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Abstract

Independent evaluations have shown substantial over-issuance of REDD+ (Reducing
Emissions from Deforestation and Degradation) credits traded on the voluntary carbon
market. To improve credit integrity we need to synthesise these evaluations to
understand the additional forest conservation achieved by first-generation REDD+
projects, and explore the mechanisms by which over-crediting occurred. We bring
together six independent ex-post evaluations of avoided deforestation by 44 REDD+
projects. These consistently show that most projects successfully reduced
deforestation, but they also claimed an aggregate of 10.7 times more avoided
deforestation than independent evaluations indicate is justified. This discrepancy is not
an artefact of which forest cover layer is used but is linked to selection bias in projects’
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choices of control areas and modelling approaches. Given the need to close the forest
finance gap, there is unwillingness to abandon the potential of the voluntary carbon
market because of past failures. Current initiatives which transfer assessment to
unconflicted parties and eliminate methodological flexibility is critical but insufficient.
Ex post certification against a credible counterfactual is also necessary to ensure
sufficient integrity in carbon markets for them to contribute to the vital task of slowing
deforestation.

Introduction

Halting tropical deforestation is essential to limit global temperature rise to below 2°C" and
prevent mass extinction?3. Yet tropical forests continue to be lost*® and forest conservation
is severely underfunded, with an estimated annual finance gap of US $216 billion®. There is
substantial global interest in the potential for both compliance and voluntary markets to fund
forest conservation despite widespread evidence that many first-generation REDD+
(Reducing Emissions from Deforestation and forest Degradation) projects have issued more
credits than were justified by their impact on deforestation’~"'. The resulting scandal'
contributed to more than US $1.1Bn being wiped from the value of the voluntary carbon
market in 2023 and a further contraction in 2024'3. Understanding what these early projects
did and did not achieve, and the mechanisms that resulted in over-crediting, is key to
informing efforts to improve the integrity of forest carbon credits, which is an essential step if
they are to contribute to closing the forest finance gap.

A major challenge in measuring the impacts of forest conservation projects is estimating
counterfactual outcomes (what would have happened to deforestation in the absence of a
project)''8. The first-generation of REDD+ projects could choose from several certification
methodologies (Table 1a), each of which used measurements of historic deforestation in
expert-selected ‘reference’ areas in conjunction with ex ante modelling approaches to predict
‘baseline’ deforestation''. Credits were issued by comparing the ex ante baseline with
observed deforestation in project areas. In parallel, a rich scientific literature has developed
methods for estimating counterfactual outcomes from observational data'®-?? and for
applying them to conservation' 151718 These quasi-experimental methods account for
confounders in selecting control areas and measure outcomes ex post in both project and
control areas (Table 1b).

The prominence of REDD+ has drawn scrutiny from several independent research groups
that have applied these quasi-experimental methods to evaluate the impact of first-
generation REDD+ projects on deforestation’-%23-2°_ Consistently, these studies have found
evidence of over-crediting. Proposed explanations include the use of inappropriate reference
areas, unrealistic ex ante modelling that exaggerated expected deforestation, and selective
use of certification methodologies that inflated credit issuance”*'"-23, However, these
hypothesised mechanisms have not been systematically tested'™. Some industry insiders
have rejected the evidence for over-crediting altogether?®?’, arguing that (1) quasi-
experimental estimates of avoided deforestation are inconsistent across studies due to
methodological differences??, and (2) over-crediting is an artefact of using of publicly

https://doi.org/10.33774/coe-2025-29fk2 ORCID: https://orcid.org/0000-0001-9354-5090 Content not peer-reviewed by Cambridge University Press. License: CC BY-NC-ND 4.0


https://doi.org/10.33774/coe-2025-29fk2
https://orcid.org/0000-0001-9354-5090
https://creativecommons.org/licenses/by-nc-nd/4.0/

available global forest cover datasets that detect less deforestation than the bespoke remote
sensing classifications used by projects?®.

85  Carbon markets are, of course, not the only way tropical forest conservation can be
funded®®?'. There are well-known problems associated with carbon offsetting®? and with the
integrity of forest carbon credits beyond the issues of over-crediting and additionality3334.
Nevertheless, carbon markets are likely to play a role in bridging the forest funding gap, at
least in the short to medium term®. It is therefore critical to learn as much as possible from

90 the first-generation of REDD+ projects, both their successes and failures, to inform the future
development of methods for certifying credits. Given how harmful over-crediting is to the
overall objective of carbon markets (reducing carbon in the atmosphere), understanding the
mechanisms through which over-crediting occurred is vital if future approaches are to avoid
repeating the failures of the past.

95

Critiques of independent
evaluations using quasi-experimental methods

Potential mechanisms by which over-crediting
occurred

Quasi-experimental methods
have been criticised
because of suggestions that
their estimates of avoided
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If global forest layers used by
quasi-experimental methods
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would create a spurious signal
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rates compared with those in
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(17 projects)
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quasi-experimental methods)

Figure 1: Research questions exploring the mechanisms behind over-crediting. The
analyses test critiques of independent quasi-experimental evaluations of REDD+ projects

100 and investigates mechanisms that may have led to over-crediting. Specific research
questions (Q1-4), and the number of REDD+ projects with data available to answer each
question are shown. The list of projects included in each analysis is given in Supplementary
Table S2.

105 In this study, we synthesise results from six quasi-experimental evaluations to provide a
comprehensive assessment of the impact of 44 first-generation REDD+ projects
(representing 45% of the projects producing credits by 2020). We compare these results with
certified assessments from the projects themselves. We address critiques of independent
quasi-experimental evaluations (questions 1 and 2 in figure 1) and investigate two

110  hypothesised mechanisms by which over-crediting could have occurred (questions 3 and 4).
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Our results show that most projects slowed deforestation consistently across independent
evaluations, yet over-crediting remained substantial. The discrepancy between quasi-
experimental and certified estimates cannot be explained by differences in the remote
sensing layers used, rather, it stems from bias in reference-area selection and unrealistic
115  modelling of future deforestation. These findings point to changes needed in crediting
methodologies to ensure forest carbon credits deliver their intended climate benefits.

Table 1. Description of the methods / studies used to evaluate REDD+ projects.

Method/ Method for estimating the Unit Forest cover Number
study counterfactual rate of deforestation size layer® of
projects®

a. Certification methodologies used by first-generation REDD+ projects *

VMO0006" Reference area selected with exposure to  Whole  Bespoke 11
drivers of deforestation within +10% of the  project
range observed in project area.
Counterfactual deforestation rates are
predicted ex ante from beta
regression or historical average of
deforestation observed in reference area
during reference period.

VMO0007* Reference area selected with exposureto  Whole  Bespoke 15
drivers of deforestation within £20% of the  project
range observed in project area to measure
historic deforestation. Counterfactual
deforestation rates are predicted ex ante
from linear or non-linear regression, or
historical average of deforestation or
population growth observed in the control
rea during reference period. These are
allocated to the project using a spatial risk
model produced for the area surrounding
the project which should have exposure to
drivers of deforestation within £30% of the
range observed in project.

VMO0009 Reference areas are selected with no Whole  Bespoke 3
defined requirement for their similarity to project
the project in exposure to drivers of
deforestation. Counterfactual deforestation
rates are predicted ex ante from logistic
regression of deforestation observed in the
reference area during the reference period.

VMO0015* Reference areas selected with exposure to Whole  Bespoke 15
drivers of deforestation within +10% of the  project
range observed in project area.
Counterfactual deforestation rates are
predicted ex ante from linear or non-linear
regression or historical average or
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simulation approaches of deforestation
observed in the reference area during the
reference period.

b. Quasi-experimental methods

Westet  Synthetic control produced by weighting Whole  MapBiomas 11
al., 2020 untreated polygons of land titles by their project (reprocessed)
similarity to projects in terms of
deforestation trajectories and observable
confounders. Deforestation in project and
control areas observed ex post.

Westet  Synthetic control developed from randomly Whole  GFC 18
al., 2023 placed circular plots weighted by similarity  project

to projects in terms of deforestation

trajectory and observable confounders.

Deforestation in project and control areas

observed ex post.

Guizar- 1:1 matching with replacement selected 0.09ha ACC 35
Coutifio  from untreated control units based on pixel
etal., similarity in observable confounders.
2022 Deforestation in project and control areas
observed ex post.
Guizar- 1:1 Propensity score matching with 7.10ha ACC 32
Coutinio  replacement via random forests, followed plot
et al., by propensity score sub-classification on
2025 the matched dataset to ensure covariate

balance. The average treatment effect was
estimated using multiple model
specifications to assess robustness and
sensitivity to unobserved confounding
evaluated using the sensemakr
framework3®. Deforestation in project and
control areas observed ex post.

Tang et  Penalized synthetic control developed from Whole  GFCI 37
al., 2025 randomly placed circular plots weighted by project

similarity to projects in terms of

deforestation trajectory and observable

confounders. Deforestation in project and

control areas observed ex post.

PACT 1:1 matching without replacement selected 0.09 ha ACC 35
from untreated control units based on pixel
similarity in observable confounders.
Bootstrapped 100 times using random
samples from candidate controls.
Deforestation in project and control areas
observed ex post.
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120  ®Forest cover layers were either locally trained ‘bespoke’ classifications used in certified estimates by
projects, or region or global peer-reviewed data products, specifically: MapBiomas, Global Forest
Change (GFC) or the Tropical Moist Forest Annual Change Collection (ACC)5.

QThe projects included in our analysis were those for which we were able to obtain certified estimates
of avoided deforestation (S2) and were assessed by at least one quasi-experimental approach.
125 * West, Bomfim and Haya applied all Verra methodologies to assess the avoided deforestation

impacts of four REDD+ projects.

TFor VMO0O0OG6 the forest scarcity factor was applied at two separate levels, resulting in two

separate estimates.

* For VM0007 and VMO0015 two different algorithms were used to develop spatial deforestation
130  risk maps, resulting in two separate estimates for each.

Results

Q1. How consistent are estimates of project impacts assessed using independent quasi-
experimental methods?
135
The majority of projects (36 of 44) reduced deforestation according to assessments by the
quasi-experimental methods (Figure 2). Among projects with multiple quasi-experimental
estimates, 12 (29% of the 42 with calculable confidence intervals) showed statistically
significant reductions in deforestation at the 95% confidence level. Eight projects (shown in
140 red in Figure 2) experienced more deforestation than their quasi-experimental controls,
although only in one case was this significant.

Despite most projects reducing deforestation, over-crediting was widespread with certified
estimates of avoided deforestation significantly exceeding mean quasi-experimental

145  estimates (one-tailed paired Wilcoxon signed-rank test; V = 973, p < 0.001). Over-crediting
was statistically significant at the 95% confidence level for 32 projects (76% of the 42 with
calculable confidence intervals; Fig. 2a). Consequently, the mean over-crediting ratio (the
certified estimate divided by the mean quasi-experimental estimate) was 4.1 (95%
bootstrapped Cl: 2.7 to 7.0), indicating the typical project achieved about a quarter of the

150 avoided deforestation reported by certified estimates. Across all the credits assessed, the
global over-crediting ratio was 10.7 (95% bootstrapped Cl: 5.4 to 26.5), indicating that a
credit bought at random would offer only an eleventh of the avoided deforestation claimed
(Fig. 2b). Over-crediting was not universal: two projects from Madagascar and one from
Peru had a mean over-crediting ratio less than 1 meaning these credits achieved more

155  avoided deforestation than claimed (S8).
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Figure. 2: Comparison of quasi-experimental and certified estimates of project
performance. (a) Quasi-experimental evaluations show consistent evidence that REDD+
projects slowed deforestation, but certified estimates were higher, indicating widespread

165  over-crediting. Points represent mean estimates from the six quasi-experimental studies,
with error bars show 95% confidence intervals. (b) The over-crediting ratio (the certified
estimate divided by the mean quasi-experimental estimate) plotted against certified avoided
deforestation estimates. The dashed grey line indicates the global mean over-crediting ratio
and the dashed red lines mark parity between certified and quasi-experimental estimates.

170  Points above and below the red line represent over- and under-crediting respectively. Darker
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colours denote projects evaluated by a greater number of quasi-experimental approaches
(up to five as there was no overlap in the projects assessed by the two West et al. studies).
The over-crediting ratio is undefined for the eight red points that experienced more
deforestation than predicted by their quasi-experimental controls. In both panels use log-
scaled y-axes.

Q2. Is the use of global deforestation layers the reason for the discrepancy between quasi-
experimental and certified estimates?

A high-profile critique of independent studies which demonstrated over-crediting by first-
generation REDD+ projects has suggested that global layers used in quasi-experimental
analyses detect less deforestation than bespoke layers used by projects and that this, rather
than over-crediting, explains the observed discrepancies®®. We tested this critique by
comparing estimates of deforestation (loss of undisturbed forest) in project areas derived
from global deforestation layers with those reported by projects using their bespoke forest
cover classifications. We were unable to perform the comparison for reference areas
because deforestation rates there were not reported in project certification documents. For
project areas, we found that, rather than being lower, deforestation rates measured
independently using the European Union’s tropical moist forest annual change collection
(ACC®) were actually greater than certified measurements based on bespoke forest cover
layers. Among the 36 projects that reported certified measurements, the median rate
measured using the ACC was 0.26%/year, compared with a median certified deforestation
rate of 0.17%/year (Fig. 3a). The median pairwise discrepancy between ACC and certified
rates was 0.13%/year (Fig. 3b), which was significantly different from zero (Wilcoxon paired
signed-ranks test, V = 520, d.f. = 35, p = 0.003). When we ran the analysis to include
degraded forest in the ACC-measured forest area at project start, so that deforestation was
only measured as long-term (>2.5 years) transitions to non-forest, deforestation rates were
lower and not significantly different from certified values (S4). Together these results indicate
that deforestation products (such as the ACC) used in quasi-experimental analyses have not
detected less deforestation than the bespoke layers used in certification. Under-estimation of
deforestation in control areas therefore cannot explain the observed over-crediting.
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Figure 3. Comparison of deforestation measured by the ACC and bespoke remote
sensing. (a) Ex post annual deforestation rates in project areas measured using the
European Unions’ Annual Change Collection (ACC) versus the bespoke forest cover layers
used in certification. (b) Median deforestation rates are significantly higher when measured
by the ACC (Wilcoxon paired signed-ranks, p < 0.01). Error bars show the interquartile
range. In both panels points represent individual REDD+ projects.

Q3. Were reference areas similar to projects in their exposure to deforestation?

Having established that reports of lower additionality were consistent across quasi-
experimental assessments and were not driven by forest-change layers that underestimate
deforestation, we turn next examine why certification methodologies may have
overestimated project additionality. Specifically, we ask whether the reference areas used
were representative of the deforestation pressures to which projects were exposed.

Reference areas were systematically different from project areas, exhibiting lower exposure
to deforestation before project implementation. To illustrate this, we focus on project 958 in
Peru (equivalent figures are shown for all projects in S5). Project 958'’s reference area was
located immediately outside the project (Fig 4a). Despite this proximity, the reference area
was less inaccessible (a mean of 13.8 hours compared to 25.5 hours), and less forested at
the start of the reference period in 2001 than the project was at its start in 2010 (78%
compared to 95%) (Fig. 4b). Standardised mean differences of -1.02 and -0.58 respectively
indicate that mean values for the reference area were significantly different from those for
the project area. By contrast, the control units selected by the quasi-experimental matching
approach were distributed much more widely across Peru (Fig. 4a) and were nearly identical
to the project area in the distributions of observable confounders (Fig. 4b).
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Figure. 4: Differences in exposure to deforestation drivers and resulting deforestation
rates across project, reference and control areas. (a-b) Example from Project 958 in
Peru. (a) Geographic locations of the project (black), reference area (red) and quasi-
experimental controls (green). (b) Univariate frequency distributions of observable
confounders which may influence deforestation, showing discrepancies between the
reference area and the project in elevation, inaccessibility and forest cover. (c-d) Summary
for the 17 projects with mapped reference areas. (c) Standardised mean differences from the
mean project values for each observable confounder. Arrows indicate the direction of
change associated with increased deforestation. Project-level significance is indicated by
values beyond the grey band (-0.25 to 0.25), and significance across projects by * p < 0.05
and ** p < 0.01. (d) Median and interquartile ranges of deforestation rates measured by the
ACC in quasi-experimental control and reference areas during the project period. In (b-c) the
timing of measurements is expressed relative to the project start year (to) for quasi-
experimental control areas, or the start of the reference period for reference areas

The same pattern was observed across all 17 projects that provided mapped reference
areas (Fig. 4c, S3). Compared with project areas, mean inaccessibility in reference areas
was lower (median standardised mean difference = -0.30, t = -2.41, d.f. = 16, p = 0.028), as
was forest cover at the start of the project (median standardised mean difference =-0.42, t =
-3.10, d.f. = 16, p = 0.007) as well as five and ten years beforehand (median standardised
mean difference = -0.48, t = -4.04, d.f. =16, p = 0.003; and -0.48, t = -4.28,d.f. =5, p =
0.008, respectively). Historic deforestation rates were not significantly different. In contrast,
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none of the quasi-experimental control areas differed from the project areas in any of the
observed confounders (Fig. 4c).

These differences in exposure to observable confounders between reference and quasi-
experimental control areas were associated with a directional difference in their deforestation
rates during the project period when assessed using the ACC layer. Across the 17 projects,
median deforestation rates in reference areas were 0.69%/year compared with 0.41%/year
in the quasi-experimental control areas (Fig. 4d). Although this was 1.69 times more
deforestation the increase was not statistically significant (one-tailed Wilcoxon paired signed-
ranks test, V = 103, p = 0.1123). The same pattern was found when including the loss of
either undisturbed or degraded forest in the ACC deforestation measurements (S7).

Q4. After isolating the effects of forest cover layer and reference area selection, how much
over-crediting can be explained by ex ante modelling?

To dissect the relative contributions of the mechanisms identified in preceding analyses, we
examined their effects in the subset of projects (n = 17) for which all required data were
available. The smaller sample size meant that most effects within this subset were not
statistically significant, but they were of a similar magnitude to those observed in the larger
analyses of each mechanism. Certified assessments reported substantially more avoided
deforestation than quasi-experimental assessments (0.95 %/year shown in pink compared to
0.18%/year shown in green in Fig. 5; Wilcoxon paired signed-ranks test,V = 134, p =
0.002). We then sequentially re-estimated avoided deforestation using different
combinations of the deforestation rates drawn from the certified and quasi-experimental
assessments to isolate the effect of each mechanism, with any remaining over-crediting
assumed to be explained by ex ante modelling.

First, to account for differences between the remote sensing layers in project areas, we
substituted the ACC-measured deforestation rates with the certified rates. Because certified
rates were lower, this substation increased median avoided deforestation slightly to 0.20
%lyear (orange in Fig. 5), indicated that the choice of deforestation rate for the project area
contributed only about 2% of the observed over-crediting.

Second, to isolate the effect of reference area selection, we substituted the quasi-
experimental control areas with the certified reference areas and measured deforestation in
both using the ACC. Median avoided deforestation then increased to 0.64 %/year (blue in
Fig. 5), intermediate between quasi-experimental and certified assessments, suggesting that
reference area choice probably accounted for 57% of the over-crediting.

Next, we estimated the effect of remote sensing differences on reference area deforestation
rates. Because project documents did not report deforestation rates in reference areas, we
inferred them by multiplying the ACC-derived control area deforestation rates by 0.58, which
was the median ratio of bespoke to ACC rates across the 17 projects. Substituting these
inferred values reduced avoided deforestation to 0.35 %/year (grey in Fig 5), suggesting that
lower detection of deforestation by bespoke remote sensing (rather than the ACC) was not a
cause of over-crediting.
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Finally, having adjusted for reference area selection and differences in deforestation rate
estimation, we attributed the remaining ~78% of over-crediting to the various ex ante

305 modelling approaches used in certified assessments, recognising the considerable
uncertainty surrounding this allocation.
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Choice of project and control rate
310
Figure 5. Contributions of different mechanisms to over-crediting. Quasi-experimental
(QE) estimates of avoided deforestation (green) are significantly lower than certified
assessments (pink; Wilcoxon paired signed-ranks test, p < 0.01) across a subset of 17
projects for which all necessary data are available. Substituting certified deforestation rates
315  for project areas into the QE assessments produces a small increase in avoided
deforestation (orange). A much larger increase occurs when certified reference areas are
used instead of QE control areas, both measured by the European Union’s tropical moist
forest annual change collection (ACC; dark blue). Avoided deforestation is lower when
deforestation rates inferred from bespoke remote sensing products are used instead of ACC
320 values (grey). The remaining discrepancy is attributable to ex ante modelling. These
comparisons reveal the relative contributions of each mechanism to overall over-crediting.
Error bars represent medians and interquartile ranges.

Discussion

Researchers in this space, including our co-authors, differ in how strongly they view carbon
325 markets are essential to closing the forest finance gap and tackling climate change'?3%2-
343637 Regardless of this, if forest conservation carbon credits are being traded, then it is
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crucial that one credit reflects the amount of additional deforestation avoided that is claimed.
We interpret our findings with that challenge in mind.

By synthesising the results of multiple independent quasi-experimental analyses, we find
that most REDD+ projects did reduce deforestation compared to credible counterfactual
estimates, demonstrating a tangible contribution to forest conservation. However, the
combined evidence from the six studies also shows that these projects issued far more
credits than were justified. These were bad credits in that they certainly did not reduce
emissions as much as claimed, and because many were used to offset emissions
elsewhere, this will have had a negative impact on progress towards climate goals®.
Nonetheless, they were not necessarily bad projects: many achieved measurable on-the-
ground conservation benefits.

While some industry-linked commentators continue to deny that over-crediting in first-
generation REDD+ projects was a problem?%27:2° the scientific evidence is now clear. Our
synthesis shows that across the portfolio of projects examined, almost 11 times more credits
were issued than was justified. However, most of this excess was driven by a small number
of projects that generated the largest volumes of credits (top right in Fig. 2b). After excluding
the 9 biggest issuers, over-crediting among the remaining projects was much lower, around
4.0 times, though still substantial. This pattern highlights the need for methodological
advances that prevent egregious cases of over-crediting that disproportionately shape the
overall integrity of REDD+.

One counterargument made by some commentators is that over-crediting is an artifact of
lower detection of deforestation by the globally available datasets used in independent
quasi-experimental evaluations compared with the bespoke layers used by REDD+
projects?®. Several studies have found that locally trained remote sensing products can be
more accurate in measuring forest cover and deforestation than global layers, such as the
ACC®*4° However, we found no evidence that the widely used ACC layer systematically
detected less deforestation. In fact, it detected similar or higher rates in project areas than
certified estimates using bespoke layers. This may have occurred because the ACC is a
multi-temporal approach that considers all disturbance events occurring since the start of the
time series® whereas bespoke approaches typically detect non-forest pixels at two points in
time, which may miss short-term disturbances and regrowth events*'. Expanding the forest
cover definition to include degraded forest and counting only long-term transitions to non-
forest produced lower deforestation rates (see S4 for comparisons including different forest
cover definitions). We could not examine these differences in reference areas, because
project documents rarely report deforestation rates there*?, but classification errors are
unlikely to differ systematically between project and reference areas unless they differ
markedly in terms of species composition or fragmentation.

So why might over-crediting have occurred? One possible mechanism is that projects were
situated in areas at low risk of deforestation, whereas reference areas faced greater
threats”*3. Indeed, there is good evidence that site-based and policy interventions tend to
target areas of disproportionately low risk*4#°. Our results confirm that reference areas were
more exposed to known drivers of deforestation than project areas and experienced about
1.7 times more deforestation than quasi-experimental controls.
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A second, potentially complementary mechanism arises from the flexibility in model choices
available to projects for making ex ante predictions of counterfactual deforestation. Such
prediction is inherently uncertain, especially when involving spatial or non-linear
components*®#’, Projects have been shown to select methodologies that produce higher
estimates of avoided deforestation from among those approved for certification'!. We
extended this analysis by contrasting multiple certified and quasi-experimental estimates
(S6). For most projects, the methodology used for credit issuance significantly overestimated
avoided deforestation, but alternative or differently parameterised certification methodologies
were available which could have produced more credible estimates. For example, across
four projects, VM0006 produced estimates not significantly different from quasi-experimental
results (S6). We conclude that methodological flexibility for project proponents and
certification bodies, both of whom have financial incentives to produce greater numbers of
credits*®#°, provided an additional mechanism contributing to over-crediting in first
generation REDD+ projects.

Our study has several limitations. Firstly, quasi-experimental methods for project impacts on
deforestation are difficult to verify because the counterfactual, how much deforestation would
have occurred without the project, is unobservable. Quasi-experimental methods are
advancing all the time and new methods exist which combine features of difference-in-
differences and synthetic control, such as interactive fixed-effects, augmented synthetic
controls, and synthetic difference-in-differences 3>°0°'. However, simulated landscapes
where deforestation rates are known have been used to demonstrate the reliability of the
approaches used in the studies we synthesize5%3.

Secondly, the credibility of quasi-experimental designs requires that all significant
confounders are controlled for'® which requires an understanding of the reasons some areas
became REDD+ projects and others did not. Guizar-Coutifio et al. (2025)* explore the
potential influence of hidden confounders and reveal they would need to have an effect size
multiple times larger than the most impactful observed covariates to undermine the evidence
of over-crediting. A potentially important hidden confounder in our analysis is the economic
value of land, which we proxied using accessibility (travel time to healthcare in 2019%). This
covariate has weaknesses that could result in the selection of inappropriate controls. While
healthcare is often synonymous with certain size population centres, these places are not
necessarily the same as processing or transportation hubs for timber or agriculture. Equally,
most projects pre-date 2019, meaning transportation patterns are partly determined by
project activities.

Finally, REDD+ projects can cause spillover effects (leakage) that might influence
deforestation rates in control units. While some studies have attempted to overcome
spillovers driven by localised changes in markets by only matching to areas beyond a certain
distance from project boundaries?*?*, this strategy may be insufficient because of the
complex and unpredictable manner in which spillovers can occur®®.

The first-generation REDD+ methodologies evaluated here are now being replaced by new
jurisdictional approaches (JREDD+) for voluntary and compliance markets. JREDD+
methodologies (specifically VM0048 and ART TREES) still make ex ante counterfactual
predictions but these are now based on the mean annual deforestation rate across the
jurisdiction during a 5-6 year reference period®*’. By eliminating project-selected reference
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areas, a major source of bias has been removed. Crucially, the analysis is performed by
independent data providers with no direct financial stake in the number of credits issued,
which is also a substantial improvement. However, reliance on ex ante predictions still
carries risk: it assumes deforestation drivers remain constant between the historic and
project periods, which is rarely true. Factors such as forest conservation or trade policies,
major infrastructure projects or extreme climatic events will vary through time with significant
effects on deforestation. Ex post measurements of deforestation in untreated jurisdictions
differ by as much as 100% from ex ante predictions®®%°. Random enrolment, without regard
for future deforestation trends, would not result in systematic bias. However, if jurisdictional
enrolment is more likely when there is the expectation that historical rates are about to fall,
or if the anticipation of enrolment stimulates temporarily increased deforestation, systematic
over-crediting is again a risk®%6'. One final consideration is that VM0048 permits nested
projects with baselines produced using ex ante spatial modelling, which we have shown to
be problematic.

A potential solution is to only issue credits ex post based on assessments which integrate
new developments in quasi-experimental methods34%’. Ideally, different quasi-experimental
results from methods such as the Permanent Additional Carbon Tonne (PACT) method used
in our study or advances in synthetic controls that require fewer assumptions should be
considered®%%62_ Of course, there continue to be significant uncertainties in project-level
estimates, but these can be ameliorated by pooling credits at the scheme-level or reducing
the number of credits issued to safeguard any claims being made3¢53. Quasi-experimental
crediting would not alter the timing of credit issuance, as even methods that use ex ante
counterfactuals still rely on ex post measurements within projects to quantify additionality.
These approaches are now being adopted by newer certification methodologies for
afforestation, restoration and revegetation (ARR)® and improved forest management
(IFM)8. Uncertainties in credit yields due to the unpredictable nature of the counterfactual,
along with the implications of over-crediting for existing projects would seem to be reasons
such ex post approaches have not yet been applied but have a key role to play in ensuring
the future integrity of forest carbon credits®’.

While the first-generation of REDD+ projects achieved far less than claimed, many
nonetheless reduced deforestation. Given the modest progress towards deploying
engineered carbon capture and storage, there remains a role for forest-derived carbon
credits on the path to net zero. The challenge is to ensure that claimed impacts reflect real
outcomes. Removing methodological flexibility, particularly the use of project-selected
reference areas and ex ante modelling, is a crucial first step, but embedding quasi-
experimental evaluations would ensure issued credits represent truly additional reductions
in deforestation. Either way, far fewer credits would be issued to projects using these
approaches, meaning prices will need to rise to pay for the genuine cost of equitable projects
with real climate benefits®. Bridging the forest-finance gap will require abandoning the
illusion of cheap carbon and paying the true cost of credible mitigation.
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Methods

Certified estimates of avoided deforestation

Certified rates of avoided deforestation, used to generate carbon credits, were sourced from
the design and monitoring documents of 44 REDD+ projects accessed through the Verra
reqgistry between April and June 2023. These include the loss of all areas that had been
forest for at least 10 years prior to the establishment of the project. Forest cover was
classified using cloud-free satellite images and bespoke remote sensing approaches (see S1
for details). Projects included in the study were those that had sufficient publicly available
data, including geospatial polygons of project areas, and had reported the area of avoided
deforestation in their most recent monitoring reports (S2).

Certified project documents did not report deforestation consistently; however, the ex post
observed deforestation within the project and the ex ante modelled deforestation under the
counterfactual scenario were available. Verra projects refer to the counterfactual scenario as
the ‘baseline’. Importantly, deforestation was provided as a total amount in hectares over the
whole evaluation period or broken down into annual amounts. Where avoided deforestation
was not reported, it was calculated by subtracting project deforestation from counterfactual
deforestation.

For Q1, the mean certified annual avoided deforestation a year in hectares was used. For
question Q2-Q4, for each project, the total amount of avoided deforestation claimed was
disaggregated across evaluation period (which had a mean length of 6.4 years) to produce
annualised compound avoided deforestation percentage rates (see below). Taking this
approach ensured that the avoided deforestation used was the same as that used to issue
credits.

Projects issued credits using four different Verra methodologies (VM0006, VM0007,
VMO0009, VM0015) to estimate counterfactual outcomes. The different methodologies are
summarised briefly in Table 1 and the process common across these methodologies is
described in S1. The extracted project and counterfactual deforestation rates as well as the
certified avoided deforestation are presented in S9.

Quasi-experimental estimates of avoided deforestation

We compiled data from six quasi-experimental analyses which estimated ex post
counterfactual and project outcomes for REDD+ projects (Table 1). These included work
published by West et al.”® (two analyses), Guizar-Coutifio et al.® and Tang et al.%.

We also included results from a study under review by Guizar-Coutifio et al.?%, which
implemented a novel framework to reanalyse the set of projects examined in Guizar-Coutifio
et al.® study. In this new study, 7.1-ha circular sample regions were used instead of 0.09 ha
pixels to characterise forest loss observations. Guizar-Coutifio et al.?® assess the causal
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impact of REDD+ projects on deforestation by adjusting for observed confounders and pre-
treatment deforestation trends, using a two-stage matching approach, commencing with
propensity score matching via random forests, followed by propensity score subclassification
on the matched datasets®’. They assess the average treatment effect of the treated using
multiple model specifications with different algorithms, parameters and covariates. The
avoided deforestation estimates used in our study correspond to the doubly robust model
specification reported in this new study.

Finally, we used the Permanent Additional Carbon Tonne (PACT) v2 method?* (described
below) to produce additional estimates and to explore the mechanisms underlying over-
crediting. In each case, we included projects for which certified estimates were also
available.

Avoided deforestation estimates from quasi-experimental methods were received from the
study authors as project level estimates of cumulative avoided deforestation over a defined
study period. Annual avoided deforestation rates were calculated by dividing cumulative
avoided deforestation by the total number of years of the evaluation, to compare estimates
produced over different time periods. Evaluation periods were 5 years for both Guizar-
Coutifio et al. studies®?°, and a mean of 6.0, 7.6, 9.0, and 8.1 years for the West et al.
(2020)7, West et al. (2023)°, Tang et al. (2025)%3, and PACT?* studies respectively.

Deforestation was assessed using publicly available remote sensing products for tracking
changes in forest cover, specifically the corrected MapBiomas® dataset used by West et al.
(2020)7, the Global Forest Change (GFC)® dataset used by West et al. (2023)° and Tang et
al, (2025)?, and the Tropical Moist Forest Annual Change Collection (ACC)® used by Guizar-
Coutifio et al.#?% and PACT?*. GFC reports deforestation as the year of gross forest loss. The
ACC dataset reports degradation and deforestation separately. The Guizar-Coutifio and
PACT studies considered deforestation to be degradation (disturbances lasting <2.5 years)
or deforestation (disturbances lasting >2.5 years) of the undisturbed class, even if regrowth
subsequently occurred. Degradation was included because it has been shown to result in
biomass reduction of >50% within 12 months. Our analysis of above ground biomass
densities for different ACC cover classes shows that both degraded and regrowth classes
had <50% of the above ground biomass of the undisturbed class (see S11). Therefore, for
the mechanistic component of our study, we followed the PACT methods by defining forest
cover solely as the undisturbed class within the ACC dataset. We explore the differences
that arise using different definitions of forest cover in S4 and S7. We chose to focus our
assessment on avoided deforestation because it lies at the centre of the REDD+
controversy, while recognising that estimating carbon fluxes is an additional, important and
complex topic.

The PACT method

The PACT method used a bootstrapped one-to-one pixel (0.09 ha) matching approach to
produce paired project and control units from which to estimate mean project and
counterfactual outcomes’®’". Project areas, start dates, and the date of the most recent
monitoring period were obtained from the VCS registry (accessed between April and June
2023). Projects were then assessed following four main steps: (1) compile layers for
characterising project units; (2) determine the set of suitable untreated units; (3) form the
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control set by matching untreated and project units; and (4) measure and average outcomes
across project and control sets (S1).

First, geospatial raster layers were compiled to track changes in forest cover. The ACC
dataset® was used for this purpose. We used the 2021 version, a 30 m resolution (0.09 ha)
time series spanning December 1990 to December 2021, classifying pixels as one of six
classes: undisturbed, degraded, deforested, restored, water and other.

Secondly, layers were compiled to select control units analogous to project units using a
method informed by a causal model of land use change. This model incorporated covariates
that capture the effects of local policies and regulations, economic pressures, historical
changes in land cover, and environmental conditions on deforestation rates and
conservation efforts. We used the following layers: International country borders
(OpenStreetMap’?) to encompass national regulatory limits; ecoregions (Resolve’) to
ensure biotic equivalence; and elevation (NASA'’s Shuttle Radar Topography Mission’*) as a
proxy for abiotic conditions. From the elevation layer, we calculated slope using GDALDEM
v3.8.4 (default settings), an important proxy for accessibility and suitability for economic
activities. This produced a slope variable consisting of integer values representing the mean
slope (0-90°) in each raster cell.

Motorised accessibility to healthcare in 2019 (Malaria Atlas Project®) was used as a proxy
for market exposure/economic pressure. This accessibility layer integrates all known travel
routes, including rivers, along with terrain, land cover, and road quality to assess the travel
time to population centres large enough to have a healthcare facility. Finally, we computed
the proportional cover of undisturbed and deforested classes from each year of the ACC
time-series (1990-2021) to assess land-use change trajectories in the surrounding area
through time. Proportional cover was calculated by counting the number of pixels in each
class and dividing by the total number of pixels within the 1 km radius neighbourhood around
each pixel.

It is important to note that accurate data regarding land value and accessibility to markets is
not universally available, particular in frontier landscapes. As such we use spatial proxies,
specifically proportional cover and motorised accessibility to healthcare, recognising that
these leave space for unobserved confounders.

Finally, to minimise interference arising from local leakage, we excluded control units within
the vicinity of any REDD+ project. This is important because, under the assumption that
leakage arises through the reorganisation of local supply chains or markets, there would be
concentrated interference at short distances from projects. To do this we produced a binary
raster indicating the presence or absence of a REDD+ project within 5km. REDD+ polygons
were accessed from the VERRA registry and supplemented by any REDD+ project polygons
shared directly with the Cambridge Centre for Carbon Credits. All layers were reprojected to
the same coordinate reference system as the ACC.

Projects were sampled using a spatial grid with a density of 0.25 points per ha for projects
smaller than 250,000 ha and 0.05 points per ha for larger projects (to reduce processing
time). The characteristics of these sample points were extracted from the layers described
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above. Time-varying characteristics, including the ACC pixel class and proportional cover
were extracted at the start of the project (to) and at five (t.5) and ten (t.10) years prior.

The domain of untreated units was defined as all pixels within the same countries and
ecoregions as each project, located at least 5 km from the project boundary, but no further
than 2,000 km away. Leakage effects caused by the displacement of production could be
present but were assumed to be small, given the large domain of the untreated units and the
relatively limited effects of individual projects. To reduce computation time, untreated units
were filtered to include only those within the range of values observed in the project area for
each known driver of deforestation with an added tolerance of +200 m for elevation, +2.5° for
slope, £10 minutes accessibility, and £10% points for proportional cover.

Matching proceeded by taking a random sample of 10% of the project units, which were then
processed sequentially to identify control units with the smallest Mahalanobis distance
across the continuous characteristics, and identical values for country, ecoregion and ACC
land cover class at to, t.s and t.10.”°. This matching approach is referred to as ‘greedy’
because the algorithm sequentially finds the best pairs, which are then removed from the
pool for subsequent matching.

The standardised mean difference (SMD) between the control and project sets for each of
the continuous characteristics was calculated as follows:

He — Hp Eq. 1
o

SMD =

Where . is the mean of the control set, i, is the mean of the project set and 4 is the square
root of the mean of the variances. SMD values outside the range [-0.25, 0.25] for any
continuous characteristic were considered statistically different and excluded from further
analyses'7®. This process was repeated 100 times to produce matched project-control sets,
each comprising 10% of the total points sampled from within the projects.

Ex post deforestation was measured for the project and control units by calculating changes
in the undisturbed class since the start of the project. To calculate the area of undisturbed
forest at each time point, we computed the proportion of all units in the undisturbed class
and multiplied it by the project area. This process was repeated across all 100 matched sets
to produce estimates of project and counterfactual forest cover.

Averaging across these sets, we produced annualised mean forest cover (in hectares). By
subtracting counterfactual forest cover from the project forest cover, we derived annual
cumulative avoided deforestation values. Total avoided deforestation during the project
period was measured at the final year of the project’s most recent monitoring period, as
additionality figures are cumulative.

Q1. How consistent are estimates of project impacts assessed using independent quasi-
experimental methods?

For each of the 44 projects, we compiled the certified estimates of annualised avoided
deforestation (in hectares) along with all available quasi-experimental estimates. For the 42
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projects with more than one quasi-experimental estimate, we calculated the mean, standard
deviation, coefficient of variation, standard error, and 95% confidence intervals. For the
remaining two projects, which had only a single quasi-experimental estimate, this value was
taken to be the mean.

We determined how many projects had mean quasi-experimental estimates below their
certified estimate, as well as how many had upper 95% confidence intervals below their
certified estimates. To test whether certified estimates were significantly greater than mean
quasi-experimental estimates, we applied a one-tailed Wilcoxon signed-ranks test, due to
the non-normality of the data. We also evaluated how many projects had avoided
deforestation estimates significantly greater than zero, using the lower bound of the 95%
confidence intervals across quasi-experimental studies.

We next assessed the over-crediting as the ratio of the certified to the mean quasi-
experimental estimate of avoided deforestation. We refer to this as the over-crediting ratio,
which expresses how many times more credits were issued through certification than
suggested by quasi-experimental estimates. The mean over-crediting ratio was calculated
for all projects that had issued credits and also had positive mean quasi-experimental
estimates; projects with negative mean quasi-experimental estimates were excluded.

The global over-crediting ratio, reflecting how many certified avoided deforestation units
likely correspond to one quasi-experimentally validated unit across the REDD+ portfolio, was
calculated by dividing total certified avoided deforestation by the total of the mean quasi-
experimental estimates (including negative values). Projects were randomly sampled with
replacement 10,000 times, with the results then used to derive mean values and 95%
confidence intervals.

Determining comparable deforestation rates between Certified and ACC sources

We calculated annual deforestation rates to make the quantities of deforestation measured
by the certified assessments and the ACC layer (e.g. those produced by PACT) directly
comparable. The future forest cover (F;) resulting from a constant annual deforestation rate
(r) after an interval (), given the starting forest cover (F,), was calculated as follows:

Ft =F0(1—T)t Eq 21

Because we had extracted the forest cover at the beginning and end of the evaluation
period, we calculated the rate by rearranging the formula to:

1 Eq. 2.2

To determine F, we took the proportion of the ACC pixels classified as undisturbed class in
the yearly layer closest to the project start date and multiplied this by the total project area
derived from the project polygon. Thus F, was the total area of undisturbed forest (in
hectares) at the start of the project. F, was calculated by subtracting the area of
deforestation in the certified or ACC measurements from F,. The evaluation interval t was
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the number of years between the start and end assessments. For the certified assessments,
this was calculated from the number of total days between the start and end dates, whereas
for the ACC data, this was the number of whole years between the ACC layers used. The

calculations for each project are presented in section S10 of the supplementary information.

We produced certified and ACC mean annual percentage deforestation rates for 36 project
areas and 17 counterfactual estimates. Between these two sets there was an intersection of
17 projects, for which we could produce mean annual percentage avoided deforestation
rates using all combinations of certified and quasi-experimental estimates for project,
reference and control areas, sufficient for inclusion in Q3 and Q4.

Q2. Is the use of global deforestation layers the reason for the discrepancy between quasi-
experimental and certified estimates?

We used the annual deforestation rates to test if there was a difference in the amount of ex
post deforestation measured in project areas. Because the data were non-normal, we tested
whether the paired differences were significantly greater than zero using a one-tailed
Wilcoxon signed-ranks test. In the main analysis, we focussed exclusively on the
deforestation or degradation of undisturbed forest in the ACC measurements. In S4 we
broaden the forest cover definition to include undisturbed and degraded forest and measure
the deforestation of either.

Q3. Were reference areas similar to projects in their exposure to deforestation?

We compared the exposure to deforestation risks across project, reference and control
areas to assess the extent to which the selection of reference areas explained differences
between certified and quasi-experimental approaches. For reference areas, we focused on
the Reference Regions for Deforestation (RDD) used by certified methods as these were
used to measure the rate of deforestation, rather than the Reference Regions for Location,
which were used to model how much of the deforestation was expected to occur within
project areas.

Reference area polygons were not publicly available as shapefiles and were therefore
digitised by georeferencing maps available in project design documents from the Verra
registry. This was done either by tracing the polygons by hand in QGIS (v3.26.3) or through
colour thresholding and automated polygonisation procedure in R, equivalent to the process
described by the Environmental Systems Research Institute’®. Colour thresholding was
applied when reference areas presented in project design documents were complex shapes
represented by colour coded systems within the georeferenced maps. The colours
representing the reference areas were identified as the most frequent pixel colours in the
maps. Binary maps were then produced from these pixels using a Boolean comparison to
the reference area colours, and their fidelity was checked against the original maps. Finally,
the binary maps were converted to geospatial polygons using the polygonise function in the
Terra package in R.

We successfully digitised reference areas for 17 projects (see supplementary information S5
for the projects included). We then sampled the characteristics of reference areas using the
same PACT method for sampling project units (described above). Time-varying
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characteristics were sampled from the beginning of the historical reference period (usually 5-
10 years before the start of the project), to ensure comparability with project characteristics.

To test the similarity of control and project areas in terms of exposure to deforestation risks,
we examined the distributions of key characteristics prior to any measurement of forest loss.
For the project areas, these covered the pre-project period up to a maximum of ten years
prior. This was the same for the quasi-experimental controls. For reference areas, the period
extended up to ten years prior to the start of the documented reference period.

We tested for differences in the univariate distributions of pre-project characteristics using
the SMDs between the reference or control areas and the project areas. Values outside the
range [-0.25, 0.25] indicated a significant project-level difference’*75. Across the set of
projects, we tested whether the distribution of the SMDs for each characteristic differed
significantly from zero using t-tests.

We also compared the observed annual deforestation rates between reference and quasi-
experimental control areas using the ACC dataset. For reference areas, this was measured
across the reference period; for quasi-experimental controls, it was measured across the
project evaluation period. Because the data were non-normal, we applied a one-tailed
Wilcoxon paired signed-ranks test to assess whether reference areas were exposed to
significantly more deforestation than the quasi-experimental control areas.

Q4: What is the residual effect of ex ante modelling after isolating the effects of forest cover
layer and reference area selection?

To assess the effect of ex ante modelling, we used a process of isolating all possible
explanations for over-crediting for the same 17 projects used in Q3. This required
determining the annual avoided deforestation rate produced by five different combinations of
reference or control area and project area estimates.

First, we quantified over-crediting as the overall difference between avoided deforestation
from quasi-experimental estimates (PACT in combination with ACC) and certified estimates.
To isolate any effect of project area remote sensing within this overall difference, we
examined the change in avoided deforestation resulting from substituting quasi-experimental
project area deforestation estimates with their certified equivalents.

From this new combination, we then isolated the effect of reference area selection by
substituting quasi-experimental control area estimates with ACC-derived estimates for the
reference areas (covering the reference period) made in Q3. This third combination therefore
represents the combined effect of the two mechanisms explored in Q2 and Q3. Th residual
difference between this combination and the avoided deforestation rates produced by purely
certified estimates captures the influence of two remaining factors: (1) the bespoke remote
sensing measurements made in reference areas; and (2) the ex ante modelling of reference
area deforestation to predict counterfactual outcomes for project areas.

Although we could not disentangle these explanations, we examined whether differences
between remotely sensed forest cover layers affected the magnitude of the reference area
effect. To do this, we inferred the deforestation rates that would have been observed if
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bespoke measurements in control areas occurred at the same relative proportion of ACC-
measured deforestation rates observed in project areas. We divided certified estimates by
quasi-experimental estimates in project areas and took the median of these ratios, to
produce a correction coefficient. We then multiplied the ACC measurements in reference
areas by the coefficient to generate corresponding “bespoke” estimates, from which we
produced our final possible avoided deforestation rate. This yielded two possible residuals
covering a range of impact attributable to ex ante modelling.

Statistical differences between ranges of avoided deforestation were tested using Wilcoxon
paired signed-ranks tests because paired differences were not normally distributed.

Data availability

All data necessary to reproduce the analyses in this paper are made publicly available
(zenodo.org/records/14895067).

Code availability

All analyses were undertaken in R (v4.2.1) using Terra (v1.7.65), Simple Features (v1.0.15)
and Raster (v3.6.26) for geospatial processing; Vegan (v2.6.4) for ordination analysis; and
the Tidyverse (v2.0.0) for data manipulation.

In an effort to contribute to improved transparency, we have made the code necessary to run
the PACT evaluations (github.com/quantifyearth/tmf-implementation) and our analysis
(github.com/quantifyearth/ REDD-Over-Credit-Reasons).
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