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Abstract 

Independent evaluations have shown substantial over-issuance of REDD+ (Reducing 
Emissions from Deforestation and Degradation) credits traded on the voluntary carbon 
market. To improve credit integrity we need to synthesise these evaluations to 30 

understand the additional forest conservation achieved by first-generation REDD+ 
projects, and explore the mechanisms by which over-crediting occurred. We bring 
together six independent ex-post evaluations of avoided deforestation by 44 REDD+ 
projects. These consistently show that most projects successfully reduced 
deforestation, but they also claimed an aggregate of 10.7 times more avoided 35 

deforestation than independent evaluations indicate is justified. This discrepancy is not 
an artefact of which forest cover layer is used but is linked to selection bias in projects’ 
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choices of control areas and modelling approaches. Given the need to close the forest 
finance gap, there is unwillingness to abandon the potential of the voluntary carbon 
market because of past failures. Current initiatives which transfer assessment to 40 

unconflicted parties and eliminate methodological flexibility is critical but insufficient. 
Ex post certification against a credible counterfactual is also necessary to ensure 
sufficient integrity in carbon markets for them to contribute to the vital task of slowing 
deforestation.  
 45 

Introduction 

Halting tropical deforestation is essential to limit global temperature rise to below 2°C1 and 

prevent mass extinction2,3. Yet tropical forests continue to be lost4,5 and forest conservation 

is severely underfunded, with an estimated annual finance gap of US $216 billion6
. There is 

substantial global interest in the potential for both compliance and voluntary markets to fund 50 

forest conservation despite widespread evidence that many first-generation REDD+ 

(Reducing Emissions from Deforestation and forest Degradation) projects have issued more 

credits than were justified by their impact on deforestation7–11. The resulting scandal12 

contributed to more than US $1.1Bn being wiped from the value of the voluntary carbon 

market in 2023 and a further contraction in 202413. Understanding what these early projects 55 

did and did not achieve, and the mechanisms that resulted in over-crediting, is key to 

informing efforts to improve the integrity of forest carbon credits, which is an essential step if 

they are to contribute to closing the forest finance gap.  

 

A major challenge in measuring the impacts of forest conservation projects is estimating 60 

counterfactual outcomes (what would have happened to deforestation in the absence of a 

project)14–18. The first-generation of REDD+ projects could choose from several certification 

methodologies (Table 1a), each of which used measurements of historic deforestation in 

expert-selected ‘reference’ areas in conjunction with ex ante modelling approaches to predict 

‘baseline’ deforestation11. Credits were issued by comparing the ex ante baseline with 65 

observed deforestation in project areas. In parallel, a rich scientific literature has developed 

methods for estimating counterfactual outcomes from observational data19–22 and for 

applying them to conservation14,15,17,18. These quasi-experimental methods account for 

confounders in selecting control areas and measure outcomes ex post in both project and 

control areas (Table 1b).  70 

 

The prominence of REDD+ has drawn scrutiny from several independent research groups 

that have applied these quasi-experimental methods to evaluate the impact of first-

generation REDD+ projects on deforestation7–9,23–25. Consistently, these studies have found 

evidence of over-crediting. Proposed explanations include the use of inappropriate reference 75 

areas, unrealistic ex ante modelling that exaggerated expected deforestation, and selective 

use of  certification methodologies that inflated credit issuance7,9,11,23. However, these 

hypothesised mechanisms have not been systematically tested10. Some industry insiders 

have rejected the evidence for over-crediting altogether26,27, arguing that (1) quasi-

experimental estimates of avoided deforestation are inconsistent across studies due to 80 

methodological differences28, and (2) over-crediting is an artefact of using of publicly 
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available global forest cover datasets that detect less deforestation than the bespoke remote 

sensing classifications used by projects29.  

 

Carbon markets are, of course, not the only way tropical forest conservation can be 85 

funded30,31. There are well-known problems associated with carbon offsetting32 and with the 

integrity of forest carbon credits beyond the issues of over-crediting and additionality33,34. 

Nevertheless, carbon markets are likely to play a role in bridging the forest funding gap, at 

least in the short to medium term6. It is therefore critical to learn as much as possible from 

the first-generation of REDD+ projects, both their successes and failures, to inform the future 90 

development of methods for certifying credits. Given how harmful over-crediting is to the 

overall objective of carbon markets (reducing carbon in the atmosphere), understanding the 

mechanisms through which over-crediting occurred is vital if future approaches are to avoid 

repeating the failures of the past. 

 95 

 

 

Figure 1: Research questions exploring the mechanisms behind over-crediting. The 

analyses test critiques of independent quasi-experimental evaluations of REDD+ projects 

and investigates mechanisms that may have led to over-crediting. Specific research 100 

questions (Q1-4), and the number of REDD+ projects with data available to answer each 

question are shown. The list of projects included in each analysis is given in Supplementary 

Table S2. 

 

In this study, we synthesise results from six quasi-experimental evaluations to provide a 105 

comprehensive assessment of the impact of 44 first-generation REDD+ projects 

(representing 45% of the projects producing credits by 2020). We compare these results with 

certified assessments from the projects themselves. We address critiques of independent 

quasi-experimental evaluations (questions 1 and 2 in figure 1) and investigate two 

hypothesised mechanisms by which over-crediting could have occurred (questions 3 and 4). 110 
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Our results show that most projects slowed deforestation consistently across independent 

evaluations, yet over-crediting remained substantial. The discrepancy between quasi-

experimental and certified estimates cannot be explained by differences in the remote 

sensing layers used, rather, it stems from bias in reference-area selection and unrealistic 

modelling of future deforestation. These findings point to changes needed in crediting 115 

methodologies to ensure forest carbon credits deliver their intended climate benefits.  

 

 

Table 1. Description of the methods / studies used to evaluate REDD+ projects. 

Method / 
study 

Method for estimating the 
counterfactual rate of deforestation 

Unit 
size 

Forest cover 

layerՓ 

Number 
of 
projectsΩ 

a. Certification methodologies used by first-generation REDD+ projects * 

VM0006† Reference area selected with exposure to 
drivers of deforestation within ±10% of the 
range observed in project area. 
Counterfactual deforestation rates are 
predicted ex ante from beta 
regression or historical average of 
deforestation observed in reference area 
during reference period. 

Whole 
project 

Bespoke 11 

VM0007ǂ Reference area selected with exposure to 
drivers of deforestation within ±20% of the 
range observed in project area to measure 
historic deforestation. Counterfactual 
deforestation rates are predicted ex ante 
from linear or non-linear regression, or 
historical average of deforestation or 
population growth observed in the control 
rea during reference period. These are 
allocated to the project using a spatial risk 
model produced for the area surrounding 
the project which should have exposure to 
drivers of deforestation within ±30% of the 
range observed in project.  

Whole 
project 

Bespoke 15 

VM0009 Reference areas are selected with no 
defined requirement for their similarity to 
the project in exposure to drivers of 
deforestation. Counterfactual deforestation 
rates are predicted ex ante from logistic 
regression of deforestation observed in the 
reference area during the reference period.  

Whole 
project 

Bespoke 3 

VM0015ǂ Reference areas selected with exposure to 
drivers of deforestation within ±10% of the 
range observed in project area. 
Counterfactual deforestation rates are 
predicted ex ante from linear or non-linear 
regression or historical average or 

Whole 
project 

Bespoke 15 
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simulation approaches of deforestation 
observed in the reference area during the 
reference period. 

b. Quasi-experimental methods 

West et 
al., 2020 

Synthetic control produced by weighting 
untreated polygons of land titles by their 
similarity to projects in terms of 
deforestation trajectories and observable 
confounders. Deforestation in project and 
control areas observed ex post. 

Whole 
project 

MapBiomas 
(reprocessed) 

11 

West et 
al., 2023 

Synthetic control developed from randomly 
placed circular plots weighted by similarity 
to projects in terms of deforestation 
trajectory and observable confounders. 
Deforestation in project and control areas 
observed ex post. 

Whole 
project 

GFC 18 

Guizar-
Coutiño 
et al., 
2022  

1:1 matching with replacement selected 
from untreated control units based on 
similarity in observable confounders. 
Deforestation in project and control areas 
observed ex post. 

0.09 ha 
pixel 

ACC 35 

Guizar-
Coutiño 
et al., 
2025 

1:1 Propensity score matching with 
replacement via random forests, followed 
by propensity score sub-classification on 
the matched dataset to ensure covariate 
balance. The average treatment effect was 
estimated using multiple model 
specifications to assess robustness and 
sensitivity to unobserved confounding 
evaluated using the sensemakr 
framework35. Deforestation in project and 
control areas observed ex post. 

7.10 ha 
plot 

ACC 32 

Tang et 
al., 2025 

Penalized synthetic control developed from 
randomly placed circular plots weighted by 
similarity to projects in terms of 
deforestation trajectory and observable 
confounders. Deforestation in project and 
control areas observed ex post. 

Whole 
project 

GFCI 37 

PACT 1:1 matching without replacement selected 
from untreated control units based on 
similarity in observable confounders. 
Bootstrapped 100 times using random 
samples from candidate controls. 
Deforestation in project and control areas 
observed ex post. 

0.09 ha 
pixel 

ACC 35 
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Փ Forest cover layers were either locally trained ‘bespoke’ classifications used in certified estimates by 120 

projects, or region or global peer-reviewed data products, specifically: MapBiomas, Global Forest 

Change (GFC) or the Tropical Moist Forest Annual Change Collection (ACC)5. 
Ω The projects included in our analysis were those for which we were able to obtain certified estimates 
of avoided deforestation (S2) and were assessed by at least one quasi-experimental approach. 
* West, Bomfim and Haya applied all Verra methodologies to assess the avoided deforestation 125 

impacts of four REDD+ projects. 
† For VM0006 the forest scarcity factor was applied at two separate levels, resulting in two 

separate estimates. 
ǂ For VM0007 and VM0015 two different algorithms were used to develop spatial deforestation 

risk maps, resulting in two separate estimates for each. 130 

 

Results 

Q1. How consistent are estimates of project impacts assessed using independent quasi-

experimental methods? 

 135 

The majority of projects (36 of 44) reduced deforestation according to assessments by the 

quasi-experimental methods (Figure 2). Among projects with multiple quasi-experimental 

estimates, 12 (29% of the 42 with calculable confidence intervals) showed statistically 

significant reductions in deforestation at the 95% confidence level. Eight projects (shown in 

red in Figure 2) experienced more deforestation than their quasi-experimental controls, 140 

although only in one case was this significant. 

 

Despite most projects reducing deforestation, over-crediting was widespread with certified 

estimates of avoided deforestation significantly exceeding mean quasi-experimental 

estimates (one-tailed paired Wilcoxon signed-rank test; V = 973, p < 0.001). Over-crediting 145 

was statistically significant at the 95% confidence level for 32 projects (76% of the 42 with 

calculable confidence intervals; Fig. 2a). Consequently, the mean over-crediting ratio (the 

certified estimate divided by the mean quasi-experimental estimate) was 4.1 (95% 

bootstrapped CI: 2.7 to 7.0), indicating the typical project achieved about a quarter of the 

avoided deforestation reported by certified estimates. Across all the credits assessed, the 150 

global over-crediting ratio was 10.7 (95% bootstrapped CI: 5.4 to 26.5), indicating that a 

credit bought at random would offer only an eleventh of the avoided deforestation claimed 

(Fig. 2b). Over-crediting was not universal: two projects from Madagascar and one from 

Peru had a mean over-crediting ratio less than 1 meaning these credits achieved more 

avoided deforestation than claimed (S8).  155 
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 160 

 

Figure. 2: Comparison of quasi-experimental and certified estimates of project 

performance. (a) Quasi-experimental evaluations show consistent evidence that REDD+ 

projects slowed deforestation, but certified estimates were higher, indicating widespread 

over-crediting. Points represent mean estimates from the six quasi-experimental studies, 165 

with error bars show 95% confidence intervals. (b) The over-crediting ratio (the certified 

estimate divided by the mean quasi-experimental estimate) plotted against certified avoided 

deforestation estimates. The dashed grey line indicates the global mean over-crediting ratio 

and the dashed red lines mark parity between certified and quasi-experimental estimates. 

Points above and below the red line represent over- and under-crediting respectively. Darker 170 
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colours denote projects evaluated by a greater number of quasi-experimental approaches 

(up to five as there was no overlap in the projects assessed by the two West et al. studies). 

The over-crediting ratio is undefined for the eight red points that experienced more 

deforestation than predicted by their quasi-experimental controls. In both panels use log-

scaled y-axes. 175 

 

Q2. Is the use of global deforestation layers the reason for the discrepancy between quasi-

experimental and certified estimates?  

 

A high-profile critique of independent studies which demonstrated over-crediting by first-180 

generation REDD+ projects has suggested that global layers used in quasi-experimental 

analyses detect less deforestation than bespoke layers used by projects and that this, rather 

than over-crediting, explains the observed discrepancies29. We tested this critique by 

comparing estimates of deforestation (loss of undisturbed forest) in project areas derived 

from global deforestation layers with those reported by projects using their bespoke forest 185 

cover classifications. We were unable to perform the comparison for reference areas 

because deforestation rates there were not reported in project certification documents. For 

project areas, we found that, rather than being lower, deforestation rates measured 

independently using the European Union’s tropical moist forest annual change collection 

(ACC5) were actually greater than certified measurements based on bespoke forest cover 190 

layers. Among the 36 projects that reported certified measurements, the median rate 

measured using the ACC was 0.26%/year, compared with a median certified deforestation 

rate of 0.17%/year (Fig. 3a). The median pairwise discrepancy between ACC and certified 

rates was 0.13%/year (Fig. 3b), which was significantly different from zero (Wilcoxon paired 

signed-ranks test, V = 520, d.f. = 35, p = 0.003). When we ran the analysis to include 195 

degraded forest in the ACC-measured forest area at project start, so that deforestation was 

only measured as long-term (>2.5 years) transitions to non-forest, deforestation rates were 

lower and not significantly different from certified values (S4). Together these results indicate 

that deforestation products (such as the ACC) used in quasi-experimental analyses have not 

detected less deforestation than the bespoke layers used in certification. Under-estimation of 200 

deforestation in control areas therefore cannot explain the observed over-crediting. 

 

 

     ate is  i her

     ate is  ower
   

   

1  

1  

2  

2  

   

      1  1  2  2     

 ertified deforestation    year 

 
 
 
 d
e
fo
re
s
ta
ti
o
n
  
 
 y
e
a
r 

a

   

1  

2  

   

     roject  n       ertified  roject  n      

 
e
fo
re
s
ta
ti
o
n
  
 
 y
e
a
r 

https://doi.org/10.33774/coe-2025-29fk2 ORCID: https://orcid.org/0000-0001-9354-5090 Content not peer-reviewed by Cambridge University Press. License: CC BY-NC-ND 4.0

https://doi.org/10.33774/coe-2025-29fk2
https://orcid.org/0000-0001-9354-5090
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

Figure 3. Comparison of deforestation measured by the ACC and bespoke remote 205 

sensing. (a) Ex post annual deforestation rates in project areas measured using the 

European Unions’ Annual Change Collection (ACC) versus the bespoke forest cover layers 

used in certification. (b) Median deforestation rates are significantly higher when measured 

by the ACC (Wilcoxon paired signed-ranks, p < 0.01). Error bars show the interquartile 

range. In both panels points represent individual REDD+ projects.  210 

 

Q3. Were reference areas similar to projects in their exposure to deforestation? 

 

Having established that reports of lower additionality were consistent across quasi-

experimental assessments and were not driven by forest-change layers that underestimate 215 

deforestation, we turn next examine why certification methodologies may have 

overestimated project additionality. Specifically, we ask whether the reference areas used 

were representative of the deforestation pressures to which projects were exposed. 

 

Reference areas were systematically different from project areas, exhibiting lower exposure 220 

to deforestation before project implementation. To illustrate this, we focus on project 958 in 

Peru (equivalent figures are shown for all projects in S5    roject 9 8’s reference area was 

located immediately outside the project (Fig 4a). Despite this proximity, the reference area 

was less inaccessible (a mean of 13.8 hours compared to 25.5 hours), and less forested at 

the start of the reference period in 2001 than the project was at its start in 2010 (78% 225 

compared to 95%) (Fig. 4b). Standardised mean differences of -1.02 and -0.58 respectively 

indicate that mean values for the reference area were significantly different from those for 

the project area. By contrast, the control units selected by the quasi-experimental matching 

approach were distributed much more widely across Peru (Fig. 4a) and were nearly identical 

to the project area in the distributions of observable confounders (Fig. 4b). 230 
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Figure. 4: Differences in exposure to deforestation drivers and resulting deforestation 

rates across project, reference and control areas. (a-b) Example from Project 958 in 235 

Peru. (a) Geographic locations of the project (black), reference area (red) and quasi-

experimental controls (green). (b) Univariate frequency distributions of observable 

confounders which may influence deforestation, showing discrepancies between the 

reference area and the project in elevation, inaccessibility and forest cover. (c-d) Summary 

for the 17 projects with mapped reference areas. (c) Standardised mean differences from the 240 

mean project values for each observable confounder. Arrows indicate the direction of 

change associated with increased deforestation. Project-level significance is indicated by 

values beyond the grey band (-0.25 to 0.25), and significance across projects by * p < 0.05 

and ** p < 0.01. (d) Median and interquartile ranges of deforestation rates measured by the 

ACC in quasi-experimental control and reference areas during the project period. In (b-c) the 245 

timing of measurements is expressed relative to the project start year (t0) for quasi-

experimental control areas, or the start of the reference period for reference areas  

 

The same pattern was observed across all 17 projects that provided mapped reference 

areas (Fig. 4c, S3). Compared with project areas, mean inaccessibility in reference areas 250 

was lower (median standardised mean difference = -0.30, t = -2.41, d.f. = 16, p = 0.028), as 

was forest cover at the start of the project (median standardised mean difference = -0.42, t = 

-3.10, d.f. = 16, p = 0.007) as well as five and ten years beforehand (median standardised 

mean difference = -0.48, t = -4.04, d.f. = 16, p = 0.003; and -0.48, t = -4.28, d.f. = 5, p = 

0.008, respectively). Historic deforestation rates were not significantly different. In contrast, 255 
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none of the quasi-experimental control areas differed from the project areas in any of the 

observed confounders (Fig. 4c).  

 

These differences in exposure to observable confounders between reference and quasi-

experimental control areas were associated with a directional difference in their deforestation 260 

rates during the project period when assessed using the ACC layer. Across the 17 projects, 

median deforestation rates in reference areas were 0.69%/year compared with 0.41%/year 

in the quasi-experimental control areas (Fig. 4d). Although this was 1.69 times more 

deforestation the increase was not statistically significant (one-tailed Wilcoxon paired signed-

ranks test, V = 103, p = 0.1123). The same pattern was found when including the loss of 265 

either undisturbed or degraded forest in the ACC deforestation measurements (S7). 

 

Q4. After isolating the effects of forest cover layer and reference area selection, how much 

over-crediting can be explained by ex ante modelling? 

 270 

To dissect the relative contributions of the mechanisms identified in preceding analyses, we 

examined their effects in the subset of projects (n = 17) for which all required data were 

available. The smaller sample size meant that most effects within this subset were not 

statistically significant, but they were of a similar magnitude to those observed in the larger 

analyses of each mechanism. Certified assessments reported substantially more avoided 275 

deforestation than quasi-experimental assessments (0.95 %/year shown in pink compared to 

0.18%/year shown in green in Fig. 5; Wilcoxon paired signed-ranks test, V = 134, p = 

0.002). We then sequentially re-estimated avoided deforestation using different 

combinations of the deforestation rates drawn from the certified and quasi-experimental 

assessments to isolate the effect of each mechanism, with any remaining over-crediting 280 

assumed to be explained by ex ante modelling. 

 

First, to account for differences between the remote sensing layers in project areas, we 

substituted the ACC-measured deforestation rates with the certified rates. Because certified 

rates were lower, this substation increased median avoided deforestation slightly to 0.20 285 

%/year (orange in Fig. 5), indicated that the choice of deforestation rate for the project area 

contributed only about 2% of the observed over-crediting.  

 

Second, to isolate the effect of reference area selection, we substituted the quasi-

experimental control areas with the certified reference areas and measured deforestation in 290 

both using the ACC. Median avoided deforestation then increased to 0.64 %/year (blue in 

Fig. 5), intermediate between quasi-experimental and certified assessments, suggesting that 

reference area choice probably accounted for 57% of the over-crediting. 

 

Next, we estimated the effect of remote sensing differences on reference area deforestation 295 

rates. Because project documents did not report deforestation rates in reference areas, we 

inferred them by multiplying the ACC-derived control area deforestation rates by 0.58, which 

was the median ratio of bespoke to ACC rates across the 17 projects. Substituting these 

inferred values reduced avoided deforestation to 0.35 %/year (grey in Fig 5), suggesting that 

lower detection of deforestation by bespoke remote sensing (rather than the ACC) was not a 300 

cause of over-crediting.  
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Finally, having adjusted for reference area selection and differences in deforestation rate 

estimation, we attributed the remaining ~78% of over-crediting to the various ex ante 

modelling approaches used in certified assessments, recognising the considerable 305 

uncertainty surrounding this allocation. 

 

 

 
  310 

Figure 5. Contributions of different mechanisms to over-crediting. Quasi-experimental 

(QE) estimates of avoided deforestation (green) are significantly lower than certified 

assessments (pink; Wilcoxon paired signed-ranks test, p < 0.01) across a subset of 17 

projects for which all necessary data are available. Substituting certified deforestation rates 

for project areas into the QE assessments produces a small increase in avoided 315 

deforestation (orange). A much larger increase occurs when certified reference areas are 

used instead of QE control areas, both measured by the European Union’s tropical moist 

forest annual change collection (ACC; dark blue). Avoided deforestation is lower when 

deforestation rates inferred from bespoke remote sensing products are used instead of ACC 

values (grey). The remaining discrepancy is attributable to ex ante modelling. These 320 

comparisons reveal the relative contributions of each mechanism to overall over-crediting. 

Error bars represent medians and interquartile ranges. 

Discussion 

Researchers in this space, including our co-authors, differ in how strongly they view carbon 

markets are essential to closing the forest finance gap and tackling climate change12,32–325 
34,36,37. Regardless of this, if forest conservation carbon credits are being traded, then it is 
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crucial that one credit reflects the amount of additional deforestation avoided that is claimed. 

We interpret our findings with that challenge in mind. 

 

By synthesising the results of multiple independent quasi-experimental analyses, we find 330 

that most REDD+ projects did reduce deforestation compared to credible counterfactual 

estimates, demonstrating a tangible contribution to forest conservation. However, the 

combined evidence from the six studies also shows that these projects issued far more 

credits than were justified. These were bad credits in that they certainly did not reduce 

emissions as much as claimed, and because many were used to offset emissions 335 

elsewhere, this will have had a negative impact on progress towards climate goals32. 

Nonetheless, they were not necessarily bad projects: many achieved measurable on-the-

ground conservation benefits.  

 

While some industry-linked commentators continue to deny that over-crediting in first-340 

generation REDD+ projects was a problem26,27,29, the scientific evidence is now clear. Our 

synthesis shows that across the portfolio of projects examined, almost 11 times more credits 

were issued than was justified. However, most of this excess was driven by a small number 

of projects that generated the largest volumes of credits (top right in Fig. 2b). After excluding 

the 9 biggest issuers, over-crediting among the remaining projects was much lower, around 345 

4.0 times, though still substantial. This pattern highlights the need for methodological 

advances that prevent egregious cases of over-crediting that disproportionately shape the 

overall integrity of REDD+.  

 

One counterargument made by some commentators is that over-crediting is an artifact of 350 

lower detection of deforestation by the globally available datasets used in independent 

quasi-experimental evaluations compared with the bespoke layers used by REDD+ 

projects29. Several studies have found that locally trained remote sensing products can be 

more accurate in measuring forest cover and deforestation than global layers, such as the 

ACC38–40. However, we found no evidence that the widely used ACC layer systematically 355 

detected less deforestation. In fact, it detected similar or higher rates in project areas than 

certified estimates using bespoke layers. This may have occurred because the ACC is a 

multi-temporal approach that considers all disturbance events occurring since the start of the 

time series5 whereas bespoke approaches typically detect non-forest pixels at two points in 

time, which may miss short-term disturbances and regrowth events41. Expanding the forest 360 

cover definition to include degraded forest and counting only long-term transitions to non-

forest produced lower deforestation rates (see S4 for comparisons including different forest 

cover definitions). We could not examine these differences in reference areas, because 

project documents rarely report deforestation rates there42, but classification errors are 

unlikely to differ systematically between project and reference areas unless they differ 365 

markedly in terms of species composition or fragmentation.  

 

So why might over-crediting have occurred? One possible mechanism is that projects were 

situated in areas at low risk of deforestation, whereas reference areas faced greater 

threats7,43. Indeed, there is good evidence that site-based and policy interventions tend to 370 

target areas of disproportionately low risk44,45. Our results confirm that reference areas were 

more exposed to known drivers of deforestation than project areas and experienced about 

1.7 times more deforestation than quasi-experimental controls. 
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A second, potentially complementary mechanism arises from the flexibility in model choices 375 

available to projects for making ex ante predictions of counterfactual deforestation. Such 

prediction is inherently uncertain, especially when involving spatial or non-linear 

components46,47. Projects have been shown to select methodologies that produce higher 

estimates of avoided deforestation from among those approved for certification11. We 

extended this analysis by contrasting multiple certified and quasi-experimental estimates 380 

(S6). For most projects, the methodology used for credit issuance significantly overestimated 

avoided deforestation, but alternative or differently parameterised certification methodologies 

were available which could have produced more credible estimates. For example, across 

four projects, VM0006 produced estimates not significantly different from quasi-experimental 

results (S6). We conclude that methodological flexibility for project proponents and 385 

certification bodies, both of whom have financial incentives to produce greater numbers of 

credits48,49, provided an additional mechanism contributing to over-crediting in first 

generation REDD+ projects. 

 

Our study has several limitations. Firstly, quasi-experimental methods for project impacts on 390 

deforestation are difficult to verify because the counterfactual, how much deforestation would 

have occurred without the project, is unobservable. Quasi-experimental methods are 

advancing all the time and new methods exist which combine features of difference-in-

differences and synthetic control, such as interactive fixed-effects, augmented synthetic 

controls, and synthetic difference-in-differences 35,50,51. However, simulated landscapes 395 

where deforestation rates are known have been used to demonstrate the reliability of the 

approaches used in the studies we synthesize52,53.  

 

Secondly, the credibility of quasi-experimental designs requires that all significant 

confounders are controlled for15 which requires an understanding of the reasons some areas 400 

became REDD+ projects and others did not. Guizar-Coutiño et al. (2025)25 explore the 

potential influence of hidden confounders and reveal they would need to have an effect size 

multiple times larger than the most impactful observed covariates to undermine the evidence 

of over-crediting. A potentially important hidden confounder in our analysis is the economic 

value of land, which we proxied using accessibility (travel time to healthcare in 201954). This 405 

covariate has weaknesses that could result in the selection of inappropriate controls. While 

healthcare is often synonymous with certain size population centres, these places are not 

necessarily the same as processing or transportation hubs for timber or agriculture. Equally, 

most projects pre-date 2019, meaning transportation patterns are partly determined by 

project activities. 410 

 

Finally, REDD+ projects can cause spillover effects (leakage) that might influence 

deforestation rates in control units. While some studies have attempted to overcome 

spillovers driven by localised changes in markets by only matching to areas beyond a certain 

distance from project boundaries23,24, this strategy may be insufficient because of the 415 

complex and unpredictable manner in which spillovers can occur55.  

 

The first-generation REDD+ methodologies evaluated here are now being replaced by new 

jurisdictional approaches (JREDD+) for voluntary and compliance markets. JREDD+ 

methodologies (specifically VM0048 and ART TREES) still make ex ante counterfactual 420 

predictions but these are now based on the mean annual deforestation rate across the 

jurisdiction during a 5-6 year reference period56,57. By eliminating project-selected reference 
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areas, a major source of bias has been removed. Crucially, the analysis is performed by 

independent data providers with no direct financial stake in the number of credits issued, 

which is also a substantial improvement. However, reliance on ex ante predictions still 425 

carries risk: it assumes deforestation drivers remain constant between the historic and 

project periods, which is rarely true. Factors such as forest conservation or trade policies, 

major infrastructure projects or extreme climatic events will vary through time with significant 

effects on deforestation. Ex post measurements of deforestation in untreated jurisdictions 

differ by as much as 100% from ex ante predictions58,59. Random enrolment, without regard 430 

for future deforestation trends, would not result in systematic bias. However, if jurisdictional 

enrolment is more likely when there is the expectation that historical rates are about to fall, 

or if the anticipation of enrolment stimulates temporarily increased deforestation, systematic 

over-crediting is again a risk60,61. One final consideration is that VM0048 permits nested 

projects with baselines produced using ex ante spatial modelling, which we have shown to 435 

be problematic. 

 

A potential solution is to only issue credits ex post based on assessments which integrate 

new developments in quasi-experimental methods34,37. Ideally, different quasi-experimental 

results from methods such as the Permanent Additional Carbon Tonne (PACT) method used 440 

in our study or advances in synthetic controls that require fewer assumptions should be 

considered35,50,62. Of course, there continue to be significant uncertainties in project-level 

estimates, but these can be ameliorated by pooling credits at the scheme-level or reducing 

the number of credits issued to safeguard any claims being made36,63. Quasi-experimental 

crediting would not alter the timing of credit issuance, as even methods that use ex ante 445 

counterfactuals still rely on ex post measurements within projects to quantify additionality. 

These approaches are now being adopted by newer certification methodologies for 

afforestation, restoration and revegetation (ARR)64 and improved forest management 

(IFM)65. Uncertainties in credit yields due to the unpredictable nature of the counterfactual, 

along with the implications of over-crediting for existing projects would seem to be reasons 450 

such ex post approaches have not yet been applied but have a key role to play in ensuring 

the future integrity of forest carbon credits37.  

 

While the first-generation of REDD+ projects achieved far less than claimed, many 

nonetheless reduced deforestation. Given the modest progress towards deploying 455 

engineered carbon capture and storage, there remains a role for forest-derived carbon 

credits on the path to net zero. The challenge is to ensure that claimed impacts reflect real 

outcomes. Removing methodological flexibility, particularly the use of project-selected 

reference areas and ex ante modelling, is a crucial first step, but embedding quasi-

experimental evaluations would ensure issued credits represent truly additional reductions 460 

in deforestation. Either way, far fewer credits would be issued to projects using these 

approaches, meaning prices will need to rise to pay for the genuine cost of equitable projects 

with real climate benefits66. Bridging the forest-finance gap will require abandoning the 

illusion of cheap carbon and paying the true cost of credible mitigation.  
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 465 

Methods 

Certified estimates of avoided deforestation 

 

Certified rates of avoided deforestation, used to generate carbon credits, were sourced from 

the design and monitoring documents of 44 REDD+ projects accessed through the Verra 470 

registry between April and June 2023. These include the loss of all areas that had been 

forest for at least 10 years prior to the establishment of the project. Forest cover was 

classified using cloud-free satellite images and bespoke remote sensing approaches (see S1 

for details). Projects included in the study were those that had sufficient publicly available 

data, including geospatial polygons of project areas, and had reported the area of avoided 475 

deforestation in their most recent monitoring reports (S2).  

 

Certified project documents did not report deforestation consistently; however, the ex post 

observed deforestation within the project and the ex ante modelled deforestation under the 

counterfactual scenario were available. Verra projects refer to the counterfactual scenario as 480 

the ‘baseline’  Importantly, deforestation was provided as a total amount in hectares over the 

whole evaluation period or broken down into annual amounts. Where avoided deforestation 

was not reported, it was calculated by subtracting project deforestation from counterfactual 

deforestation.  

 485 

For Q1, the mean certified annual avoided deforestation a year in hectares was used. For 

question Q2-Q4, for each project, the total amount of avoided deforestation claimed was 

disaggregated across evaluation period (which had a mean length of 6.4 years) to produce 

annualised compound avoided deforestation percentage rates (see below). Taking this 

approach ensured that the avoided deforestation used was the same as that used to issue 490 

credits.  

 

Projects issued credits using four different Verra methodologies (VM0006, VM0007, 

VM0009, VM0015) to estimate counterfactual outcomes. The different methodologies are 

summarised briefly in Table 1 and the process common across these methodologies is 495 

described in S1. The extracted project and counterfactual deforestation rates as well as the 

certified avoided deforestation are presented in S9. 

 

Quasi-experimental estimates of avoided deforestation 

 500 

We compiled data from six quasi-experimental analyses which estimated ex post 

counterfactual and project outcomes for REDD+ projects (Table 1). These included work 

published by West et al.7,9 (two analyses), Guizar-Coutiño et al.8 and Tang et al.23.  

 

We also included results from a study under review by Guizar-Coutiño et al.25, which 505 

implemented a novel framework to reanalyse the set of projects examined in Guizar-Coutiño 

et al.8 study. In this new study, 7.1-ha circular sample regions were used instead of 0.09 ha 

pixels to characterise forest loss observations. Guizar-Coutiño et al.25 assess the causal 
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impact of REDD+ projects on deforestation by adjusting for observed confounders and pre-

treatment deforestation trends, using a two-stage matching approach, commencing with 510 

propensity score matching via random forests, followed by propensity score subclassification 

on the matched datasets67. They assess the average treatment effect of the treated using 

multiple model specifications with different algorithms, parameters and covariates. The 

avoided deforestation estimates used in our study correspond to the doubly robust model 

specification reported in this new study.  515 

 

Finally, we used the Permanent Additional Carbon Tonne (PACT) v2 method24 (described 

below) to produce additional estimates and to explore the mechanisms underlying over-

crediting. In each case, we included projects for which certified estimates were also 

available. 520 

 

Avoided deforestation estimates from quasi-experimental methods were received from the 

study authors as project level estimates of cumulative avoided deforestation over a defined 

study period. Annual avoided deforestation rates were calculated by dividing cumulative 

avoided deforestation by the total number of years of the evaluation, to compare estimates 525 

produced over different time periods. Evaluation periods were 5 years for both Guizar-

Coutiño et al. studies8,25, and a mean of 6.0, 7.6, 9.0, and 8.1 years for the West et al. 

(2020)7, West et al. (2023)9, Tang et al. (2025)23, and PACT24 studies respectively.  

 

Deforestation was assessed using publicly available remote sensing products for tracking 530 

changes in forest cover, specifically the corrected MapBiomas68 dataset used by West et al. 

(2020)7, the Global Forest Change (GFC)69 dataset used by West et al. (2023)9 and Tang et 

al, (2025)23, and the Tropical Moist Forest Annual Change Collection (ACC)5 used by Guizar-

Coutiño et al.8,25 and PACT24. GFC reports deforestation as the year of gross forest loss. The 

ACC dataset reports degradation and deforestation separately. The Guizar-Coutiño and 535 

PACT studies considered deforestation to be degradation (disturbances lasting <2.5 years) 

or deforestation (disturbances lasting >2.5 years) of the undisturbed class, even if regrowth 

subsequently occurred. Degradation was included because it has been shown to result in 

biomass reduction of >50% within 12 months. Our analysis of above ground biomass 

densities for different ACC cover classes shows that both degraded and regrowth classes 540 

had <50% of the above ground biomass of the undisturbed class (see S11). Therefore, for 

the mechanistic component of our study, we followed the PACT methods by defining forest 

cover solely as the undisturbed class within the ACC dataset. We explore the differences 

that arise using different definitions of forest cover in S4 and S7. We chose to focus our 

assessment on avoided deforestation because it lies at the centre of the REDD+ 545 

controversy, while recognising that estimating carbon fluxes is an additional, important and 

complex topic. 

 

The PACT method 

 550 

The PACT method used a bootstrapped one-to-one pixel (0.09 ha) matching approach to 

produce paired project and control units from which to estimate mean project and 

counterfactual outcomes70,71. Project areas, start dates, and the date of the most recent 

monitoring period were obtained from the VCS registry (accessed between April and June 

2023). Projects were then assessed following four main steps: (1) compile layers for 555 

characterising project units; (2) determine the set of suitable untreated units; (3) form the 
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control set by matching untreated and project units; and (4) measure and average outcomes 

across project and control sets (S1). 

 

First, geospatial raster layers were compiled to track changes in forest cover. The ACC 560 

dataset5 was used for this purpose. We used the 2021 version, a 30 m resolution (0.09 ha) 

time series spanning December 1990 to December 2021, classifying pixels as one of six 

classes: undisturbed, degraded, deforested, restored, water and other.  

 

Secondly, layers were compiled to select control units analogous to project units using a 565 

method informed by a causal model of land use change. This model incorporated covariates 

that capture the effects of local policies and regulations, economic pressures, historical 

changes in land cover, and environmental conditions on deforestation rates and 

conservation efforts. We used the following layers: International country borders 

(OpenStreetMap72) to encompass national regulatory limits; ecoregions (Resolve73) to 570 

ensure biotic equivalence; and elevation (N   ’s  huttle  adar Topo raphy  ission74) as a 

proxy for abiotic conditions. From the elevation layer, we calculated slope using GDALDEM 

v3.8.4 (default settings), an important proxy for accessibility and suitability for economic 

activities. This produced a slope variable consisting of integer values representing the mean 

slope (0-90°) in each raster cell. 575 

 

Motorised accessibility to healthcare in 2019 (Malaria Atlas Project54) was used as a proxy 

for market exposure/economic pressure. This accessibility layer integrates all known travel 

routes, including rivers, along with terrain, land cover, and road quality to assess the travel 

time to population centres large enough to have a healthcare facility. Finally, we computed 580 

the proportional cover of undisturbed and deforested classes from each year of the ACC 

time-series (1990-2021) to assess land-use change trajectories in the surrounding area 

through time. Proportional cover was calculated by counting the number of pixels in each 

class and dividing by the total number of pixels within the 1 km radius neighbourhood around 

each pixel.  585 

 

It is important to note that accurate data regarding land value and accessibility to markets is 

not universally available, particular in frontier landscapes. As such we use spatial proxies, 

specifically proportional cover and motorised accessibility to healthcare, recognising that 

these leave space for unobserved confounders. 590 

 

Finally, to minimise interference arising from local leakage, we excluded control units within 

the vicinity of any REDD+ project. This is important because, under the assumption that 

leakage arises through the reorganisation of local supply chains or markets, there would be 

concentrated interference at short distances from projects. To do this we produced a binary 595 

raster indicating the presence or absence of a REDD+ project within 5km. REDD+ polygons 

were accessed from the VERRA registry and supplemented by any REDD+ project polygons 

shared directly with the Cambridge Centre for Carbon Credits. All layers were reprojected to 

the same coordinate reference system as the ACC.  

 600 

Projects were sampled using a spatial grid with a density of 0.25 points per ha for projects 

smaller than 250,000 ha and 0.05 points per ha for larger projects (to reduce processing 

time). The characteristics of these sample points were extracted from the layers described 
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above. Time-varying characteristics, including the ACC pixel class and proportional cover 

were extracted at the start of the project (t0) and at five (t-5) and ten (t-10) years prior.  605 

 

The domain of untreated units was defined as all pixels within the same countries and 

ecoregions as each project, located at least 5 km from the project boundary, but no further 

than 2,000 km away. Leakage effects caused by the displacement of production could be 

present but were assumed to be small, given the large domain of the untreated units and the 610 

relatively limited effects of individual projects. To reduce computation time, untreated units 

were filtered to include only those within the range of values observed in the project area for 

each known driver of deforestation with an added tolerance of ±200 m for elevation, ±2.5° for 

slope, ±10 minutes accessibility, and ±10% points for proportional cover. 

 615 

Matching proceeded by taking a random sample of 10% of the project units, which were then 

processed sequentially to identify control units with the smallest Mahalanobis distance 

across the continuous characteristics, and identical values for country, ecoregion and ACC 

land cover class at t0, t-5 and t-10.75. This matching approach is referred to as ‘greedy’ 

because the algorithm sequentially finds the best pairs, which are then removed from the 620 

pool for subsequent matching.  

 

The standardised mean difference (SMD) between the control and project sets for each of 

the continuous characteristics was calculated as follows:  

 625 

𝑆𝑀𝐷 =
𝜇𝑐 − 𝜇𝑝

𝜎̅
 Eq. 1 

 

Where 𝜇𝑐 is the mean of the control set, 𝜇𝑝 is the mean of the project set and 𝜎̅ is the square 

root of the mean of the variances. SMD values outside the range [-0.25, 0.25] for any 

continuous characteristic were considered statistically different and excluded from further 

analyses14,75. This process was repeated 100 times to produce matched project-control sets, 630 

each comprising 10% of the total points sampled from within the projects.  

 

Ex post deforestation was measured for the project and control units by calculating changes 

in the undisturbed class since the start of the project. To calculate the area of undisturbed 

forest at each time point, we computed the proportion of all units in the undisturbed class 635 

and multiplied it by the project area. This process was repeated across all 100 matched sets 

to produce estimates of project and counterfactual forest cover.  

 

Averaging across these sets, we produced annualised mean forest cover (in hectares). By 

subtracting counterfactual forest cover from the project forest cover, we derived annual 640 

cumulative avoided deforestation values. Total avoided deforestation during the project 

period was measured at the final year of the project’s most recent monitorin  period, as 

additionality figures are cumulative.  

 

Q1. How consistent are estimates of project impacts assessed using independent quasi-645 

experimental methods? 

 

For each of the 44 projects, we compiled the certified estimates of annualised avoided 

deforestation (in hectares) along with all available quasi-experimental estimates. For the 42 
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projects with more than one quasi-experimental estimate, we calculated the mean, standard 650 

deviation, coefficient of variation, standard error, and 95% confidence intervals. For the 

remaining two projects, which had only a single quasi-experimental estimate, this value was 

taken to be the mean. 

 

We determined how many projects had mean quasi-experimental estimates below their 655 

certified estimate, as well as how many had upper 95% confidence intervals below their 

certified estimates. To test whether certified estimates were significantly greater than mean 

quasi-experimental estimates, we applied a one-tailed Wilcoxon signed-ranks test, due to 

the non-normality of the data. We also evaluated how many projects had avoided 

deforestation estimates significantly greater than zero, using the lower bound of the 95% 660 

confidence intervals across quasi-experimental studies. 

 

We next assessed the over-crediting as the ratio of the certified to the mean quasi-

experimental estimate of avoided deforestation. We refer to this as the over-crediting ratio, 

which expresses how many times more credits were issued through certification than 665 

suggested by quasi-experimental estimates. The mean over-crediting ratio was calculated 

for all projects that had issued credits and also had positive mean quasi-experimental 

estimates; projects with negative mean quasi-experimental estimates were excluded.  

 

The global over-crediting ratio, reflecting how many certified avoided deforestation units 670 

likely correspond to one quasi-experimentally validated unit across the REDD+ portfolio, was 

calculated by dividing total certified avoided deforestation by the total of the mean quasi-

experimental estimates (including negative values). Projects were randomly sampled with 

replacement 10,000 times, with the results then used to derive mean values and 95% 

confidence intervals. 675 

 

Determining comparable deforestation rates between Certified and ACC sources 

 

We calculated annual deforestation rates to make the quantities of deforestation measured 

by the certified assessments and the ACC layer (e.g. those produced by PACT) directly 680 

comparable. The future forest cover (𝐹𝑡) resulting from a constant annual deforestation rate 

(r) after an interval (t), given the starting forest cover (𝐹0), was calculated as follows:  

 

𝐹𝑡 = 𝐹0(1 − 𝑟)𝑡 Eq. 2.1 

 

Because we had extracted the forest cover at the beginning and end of the evaluation 685 

period, we calculated the rate by rearranging the formula to: 

 

𝑟 = 1 − (
𝐹𝑡
𝐹0
)

1
𝑡
 

Eq. 2.2 

  

To determine 𝐹0 we took the proportion of the ACC pixels classified as undisturbed class in 

the yearly layer closest to the project start date and multiplied this by the total project area 690 

derived from the project polygon. Thus 𝐹0 was the total area of undisturbed forest (in 

hectares) at the start of the project. 𝐹𝑡 was calculated by subtracting the area of 

deforestation in the certified or ACC measurements from 𝐹0. The evaluation interval t was 
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the number of years between the start and end assessments. For the certified assessments, 

this was calculated from the number of total days between the start and end dates, whereas 695 

for the ACC data, this was the number of whole years between the ACC layers used. The 

calculations for each project are presented in section S10 of the supplementary information.  

 

We produced certified and ACC mean annual percentage deforestation rates for 36 project 

areas and 17 counterfactual estimates. Between these two sets there was an intersection of 700 

17 projects, for which we could produce mean annual percentage avoided deforestation 

rates using all combinations of certified and quasi-experimental estimates for project, 

reference and control areas, sufficient for inclusion in Q3 and Q4. 

 

Q2. Is the use of global deforestation layers the reason for the discrepancy between quasi-705 

experimental and certified estimates?  

 

We used the annual deforestation rates to test if there was a difference in the amount of ex 

post deforestation measured in project areas. Because the data were non-normal, we tested 

whether the paired differences were significantly greater than zero using a one-tailed 710 

Wilcoxon signed-ranks test. In the main analysis, we focussed exclusively on the 

deforestation or degradation of undisturbed forest in the ACC measurements. In S4 we 

broaden the forest cover definition to include undisturbed and degraded forest and measure 

the deforestation of either. 

 715 

Q3. Were reference areas similar to projects in their exposure to deforestation? 

 

We compared the exposure to deforestation risks across project, reference and control 

areas to assess the extent to which the selection of reference areas explained differences 

between certified and quasi-experimental approaches. For reference areas, we focused on 720 

the Reference Regions for Deforestation (RDD) used by certified methods as these were 

used to measure the rate of deforestation, rather than the Reference Regions for Location, 

which were used to model how much of the deforestation was expected to occur within 

project areas. 

 725 

Reference area polygons were not publicly available as shapefiles and were therefore 

digitised by georeferencing maps available in project design documents from the Verra 

registry. This was done either by tracing the polygons by hand in QGIS (v3.26.3) or through 

colour thresholding and automated polygonisation procedure in R, equivalent to the process 

described by the Environmental Systems Research Institute76. Colour thresholding was 730 

applied when reference areas presented in project design documents were complex shapes 

represented by colour coded systems within the georeferenced maps. The colours 

representing the reference areas were identified as the most frequent pixel colours in the 

maps. Binary maps were then produced from these pixels using a Boolean comparison to 

the reference area colours, and their fidelity was checked against the original maps. Finally, 735 

the binary maps were converted to geospatial polygons using the polygonise function in the 

Terra package in R.  

 

We successfully digitised reference areas for 17 projects (see supplementary information S5 

for the projects included). We then sampled the characteristics of reference areas using the 740 

same PACT method for sampling project units (described above). Time-varying 
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characteristics were sampled from the beginning of the historical reference period (usually 5-

10 years before the start of the project), to ensure comparability with project characteristics. 

 

To test the similarity of control and project areas in terms of exposure to deforestation risks, 745 

we examined the distributions of key characteristics prior to any measurement of forest loss. 

For the project areas, these covered the pre-project period up to a maximum of ten years 

prior. This was the same for the quasi-experimental controls. For reference areas, the period 

extended up to ten years prior to the start of the documented reference period. 

 750 

We tested for differences in the univariate distributions of pre-project characteristics using 

the SMDs between the reference or control areas and the project areas. Values outside the 

range [-0.25, 0.25] indicated a significant project-level difference14,75. Across the set of 

projects, we tested whether the distribution of the SMDs for each characteristic differed 

significantly from zero using t-tests. 755 

 

We also compared the observed annual deforestation rates between reference and quasi-

experimental control areas using the ACC dataset. For reference areas, this was measured 

across the reference period; for quasi-experimental controls, it was measured across the 

project evaluation period. Because the data were non-normal, we applied a one-tailed 760 

Wilcoxon paired signed-ranks test to assess whether reference areas were exposed to 

significantly more deforestation than the quasi-experimental control areas.  

 

Q4: What is the residual effect of ex ante modelling after isolating the effects of forest cover 

layer and reference area selection? 765 

 

To assess the effect of ex ante modelling, we used a process of isolating all possible 

explanations for over-crediting for the same 17 projects used in Q3. This required 

determining the annual avoided deforestation rate produced by five different combinations of 

reference or control area and project area estimates.  770 

 

First, we quantified over-crediting as the overall difference between avoided deforestation 

from quasi-experimental estimates (PACT in combination with ACC) and certified estimates. 

To isolate any effect of project area remote sensing within this overall difference, we 

examined the change in avoided deforestation resulting from substituting quasi-experimental 775 

project area deforestation estimates with their certified equivalents.  

 

From this new combination, we then isolated the effect of reference area selection by 

substituting quasi-experimental control area estimates with ACC-derived estimates for the 

reference areas (covering the reference period) made in Q3. This third combination therefore 780 

represents the combined effect of the two mechanisms explored in Q2 and Q3. Th residual 

difference between this combination and the avoided deforestation rates produced by purely 

certified estimates captures the influence of two remaining factors: (1) the bespoke remote 

sensing measurements made in reference areas; and (2) the ex ante modelling of reference 

area deforestation to predict counterfactual outcomes for project areas.  785 

 

Although we could not disentangle these explanations, we examined whether differences 

between remotely sensed forest cover layers affected the magnitude of the reference area 

effect. To do this, we inferred the deforestation rates that would have been observed if 
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bespoke measurements in control areas occurred at the same relative proportion of ACC-790 

measured deforestation rates observed in project areas. We divided certified estimates by 

quasi-experimental estimates in project areas and took the median of these ratios, to 

produce a correction coefficient. We then multiplied the ACC measurements in reference 

areas by the coefficient to generate corresponding “bespoke” estimates, from which we 

produced our final possible avoided deforestation rate. This yielded two possible residuals 795 

covering a range of impact attributable to ex ante modelling.  

 

Statistical differences between ranges of avoided deforestation were tested using Wilcoxon 

paired signed-ranks tests because paired differences were not normally distributed. 

 800 

Data availability 

 

All data necessary to reproduce the analyses in this paper are made publicly available 

(zenodo.org/records/14895067). 

 805 

Code availability 

 

All analyses were undertaken in R (v4.2.1) using Terra (v1.7.65), Simple Features (v1.0.15) 

and Raster (v3.6.26) for geospatial processing; Vegan (v2.6.4) for ordination analysis; and 

the Tidyverse (v2.0.0) for data manipulation. 810 

 

In an effort to contribute to improved transparency, we have made the code necessary to run 

the PACT evaluations (github.com/quantifyearth/tmf-implementation) and our analysis 

(github.com/quantifyearth/REDD-Over-Credit-Reasons). 
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