud cover, sensor
saturation [45], and inconsistencies in input quality. As a result, significant discrepancies remain be-
tween global CHMs and airborne LiDAR benchmarks, with current products underestimating local
variability and structural extremes [58]. Most CHMs are also static, failing to capture seasonal or
interannual dynamics, and inconsistencies in methodology and sensor characteristics hinder cross-
product integration. These limitations underscore the need for scalable, temporally resolved, and
sensor-fused CHMs with quantified uncertainties to support forest monitoring, carbon accounting,
and Earth system modelling [59, 65].

We evaluated TESSERA representations to predict the height of the airborne LiDAR-derived canopy
at 10 m resolution within a 5 × 6 km area of tall old-growth tropical forest in the Danum Valley,
Borneo[40]. To ensure spatial independence, we conducted four-fold spatial cross-validation, each
time holding out a contiguous 50% of the region for testing and using the remaining 50% for train-
ing and validation. A 30-million-parameter UNet was trained using 64 × 64 pixel patches of the
representations as input. To account for variability in training convergence, we performed three
independent training runs per fold, each for 200 epochs, and retained the model with the best perfor-
mance on the validation set. Accuracy metrics for the foundation models are reported as the average
across all 12 runs. TESSERA achieved an R2 of 0.66, a root mean squared error (RMSE) of 8.88 m,
and a mean bias of −0.62 m.
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We benchmarked TESSERA’s performance against state-of-the-art approaches through three com-
parisons (Fig. 3). First, we compared predictions against three global canopy height products:
Potapov et al. [68] (‘GLAD’ map), Lang et al. [46] (‘ETH’ map), and Tolan et al. [78] (‘Meta’
map). Although local models generally outperform global products in regional evaluations [70], the
pronounced saturation of these global models at much lower canopy heights—combined with RM-
SEs exceeding their reported global averages [68, 46, 78]—underscores the challenge of accurately
mapping structurally complex, tall-canopy regions such as Danum Valley. Second, we compared
TESSERA to the PRESTO [79] foundation model, using the same model architecture and training
procedure but replacing the inputs of TESSERA with the representations of PRESTO. Third, we
compared our results to regional wall-to-wall canopy height maps for Indonesia, Malaysia, and the
Philippines generated by Lang et al. [47], which used deep convolutional neural networks trained
on Sentinel-2 imagery and GEDI LiDAR reference data for regional canopy height and biomass
estimation.

In all comparisons, TESSERA outperformed competing methods. Moreover, its representations do
not require preprocessing, greatly enhancing reproducibility. Instead, only the region and year of
interest are needed to replicate the input data pipeline. By fusing Sentinel-1 and Sentinel-2 data
without requiring preprocessing or feature engineering, TESSERA’s 128-dimensional representa-
tions encode cloud-free, information-rich signals that effectively address key challenges in canopy
height modelling.

Figure 3: TESSERA representations outperform global and regional models in canopy height
estimation. Top row: Density scatter plots compare predicted canopy heights from the TESSERA
(left) and PRESTO (middle) models against airborne LiDAR-derived heights. TESSERA achieves
higher accuracy than PRESTO, demonstrating superior performance in capturing structural forest
attributes. The rightmost panel shows model bias across 10m canopy height bins, with LiDAR val-
ues binned on the x-axis and model predictions on the y-axis. TESSERA more closely follows the
1:1 line, particularly in mid- to high-canopy regimes, while PRESTO underestimates heights above
40m. Histogram above indicates pixel count distribution per bin. Bottom row: Comparison with
three global canopy height products— ETH Global CHM, GLAD (Potapov) Global CHM, Meta
(Tolan) Global CHM, and ETH Regional CHM—evaluated on the same test region. All four prod-
ucts exhibit substantially lower predictive performance (R2 < 0.05, RMSE > 14m), including
negative correlations for three out of four models. These results underscore the difficulty of accu-
rately estimating tall tropical canopies using global models trained without local data. Rightmost
column: Spatial comparison between true canopy height (LiDAR) and TESSERA-predicted canopy
height for a representative test patch, illustrating the model’s capacity to capture fine-scale structural
variation while still saturating for taller canopy values.

7



2.4 Burned Area Detection

Wildfire frequency and severity are projected to increase in many parts of the world due to climate
change [3, 39, 66]. Accurate maps of burned areas (BAs) and burn severity are critical for moni-
toring wildfire trends [6], predicting wildfire occurrence [17], assessing ecosystem recovery [89],
and establishing effective fire management strategies [33]. Remote sensing is widely used to detect
burned areas and assess severity regionally and globally [44].

Most existing BA mapping approaches rely on time series analysis or direct comparison between
pre-fire and post-fire images, often requiring careful selection of suitable cloud-free images, manu-
ally tuned thresholds, and expert input [44, 67]. These methods typically use spectral indices such
as the Normalized Burn Ratio (NBR), though many studies have also explored the design of custom
features and applied spectral dimensionality reduction techniques to preserve key fire-related sig-
nals [44]. The majority of existing methods use optical sensors [44], which can detect fire-specific
spectral signatures but are susceptible to cloud cover [34], particularly problematic for fire detec-
tion in ecosystems where vegetation rapidly re-greens [35]. SAR offers complementary sensitivity
to vegetation structure and is unaffected by cloud cover [44, 76, 81]. Recent reviews emphasize
the need for sensor fusion, combining passive and active sensors to improve accuracy and robust-
ness [44, 18]. Sentinel sensors in particular, when combined together at 10 m resolution, have
shown promise in detecting BA from small fires that are often left out of coarse, global BA prod-
ucts [76, 81, 71]. TESSERA extends the philosophy of traditional approaches by encoding temporal
dynamics, while addressing major limitations through sensor fusion and the use of abstract, data-
driven features learned directly from large volumes of combined Sentinel-1 and Sentinel-2 imagery
(Fig. 4).

Figure 4: TESSERA representations capture wildfire extent, timing, and severity across two
burned regions. (a–c) Burn Area A, which experienced two distinct fires in June and August 2021.
(a) Time of fire map based on MTBS, showing unburned areas (blue), the June fire (orange), and
the August fire (red). (b) Burn severity classification for the same region, with unburned (blue), low
(green), moderate (orange), and high (red) severity. (c) UMAP projection of TESSERA embeddings
from 2021, with colors corresponding to burn severity. Embeddings form well-separated clusters for
unburned, June-, and August-burned areas, with a visible internal gradient reflecting severity within
August fire. (d–f) Burn Area B, which experienced a single large fire in September 2021. (d) Time
of fire map showing unburned (blue) and burned (green) areas. (e) Burn severity classification show-
ing heterogeneous severity across the landscape. (f) UMAP projection for Burn Area B, revealing
fuzzier boundaries between burned and unburned pixels, though the severity gradient remains evi-
dent.
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We tested whether TESSERA’s temporal representations capture fire-induced changes in spectral
and radar signals. We evaluated its ability to detect burned areas and burn severity using two ran-
domly selected 15 × 15 km regions from the Burn Scar Benchmarking dataset, each affected by
wildfires in California during 2021. TESSERA representations for 2021 were obtained and UMAP
dimensionality reduction was applied to a random subsample of pixels. Fire boundaries and burn
severity data were sourced from the Monitoring Trends in Burn Severity (MTBS) dataset[2]. The
resulting UMAP projections demonstrated strong separability in two-dimensional space, visually
highlighting TESSERA’s capacity to detect disturbances at the pixel level. Burn Area A experi-
enced two distinct wildfires—in June and August—while Burn Area B underwent a single, large
fire affecting mostly forested areas, resulting in heterogeneous burn severity. The UMAP revealed
separability across three domains (Fig. 4):

• Burned area detection: In both regions, burned pixels formed distinct clusters from un-
burned ones, with clearer separation in Burn Area A.

• Temporal fire differentiation: In Burn Area A, embeddings separated pixels burned in
June vs. August, suggesting temporal sensitivity to disturbance events.

• Burn severity gradient: In both regions, a gradient structure in UMAP space corresponded
to burn severity, indicating that TESSERA encodes disturbance magnitude.

Because TESSERA encodes annual time series of spectral and radar signals for each pixel, it inher-
ently captures changes in pixel trajectories without requiring prior preprocessing or the selection of
cloud-free before-and-after images. This capacity would support a simplified, scalable pipeline for
large-area disturbance monitoring.

2.5 Above-ground biomass estimation

Forests play a central role in the global carbon cycle, creating a pressing need for reliable and
scalable AGB estimates for climate modeling, carbon accounting, and informed strategies for con-
servation and sustainable land use [36]. Accurate estimation of above-ground biomass (AGB) is
essential for quantifying forest carbon stocks and monitoring temporal changes due to deforestation,
degradation, and recovery [22].

We evaluated the performance of TESSERA in predicting AGB against two leading models on
a benchmark dataset. Firstly, we considered the geospatial foundation model SpectralGPT [37],
which was found in the Pangaea benchmark [53] to outperform other tested foundation models on the
BioMassters dataset [60]. Secondly, as the state-of-the-art bespoke model, we considered the winner
of the Biomassters competition, a UNet with a temporal attention encoder [60]. The BioMassters
dataset comprises 11,462 image patches representing above-ground biomass across Finnish forests
from 2017 to 2021. Ground-truth AGB values are derived from airborne LiDAR and aerial imagery,
using calibrated allometric equations informed by extensive field plots by the Finnish Forest Centre
and National Land Survey. Each patch covers a 2560×2560 m area, with 10×10 m spatial resolution
per pixel. The fine spatial granularity of the dataset makes the estimation task more challenging, as
it introduces a long, thin tail of high AGB values that would not appear in coarser-resolution data.

A comparison of RMSE across varying training label fractions (Fig. 5a) shows that a UNet trained
on the TESSERA representations consistently surpasses a UPerNet trained on the SpectralGPT rep-
resentations, achieving lower prediction errors on 1% of the training set than SpectralGPT on the
full training set. These results underscore the robustness of TESSERA in low-label regimes. More-
over, while the best task-specific model trained on the full dataset outperforms TESSERA, the gap is
moderate, even with low label availability. In general, bespoke models are inherently difficult to sur-
pass in fully supervised settings. It is worth noting that the comparison to benchmarks is not entirely
straightforward, as the satellite data used in the benchmark models differs from the TESSERA in-
put. However, these discrepancies can be considered as an inherent part of the respective processing
pipelines and hence largely unavoidable.

2.6 Stocking indices in voluntary carbon markets

The most widely applied standard in the voluntary carbon market (VCM) for reforestation and af-
forestation projects of degraded pastures requires project proponents to demonstrate that their cho-
sen remotely-sensed “stocking index” is correlated with the AGB (REF). Upon acceptance, project
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Figure 5: TESSERA representations demonstrate robustness under limited label availability.
a, TESSERA achieves lower RMSE values than the foundation model benchmark SpectralGBT
(RMSE values from Ref. [53]). Following the evaluation protocol of Ref. [53], RMSE is computed
on a fixed test set of 2773 patches, with the remaining data randomly split into training and validation
sets (80:20). The UNet model is trained on the TESSERA representations for 80 epochs, with
the checkpoint achieving the lowest validation loss selected as the final model. For limited labels
testing, a subset of labels is randomly chosen from the training set. The inset depicts the coefficient
of determination (R2) and mean bias (MB) as functions of label availability. b, Predicted AGB map
for an example patch using 10% of the training labels. c, The mean predicted AGB values show
increasing bias at higher ground-truth AGB values, which are sparse in the dataset. d, Pixel-wise
comparison of predicted versus ground-truth AGB values for the test data with TESSERA+UNet
(top) and Biomassters winner (bottom).

developers can use the index to quantify project additionality and to assess project performance in-
between the 5-yearly ground-truth assessments. There is considerable freedom in choosing a stock-
ing index, which can be either a pre-existing or proprietary canopy height or AGB product. Here,
we evaluate TESSERA’s performance against five widely used, globally available canopy height and
AGB products often used in the VCM. The in situ data used to compare the different stocking in-
dices was collected by ICRAF in 38 sites in Para State, Brazil, that were degraded pastureland until
being converted into agroforestry systems during 1980-2010 (Atzberger et al., 2025). To provide a
fair comparison, stocking indices were rescaled using a linear transformation to minimize the RMSE
with respect to the in situ data (details in the SI).

3 Conclusion

In this work, we introduce TESSERA, an innovative Remote Sensing Foundation Model that
achieves worldwide coverage at 10-meter resolution through self-supervised learning applied to
pixel-level satellite time series data. The representations generated by TESSERA establish new
performance standards, while our open source methodology ensures widespread access to superior,
high-resolution representations. We evaluated TESSERA’s capabilities across five distinct tasks,
benchmarking our approach against leading task-specific models and existing foundation models.
The findings demonstrate that TESSERA surpasses both conventional RF baselines and current
state-of-the-art geospatial foundation models in these diverse downstream applications.
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Figure 6: TESSERA outperforms commonly used stocking indices in the Voluntary Carbon
Market. Comparison of in-situ aboveground biomass measurements in 38 agro-forestry plots in
Para State, Brazil with TESSERA (top left) and five other remote sensing products. Note that the
different products were originally provided in different units and converted to AGB as follows: (a)
TESSERA: difference in relative heights of GEDI estimates of RH90 and RH10 converted to AGB
using X * 15.502 + 160.5; (b) ETH canopy height converted using 3.4 X; (c) CTrees canopy height
converted using 1.806 X + 44.9; (d) ESA: AGB converted using 0.407 X + 34; (e) Meta canopy
height converted using 3.723 X + 46.6; (f) GEDI-Tandem-X above ground biomass prediction con-
verted using 0.3X + 54.3. Details of conversation functions provided in SI

We next provide supplementary materials and methods about the details of how TESSERA is im-
plemented.

A Earth Observation data

Our input data consists of Sentinel-2 optical satellite imagery (Level-2A bottom-of-atmosphere) and
Sentinel-1 Synthetic Aperture Radar (SAR, Radiometrically Terrain Corrected).

A.1 Data Representation

We consider remote sensing data with C channels (spectral bands or polarizations). Each data tile
Rt at time t is represented as a 3D array with dimensions:

Rt ∈ RW×H×C (1)

where W is the width (longitude dimension), H is the height (latitude dimension), and C is the
number of spectral channels.

Each tile is accompanied by a corresponding binary mask Vt of dimensions:

Vt ∈ {0, 1}W×H (2)
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where Vt(i, j) = 0 indicates clouding or missing data for the pixel at spatial coordinates (i, j), and
Vt(i, j) = 1 indicates valid data.

A.2 Temporal Data Stacking

We stack spatially aligned tiles over a time period spanning T time steps (t = 0, 1, . . . , T − 1). The
temporal data stack is defined as:

D = [R0, R1, . . . , RT−1] (3)

M = [V0, V1, . . . , VT−1] (4)

A.3 Time Series Extraction and d-pixel Definition

For a given spatial location (i, j) and spectral channel c, the time series Si,j,c represents all channel
c values at coordinates (i, j) over the entire time period:

Si,j,c = [R0(i, j, c), R1(i, j, c), . . . , RT−1(i, j, c)] (5)

We define a d-pixel Pi,j as the collection of all spectral channels by timesteps at a given spatial
location (i, j):

Pi,j = S(i, j) (6)

In other words, the d-pixel provides all spectral values (Sentinel-2) or backscatter values (Sentinel-
1) at a given point over time. Note that d-pixels are potentially sparse and have an accompanying
mask mi,j that indicates the timesteps in which there is valid data:

mi,j = [vi,j,0, vi,j,1, . . . , vi,j,T−1] (7)

Variable Dimensions Description
Rt W ×H × C Remote sensing data tile at time t
Vt W ×H Binary mask for tile at time t (1=valid,

0=invalid/clouded)
D T ×W ×H × C Complete temporal data stack
M T ×W ×H Complete temporal mask stack
Si,j,c T × 1 Time series for channel c at location (i, j)
Pi,j C × T d-pixel: all spectral channels by timesteps

at location (i, j)
mi,j T × 1 d-pixel mask indicating valid timesteps at

location (i, j)
W,H scalar Spatial dimensions (width, height)
C scalar Number of spectral channels
T scalar Number of time steps

Table 1: Variable definitions for remote sensing data structure

A.4 The d-pixel Representation

We represent the rich information contained within satellite image time series at the level of in-
dividual pixels using the aforementioned “d-pixel”. For a single 10-meter geographic pixel loca-
tion, it consolidates its complete annual multi-spectral (from Sentinel-2) and SAR backscatter (from
Sentinel-1) time series. This structure explicitly preserves the inherent spectral and temporal dimen-
sions of the data (Supplementary Fig. 1 a illustrates the d-pixel concept).
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In this array, each row corresponds to a distinct observation date throughout the year, ordered
chronologically. Each column corresponds to a specific spectral band or polarization. The value
at the intersection of a given row and column thus represents the measured reflectance or backscat-
ter for that specific band/polarization on that particular date for that single pixel.

A critical feature of the d-pixel is its capacity to accommodate the frequent data gaps encountered
in remote sensing due to cloud cover (for optical data) or other atmospheric interference and ac-
quisition irregularities. Observations identified as invalid (e.g., via Sentinel-2 scene classification
layers for clouds, or missing Sentinel-1 acquisitions) are masked within the d-pixel array. These
missing entries are explicitly handled by downstream model components, for instance, by being ig-
nored during attention computation or managed during the temporal sampling process described in
Appendix A.7.3.

A.5 Dual-Encoder Architecture

Given the distinct nature of Sentinel-1 SAR and Sentinel-2 MSI data, TESSERA employs two sep-
arate, parallel Transformer-based encoder branches.

• Sentinel-2 MSI Encoder: This branch processes time series of 10 spectral bands from
Sentinel-2. We used blue (B2), green (B3), red (B4), red edges 1–3 (B5, B6, B7), near-
infrared (B8, B8A), and shortwave infrared (B11, B12).

• Sentinel-1 SAR Encoder: This branch processes time series of 2 polarizations from
Sentinel-1 (VV and VH).

Each encoder begins by linearly embedding the input features (spectral bands or polarizations) for
each time step. To preserve sequence order and incorporate temporal context, learnable positional
encodings based on the Day-of-Year (DOY) of each observation are added to these embeddings. The
core of each encoder consists of a stack of 8 standard Transformer blocks [80], featuring multi-head
self-attention and feed-forward layers to learn temporal patterns within the data streams.

To derive a single vector summarizing the entire time series for each modality, an attention-pooling
layer weighs the importance of different time steps before aggregation. The resulting modality-
specific representations (one from the S1 encoder, one from the S2 encoder) are then fused using a
multi-layer perceptron.

A.6 Projector Network

The fused representation from the dual-encoder stage is subsequently fed into a large projector
network. This projector is a five-layer MLP, with each hidden layer having 16,384 dimensions.
This significant expansion in dimensionality is crucial, as suggested by the original Barlow Twins
work [90], to enable effective redundancy reduction during the self-supervised loss computation.
The final output of the projector for each input d-pixel is an embedding, which is then used in the
loss calculation. For downstream tasks, we typically use the 128-dimensional output from the fusion
MLP (before the projector) as the final pixel representation. The TESSERA encoder (up to the fusion
MLP) has approximately 40 million parameters, while the projector accounts for the majority of the
model’s ∼1.4 billion parameters.

A.7 Self-Supervised Training

A.7.1 Augmented View Generation

The TESSERA model is trained using a modified Barlow Twins objective function [90]. For this
objective, two distorted views, denoted as YA and YB , are generated for each input d-pixel. In
TESSERA, these views are created by independently running the temporal sampling and prepro-
cessing pipeline twice for the Sentinel-1 and Sentinel-2 data associated with a given d-pixel. This
process involves:

1. For each view, independently sampling a fixed number of valid observation dates from the
annual Sentinel-2 time series (10 spectral bands).

2. For each view, independently sampling a fixed number of valid observation dates from the
annual Sentinel-1 time series (2 polarizations).
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These views represent different, valid, but inherently incomplete glimpses of the pixel’s true
temporal-spectral evolution, akin to observing the same location through intermittent cloud cover
or from different satellite passes at different times. The model learns by reconciling these partial
views. The inherent differences between the Sentinel-1 SAR and Sentinel-2 MSI modalities further
provide diverse perspectives on the same underlying physical processes. Thus, our augmentations
are fundamentally about sampling from the available, inherently incomplete information streams,
rather than artificially distorting a complete input.

A.7.2 Loss Function

The network processes these two views (YA, YB) through the dual-encoder and the projector to
produce batch-normalized embeddings ZA and ZB . The standard Barlow Twins loss function, LBT ,
is defined as [90]:

LBT =
∑
i

(1− Cii)
2 + λBT

∑
i

∑
j ̸=i

C2
ij (8)

Here, C is the cross-correlation matrix computed between the batch-normalized embeddings ZA

and ZB . The indices i and j iterate over the dimensions of the embedding vectors. The first term
(invariance term) encourages similar representations for different views of the same input (Cii → 1).
The second term (redundancy reduction term) promotes informational efficiency by minimizing
correlation between different embedding dimensions (Cij → 0 for i ̸= j), weighted by λBT .

To further enhance model robustness and mitigate overfitting, TESSERA incorporates an additional
mix-up regularization term, LMIX , inspired by Bandara et al. [9]. This involves shuffling one set
of views (e.g., YB) along the batch dimension to create YS = Shuffle(YB), then generating mixed
views YM = αmixYA + (1− αmix)YS , where αmix ∼ Beta(βp, βp). The embeddings ZM and ZS

are obtained. The mix-up loss penalizes deviations from the assumption that a linear interpolation
in input space corresponds to a linear interpolation in embedding space:

CMA
target = αmix(ZA)

TZA + (1− αmix)(ZS)
TZA (9)

CMS
target = αmix(ZA)

TZS + (1− αmix)(ZS)
TZS (10)

LMIX =
1

2
(∥CMA − CMA

target∥2F + ∥CMS − CMS
target∥2F ) (11)

where CMA = (ZM )TZA and CMS = (ZM )TZS are the actual cross-correlation matrices from the
model’s outputs. The total loss function optimized during the training of TESSERA is a weighted
sum:

Ltotal = LBT + λmixLMIX (12)
where λmix controls the strength of the mix-up regularization. We found λBT = 5 × 10−3 and
λmix = 1.0 to be effective.

A.7.3 Pretraining Details

The TESSERA model (Alpha version) was pretrained using approximately 0.8 billion d-pixel sam-
ples derived from 3,012 globally distributed Military Grid Reference System (MGRS) tiles. For
pretraining, these d-pixels were generated from Sentinel-1 and Sentinel-2 data that were spatially
downsampled by a factor of 400 from their native 10-meter resolution. Each d-pixel for Sentinel-2
contained time series for 10 spectral bands, and for Sentinel-1, 2 polarizations (VV and VH). The
sequence length for the Transformer encoders was fixed at 40 timesteps for both modalities.

For each pixel location, after filtering invalid observations (e.g., due to cloud cover for Sentinel-
2), we performed sparse temporal sampling. This involves randomly selecting a fixed number of
40 valid observation dates from the year’s data. If fewer than 40 valid dates exist, sampling is
performed with replacement. This strategy standardizes the input sequence length and serves as a
key data augmentation mechanism, building invariance to data gaps and teaching the model that the
underlying signal persists regardless of the specific dates observed. The temporal context of each
sampled observation was encoded by transforming its normalized Day-of-Year (DOY) into sine
and cosine features, which were then concatenated with the corresponding spectral or backscatter
measurements. Finally, these values were standardized using global statistics to stabilize training.

The model was trained for 1 epoch over the entire dataset, which corresponded to approximately
3,000 GPU hours on 8 AMD MI300X GPUs (192GB memory each). We used PyTorch with Fully
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Figure 7: Geographical distribution and data density of the training dataset. TESSERA was
trained on over 3,000 MGRS tiles distributed globally from 2017 to 2024. The color of each hexagon
in the map corresponds to the number of valid observation days for Sentinel-1 (S1) and Sentinel-2
(S2), as defined by the bivariate color legend. This visualization highlights the density of combined
S1 and S2 observations available for training across different regions, ensuring the model learns
from a diverse range of geographical and environmental conditions.

Sharded Data Parallel (FSDP) and Automatic Mixed Precision (AMP) enabled. The AdamW opti-
mizer was employed with a base learning rate of 0.002 and weight decay of 1× 10−6. The learning
rate schedule included a linear warmup over the initial 10% of steps, a plateau for the next 20%,
followed by a cosine decay. The global batch size was 8192.

A crucial aspect of our training methodology is a data shuffling strategy, essential for learning glob-
ally representative features from a vast and geographically diverse dataset. Given that d-pixels within
an individual MGRS tile exhibit high spatial autocorrelation, a naive sequential or locally-shuffled
data loading process would expose the model to strong geographic biases in each batch. To over-
come this, we developed a custom data processing pipeline to implement a truly global shuffle across
all ≈0.8 billion training samples, which constituted over 2TB of initial d-pixel data. This pipeline is
illustrated conceptually in Fig. 8a.

The impact of this approach on training stability is empirically demonstrated in Fig. 8b. Compared
to a conventional, localized shuffling strategy which results in a highly volatile loss curve (top plot),
our global shuffling strategy yields a markedly smoother and more stable convergence (bottom plot).
This enhanced stability is fundamental for robust convergence and for preventing the model from
overfitting to regional characteristics.

Operationally, the process begins with the aggregation of d-pixels from all MGRS tiles into a single,
comprehensive pool. A global shuffling operation is performed on this pool, a critical step to break
the spatial contiguity of data from individual tiles and ensure each training batch contains a diverse
mix of geographical and environmental contexts. Following this global shuffle, the data augmenta-
tion required by the Barlow Twins framework is applied. As detailed in Appendix 5.1, this involves
generating two distinct augmented views (e.g., Y A and Y B) for each d-pixel.

To manage the significant I/O demands of shuffling and augmenting such a large volume of data,
we developed the pipeline as a custom Rust binary. This high-performance binary handles the
reading of raw d-pixel data, executes the global shuffle, and prepares the data for augmentation.
The resulting pairs of augmented d-pixels are then serialized into a compact, pickle-like file format.
These files are organized into manageable chunks and loaded by PyTorch DataLoader workers,
which stream the data and assemble the final training batches. This end-to-end pipeline ensures
that each batch presented to the model is a well-shuffled, globally diverse representation of Earth’s
surface characteristics, which is fundamental for training a robust pixel-wise foundation model like
TESSERA.
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Figure 8: Overview of the data shuffling pipeline and its impact on training stability. a,
Schematic of the data shuffling and loading process. D-pixels (colored squares) from thousands
of MGRS tiles are first aggregated into a global pool. A custom Rust binary performs a global
shuffle on this multi-terabyte dataset before applying augmentations. The processed data is then
organized into chunks and streamed by data workers to form well-shuffled, globally diverse training
batches. b, Comparison of training loss curves. The top plot shows the volatile loss progression typ-
ical of a localized shuffling strategy, which is susceptible to geographic bias. The bottom plot shows
the significantly smoother and more stable loss curve achieved with our global shuffling pipeline,
demonstrating more effective and robust model convergence.

A.8 Global Representation Map Generation

A primary output of the TESSERA project is the generation of annual global representation maps at
10-meter resolution for the years 2017-2024.

A.8.1 Model Inference

To generate these maps, the pretrained and frozen TESSERA dual-encoder (excluding the projector)
is used. For each 10-meter pixel on the globe and for each year:

1. The full Sentinel-1 and Sentinel-2 time series data at 10-meter resolution are acquired and
preprocessed to form d-pixels. Unlike pretraining, no spatial downsampling is performed
at this stage.

2. A fixed number of 40 timesteps are sampled from the valid observations within the year for
both Sentinel-1 and Sentinel-2 data, along with their DOY positional encodings.

3. These sampled time series are fed into their respective frozen TESSERA encoders.
4. The outputs from the S1 and S2 encoders are fused by the MLP, producing a 128-

dimensional representation vector for that pixel for that year.

This process is repeated for all land pixels globally to create an annual representation map of shape
(H, W, 128), where H and W are the dimensions of the global 10-meter grid.

A.8.2 Data Product and Accessibility

The resulting product consists of eight such global representation maps, one for each year from 2017
to 2024. These maps are intended to be released publicly, alongside the open-sourced TESSERA
model parameters and generation code. This “Model-as-Data” approach significantly lowers the
entry barrier for users, who can treat these representation maps as conventional multi-channel im-
ages. They can be directly ingested by downstream models without requiring users to process raw

16



Figure 9: Illustration of RSFM training and downstream task applications. (b) shows the train-
ing process of a typical RSFM, where both the encoder and the projector (or decoder) are updated.
(a) depicts a common application method: the RSFM encoder is extracted and combined with a
task-specific head to form a new model for downstream tasks. Users can then fine-tune the en-
tire model or just the head. (c) presents the emerging paradigm championed by TESSERA, where
pre-generated representations from the RSFM encoder are used directly as input. This results in
extremely lightweight downstream models that consist only of a task-specific head.

satellite data or run the TESSERA model themselves, thus democratizing access to advanced RSFM
capabilities.

A.9 Downstream Task Application Methodology

A core motivation for self-supervised learning with foundation models is the creation of task-
agnostic feature representations that can be effectively transferred to various downstream tasks,
particularly in scenarios with limited labeled data. Having pretrained TESSERA on large unlabeled
datasets, we evaluated the utility of its learned representations across different remote sensing ap-
plications. The evaluation methodology involves using the pretrained TESSERA encoders as fixed
feature extractors.

The pipeline for applying TESSERA representations to downstream tasks is as follows (illustrated
in Supplementary Fig. 9):

1. Load Pretrained Encoder: The weights from the saved pretraining checkpoint are loaded
into the TESSERA dual-encoder architecture. The parameters of these encoders are frozen
and are not updated during downstream model training. This ensures that downstream
performance directly reflects the quality of the fixed representations.

2. Prepare Labeled Downstream Data: The specific labeled dataset for the target task (e.g.,
pixel-level crop type labels, canopy height measurements, or land change polygons) is
prepared.

3. Extract Representations: For each input sample (e.g., pixel, object, or patch) in the la-
beled dataset, its corresponding Sentinel-1 and Sentinel-2 time series data for the relevant
year undergo the same preprocessing and d-pixel creation pipeline used during TESSERA
inference (i.e., using 10m resolution data and temporal sampling to 40 timesteps). The
preprocessed sequences are passed through the respective frozen encoders, and their out-
puts are fused by the MLP to generate the final 128-dimensional TESSERA representation
for that sample. To enhance stability, this extraction can be repeated multiple times with
different random temporal samplings, and the resulting representations averaged, although
for many tasks, a single extraction is sufficient.
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4. Design Task-Specific Head: A lightweight, task-specific neural network module (the
”head”) is designed. This head takes the extracted TESSERA representations as input.

• For pixel-wise classification (e.g., crop classification), the head is typically a shallow
MLP (e.g., 1-3 layers) ending in a softmax output layer.

• For pixel-wise regression (e.g., canopy height regression), the head is usually an MLP
ending in a single linear output neuron.

• For tasks requiring spatial context from the representations (e.g., canopy height map-
ping over an area, semantic segmentation), the input to the head can be a patch of
TESSERA representations (e.g., 64 × 64 × 128). The head might then be a con-
volutional architecture, such as a UNet, that processes these spatial feature maps to
produce dense predictions. For land change detection, a simple approach involves
computing the dot product between representations from two different years.

5. Train Downstream Head: Only the parameters of this newly defined task head are
trained using the extracted TESSERA representations as input features and the correspond-
ing labels. Standard supervised learning techniques, optimizers (e.g., Adam), and task-
appropriate loss functions (e.g., Cross-Entropy for classification, Mean Squared Error for
regression) are used. This training typically requires significantly less labeled data and
computational power compared to training a deep model from scratch.

6. Evaluation: Once the head is trained, inference is performed on a test set by extracting
TESSERA representations for the test samples and passing them through the trained head.
Performance is evaluated using standard metrics relevant to the task.

This standardized workflow allows for robust assessment of TESSERA representations across di-
verse applications, demonstrating their value as foundational features for geospatial analysis.

B Downstream Task: Austrian Crop Classification

The following section details the experimental setup for the crop classification task presented in the
main text.

B.1 Dataset and Preprocessing

We used the publicly available INVEKOS dataset for Austria, focusing on the 2022 growing season
[1]. The dataset originally contained 154 crop types, which we grouped into 17 broader classes
(e.g., merging different varieties of wheat) based on phenological similarity and sample availability
to ensure robust training and evaluation. For each pixel in the dataset, we extracted its corresponding
128-dimensional TESSERA representation from our generated 2022 global representation map.

B.2 Pixel-wise Classification Baselines

To provide a comprehensive performance comparison, we implemented three distinct models for
pixel-wise classification:

• TESSERA + MLP: The primary model, where the frozen 128-dimensional TESSERA
representations were used as input to a simple MLP. The MLP consisted of two hidden
layers with 256 and 128 neurons, respectively, using ReLU activation functions, followed
by a softmax output layer for the 17 classes.

• PRESTO + MLP: For a direct and fair comparison with the closest foundation model, we
used the official pre-trained PRESTO model [79] to generate its pixel embeddings. These
embeddings were then fed into an identical MLP head as the one used for TESSERA.

• Random Forest: As a traditional baseline, we trained a Random Forest classifier directly
on raw time-series data. For each pixel, we utilized all available Sentinel-1 (2 polarizations)
and Sentinel-2 (10 spectral bands) observations throughout the year. The temporal and
spectral/polarization dimensions were flattened and concatenated to form a single 1256-
dimensional feature vector. The RF model consisted of 200 trees, with other parameters set
to standard values.
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For the experiments shown in the main text’s figure, we trained these models on randomly selected
subsets of the data (from 1% to 30% for panel a; specified samples-per-class for panel b), using a
fixed validation set for hyperparameter tuning and a held-out test set for final evaluation.

B.3 Patch-wise Semantic Segmentation

To assess spatial-contextual performance, we conducted a semantic segmentation experiment. The
approach varied based on the foundation model’s architecture:

• For pixel-based foundation models like TESSERA and PRESTO, which do not explicitly
model spatial context in their representations, we first constructed representation patches
(e.g., of size 64× 64× 128) from the pixel-wise embeddings. These patches were then fed
into a standard UNet architecture, which learns to model the spatial relationships between
the representations to produce a segmentation map.

• For other foundation models that are inherently patch-based (e.g., Prithvi [75], Satlas [11]),
their encoders already process image patches. Therefore, for these models, we only needed
to attach and train a UPerNet decoder head to their frozen encoders to generate the final
segmentation outputs.

Performance was measured using mean Intersection over Union (mIoU) and macro F1 scores.

B.4 Embedding Space Analysis

The 2D visualizations shown in the main text were generated by applying the Uniform Manifold
Approximation and Projection (UMAP) algorithm to the representations of every pixel within the
Austrian study area. Specifically, the entire representation map (e.g., an array of shape H×W×128,
where H and W are the height and width of the region) was used as direct input to UMAP. This was
performed for both TESSERA and PRESTO representations.

To quantitatively measure the quality of the clustering in the original 128-dimensional space, we
calculated the Silhouette score and the Davies-Bouldin Index.

• The Silhouette score, s(i), for a single data point i measures how similar it is to its own
cluster compared to other clusters. It is defined as:

s(i) =
b(i)− a(i)

max(a(i), b(i))
(13)

where a(i) is the mean distance between i and all other points in the same cluster, and b(i)
is the mean distance from i to all points in the nearest neighboring cluster. The score ranges
from -1 to 1, where a high value indicates that the object is well matched to its own cluster
and poorly matched to neighboring clusters.

• The Davies-Bouldin Index (DBI) evaluates clustering quality by computing the ratio of
within-cluster scatter to between-cluster separation. For a set of k clusters, it is defined as:

DBI =
1

k

k∑
i=1

max
j ̸=i

(
σi + σj

d(ci, cj)

)
(14)

where σi is the average distance of all points in cluster i to their centroid ci, and d(ci, cj)
is the distance between the centroids of clusters i and j. Lower DBI values indicate better
clustering, with a score of 0 representing the ideal case where clusters are compact and
well-separated.
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