
Three steps for OCaml to crest the AI humps
Sadiq Jaffer1, Jon Ludlam1,2, Ryan T. Gibb1, Thomas Gazagnaire2 and Anil Madhavapeddy1,2

Department of Computer Science & Technology
1 University of Cambridge

United Kingdom
2 Tarides, France

Abstract
We discuss how OCaml could adapt to the fast-moving world
of AI-assisted agentic coding. We first benchmark how well
represented OCaml is in the large and diverse set of open
weight models that can be run locally. We then consider
what is unique about OCaml programming (in particular,
modules and abstraction) that differentiates it in this space.
We then consider the changes required in our ecosystem to
work better with AI coding assistants.

1 Introduction
The rapid evolution of AI-assisted programming presents
both opportunities and challenges for the OCaml community.
Large language models (LLMs) have become increasingly
capable of code generation, especially in the past year. This
paper focuses on our efforts to understand how to position
OCaml within this new landscape. Since this is an excep-
tionally fast-moving field, the specific model performance
metrics and capabilities presented in this paper will likely be
outdated by the time of the OCaml Workshop. However, the
basic approach and questions that we raise about OCaml’s
integration with AI tooling remain crucial for a collective
community conversation, and we will do our best to keep
them updated. We pose these questions:
1. How well do locally-runnable AI models handle OCaml
code generation?
2. What differentiates OCaml coding vs other languages?
3. Should OCaml develop new tools for agentic integration?

Many broader questions are being raised about the licens-
ing legalities of these code models, the environmental foot-
print of their use, and the broader impact on the evolution
of existing programming languages. We acknowledge these
debates, but do not directly address them in this paper.

2 Three Questions for OCaml and AI
Our aim with these questions is to establish a framework
for ongoing community discussion and action in this fast
moving space, and to make our benchmarks openly available.

2.1 How well do locally-runnable AI models handle
OCaml code generation?

A crucial step in evaluating AI models is first determining
your use case and then assembling a private benchmark
which reflects it. In our case, we seek to understand howwell

existing models perform with models that can run locally
or on a shared local inference server. This is important for
any use of OCaml in a teaching environment, where the
provenance, tuneability, predictability and reproducibility of
the environment are crucial to good learning outcomes.

As a benchmark dataset, we used the OCaml tutorial prob-
lems that first year Computer Science students at the Univer-
sity of Cambridge tackle in our “Foundations of Computer
Science” course. These are interactive Jupyter notebooks
where students are given a series of standalone OCaml prob-
lems related to beginner computer science, and they populate
answer cells with their solutions being machine checked. An
example given in figure 1. Each tutorial is known as a “tick”
and has three or more questions. Students must complete ear-
lier questions in order to progress to later questions. There
are also “starred” ticks which are stretch goals and of higher
difficulty. The benchmark consisted of 10 ticks with a total
of 33 questions.

Since these problems require no use of the OCaml standard
library or modules, they form a minimum bar for being able
to produce more complex OCaml code that make use of
advanced language features or ecosystem libraries.

Methodology. For evaluation, we attempted each question
3 times for eachmodel and conducted 5 repetitions per model
per exercise set. Models were accessed via the OpenRouter
inference marketplace. The study encompassed a diverse
range of models with varying parameter counts:

Model Family Parameter Counts
Google Gemma3 12B, 27B
Deepseek-R1-Llama 70B
Meta Llama-3.1 8B, 70B
Microsoft Phi-4 14B
Mistral 8B, 12B (Nemo), 24B (Small)
Qwen2.5 7B, 72B (Coder variants)
Qwen3 8B, 14B, 32B, 30B-A3B1

PerformanceResults. Therewere significant performance
variations across models (Figure 2). Qwen3-32B in thinking
mode (94.2%) approached the same levels of performance
as the frontier (closed-weight, not self-hostable) Claude-3.7
Sonnet model (96.4%). Qwen3 was also close to 50x more
cost-effective than Sonnet via the OpenRouter API. Within a
model family larger parameter counts resulted in better per-
formance. Between model families and architectures there



Jaffer et al.

Figure 1. Example of the interactive Jupyter notebook used by students

was significant variation in performance even for similar
parameter counts.

Thinking Mode Advantage. Some models have a “think-
ing mode”, where models show their reasoning process be-
fore answering, consistently outperformed their standard
counterparts. For instance, Qwen3 32B improved from 62.4%
to 95.2% when thinking mode was enabled. Whilst this leads
to a significant performance improvement, it comes at the
cost of increased latency and expense.

Qwen 3 models performed very well. The best perform-
ing model was qwen3-32b in thinking mode at 95.2%. This is
very close to Anthropic’s Claude 3.7 Sonnet with thinking.
The Qwen3 32B model is Apache2 licensed and so can be
self-hosted. In addition, all Qwen3 models in non-thinking
mode outperformed comparably-sized models from other
families. While not in the Qwen3 family, the Qwen2.5-Coder-
32B model was the best non-thinking model (77.6%). In ev-
ery case allowing Qwen3 to think improved performance.
The qwen3-8b model with thinking on was very close in
performance to llama-3.3-70b, a model almost an order of
magnitude larger. As noted earlier, this comes at the expense
of increased latency and cost. In most cases, thinking added
2-3k tokens of reasoning before the model produced its final
answer; for Qwen3 32B on OpenRouter that is roughly a
minute of thinking for an average model. There were cases
where the model entered a loop and kept reasoning until it
hit the token limit. Models employing reasoning are more

likely to be used for asynchronous coding agents vs. latency-
sensitive completion tasks.

What Went Wrong in the OCaml code? Code generated
by models exhibited consistent failure patterns: syntax er-
rors (missing rec keywords, incorrect operators), type confu-
sion (mixing integer/float operations), failing to parenthesise
nested match statements, and hallucination of nonexistent
functions (e.g., List.sub, assuming the Jane Street Core
library had been opened earlier in the module).

The dramatic improvement with thinking modes indicates
that step-by-step reasoning significantly enhances OCaml
code generation, possibly compensating for limited OCaml
representation in training datasets.

Future Benchmarking Directions. These are only intro-
ductory tasks aimed at beginning Computer Science students,
and so are not representative of the complexity of larger
OCaml codebases. To properly assess AI models capabili-
ties on OCaml tasks, we need comprehensive benchmarks
that test more language features and typical developer work-
flows such as: (i)multi-module project completion with com-
plex build configurations; (ii) advanced type system usage
(GADTs, first-class modules, polymorphic variants); (iii) PPX
and preprocessor integration tasks; and (iv) adding features
to existing large OCaml codebases.

Mining public open source projects codebases has yielded
large benchmarking codebases for languages like Python [4,
8] and Java[5]. The relatively small number of public OCaml



Three steps for OCaml to crest the AI humps

Figure 2. Performance of language models on OCaml exercises plotted against model parameter count (log scale). The graph
shows a general trend of improved performance with larger models, with notable outliers in the Qwen3 family achieving
superior performance at lower parameter counts. Note also the frontier (closed-weights) Claude-3.7 Sonnet model in grey.

projects likely require using synthetic defect generation ap-
proaches [9] to obtain suitable coverage of the language and
tooling.

2.2 What differentiates OCaml agentic coding?
OCaml’s module system and approach to separate compi-
lation provides an opportunity to adopt a rather different
approach to agentic programming. The benchmark task that
we use in this question is to begin with a textual Request
For Comments (RFC) that defines a protocol, and then at-
tempt to synthesise a working OCaml implementation that
can communicate using that protocol (e.g. JMAP2, MCP3 or
FastCGI4). In an OCaml project, this development can occur
in three separate phases.

Interface file generation. Firstly, a code agent can be
prompted to generate only the mli files for a library. When
the agent cannot find an appropriate external type, it simply
leaves it abstract. In this phase, the interface structure of
the library is established across multiple separate interface
files and potentially even libraries. Crucially, it is possible to
type-check these for consistency without having an imple-
mentation, for example via dune build @check. This phase
fixes type errors and allows for odoc HTML documentation
for human checks on whether the interface is correct.

Test generation with linking errors. While the interface
above may type check, it may still leave too much abstract
2https://tangled.sh/@anil.recoil.org/ocaml-jmap
3https://tangled.sh/@anil.recoil.org/ocaml-mcp
4https://tangled.sh/@anil.recoil.org/ocaml-fastcgi

for it to be a usable interface. This phase generates binary
executables that link against the library above, and exercise
the actual usage of the library. The binaries generated should
pass type checking, but will still fail with a linking error
due to a missing library implementation. The model can be
prompted to view the linking error as “success” in this phase,
with any type errors needing to be corrected. By the end of
this phase, the interface proposed for implementation should
be verified as broadly acceptable by the human programmer.

Implementation generation. Now that the library in-
terface and test cases both typecheck, the agent can be
prompted to proceed to generate implementations for each
interface file, one at a time. This constrains code generation
errors to just one ml module, and makes unit test generation
much more reliable. It is also straightforward to prompt the
agent to generate module-specific test cases to ensure code
coverage, which would be more difficult with dozens of files
being generated in one pass.

OCaml’s abstraction edge. This approach for OCaml
code generation is in contrast with dynamically-typed lan-
guages where AI models must load significant proportions
of the codebase into the context window in order to reason
about implicit interfaces. Models can also generate plausible-
looking code that may fail at runtime. In OCaml, the type
checker acts as a gatekeeper, rejecting syntactically correct
but semantically incorrect suggestions. This further relieves
the AI model and user of needing to generate tests which
check for adherence to existing interfaces. The fast compila-
tion speed of the OCaml compiler and support for separate

https://tangled.sh/@anil.recoil.org/ocaml-jmap
https://tangled.sh/@anil.recoil.org/ocaml-mcp
https://tangled.sh/@anil.recoil.org/ocaml-fastcgi


Jaffer et al.

compilation also makes the generate-compile-repair iterative
loop a more practical prospect.

The specifics of how to generate prompts for this workflow
are still changing rapidly, as it depends on how the agentic
environment sets up the model context. Not needing to fully
load implementations into the context window is generally
proving beneficial, as recent results [10] indicate that frontier
models struggle to make use of their long context capabilities,
so minimising context use is beneficial.

This OCaml “types-first” approach described here is what
we traditionally teach our students to dowhenwritingOCaml
code, but an informal survey of the local programmers re-
vealed that this is not widely adopted practise!

2.3 Should OCaml develop new tools for agentic
integration?

Relative to mainstream languages, there is little OCaml code
in pre-training corpuses. The open code pre-training cor-
puses in “The Stack v2” [7] consists of no more than 0.003%
OCaml code by size, and this is after incorporating the syn-
thetically generatedOCaml dataset fromMultiPL-T [1]. Given
this, we cannot rely solely on model parametric knowledge
of OCaml as we might with Python or JavaScript.
However, there are several other ways we could support

coding models, especially those embedded in agentic work-
flows that can execute external tools.

LLM-friendly documentation. Rather than depending
on parametric model memory (which is only as up-to-date
as when the model was trained), we instead should provide
access to LLM-friendly formats that minimise context usage.
This typically means using simple textual formats such as
Markdown rather than HTML or PDFs. The llms.txt [3]
project proposes having a convention where Markdown files
should be located. There are also efforts underway5 to en-
sure odoc can emit Markdown directly. This can then be
used in ocaml-docs-ci, the system that currently generates
the central ocaml.org documentation for all versions of all
packages in opam, to produce Markdown documentation in
addition to the current HTML.

Command-line error prompting. Continuing efforts to
improve the error messages of the OCaml tooling will benefit
both humans and LLMs. For example, errors could provide
links to relevant resources and documentation as part of the
output, which can be consumed by agents as a “next-step”
hint.

Model-Context Protocol (MCP). The MCP protocol is
emerging as the standard for agents to perform external
function calls to tools to navigate, understand, and manipu-
late OCaml codebases. The OCaml ecosystem would benefit
from hosting the following MCP integrations, some of which
can be run centrally, while others should be run locally:
5See https://github.com/ocaml/odoc/pull/1341 for odoc PR#1341

• Natural-language search and navigation of OCaml
libraries

• Merlin integration for type throwback, jump-to-definition
to help navigate the code, “find occurrences” to locate
uses of types and values and other tools

• Integration with build systems like Dune and ocaml-
build

• Sherlodoc-powered search, both generic, searching
the latest versions of packages, and specific, searching
the versions used by your current project

• Error message interpretation and fix suggestions
• Module system navigation and interface extraction
• Provide support when PPXs are in use, by giving a
concise guide to the PPX to the LLM, or by showing
the post-processed code

These tools would bridge the gap between generic AI
capabilities and OCaml-specific development workflows by
invoking real tools within the inference flow, rather than
guessing from the parametric model knowledge.

Embedding the opam ecosystem. Themodels would also
benefit from being able to figure out when to use an existing
ecosystem library rather than coding it up from scratch. To
this end, we have been prototyping6 an approach by produc-
ing natural language summaries of all OCaml modules on
opam. We recursively combine summaries up to the library
level, and then provide tools that enable AI models to search
for specific functionality across the opam universe.
This package embedding approach offers a promising di-

rection for improving OCaml’s discoverability in AI systems.
By creating high-quality embeddings of OCaml packages,
documentation, and code examples, we can enhance model
understanding and generation capabilities. This approach
would require systematic indexing of the entire OCaml ecosys-
tem, creating searchable repositories that AI models can ref-
erence during code generation. Such infrastructure would
address the current limitation where models struggle to find
appropriate OCaml libraries and idioms. However, questions
of user agency and licensing are also key to ensuring that
such large-scale scraping does not split our community, and
that clear opt-out mechanisms are present for those who do
not wish to participate (for any reason).

Improving integration with external dependencies.
OCaml applications do not exist in a vacuum, and often bind
to external libraries written in other languages. We have also
been investigating a more systematic approach to depen-
dency management across multiple package managers [2].
By creating a dynamically updated embedding across Linux
distributions, language-specific package managers and ad-
hoc code repositories, we hope to empower AI models to
make coding architecture decisions that do not duplicate
the hard work already committed to version control. This

6https://github.com/sadiqj/odoc-llm

https://github.com/ocaml/odoc/pull/1341
https://github.com/sadiqj/odoc-llm


Three steps for OCaml to crest the AI humps

code reuse should increase the overall code quality of AI-
driven code generation, and also reduce the environmental
cost of inference by reducing the amount of code generation
required.

3 Conclusions
For many aspects of agentic coding, functionality that is
useful for agents is also often useful for humans, and vice
versa. For example, pure functional interfaces combined with
effectful layers [6] make reasoning about logic and managing
context better for both LLMs and humans. This extends to
tooling as well; building tools that are easy and useful for
agents to use looks a lot like building tools that are easy
and useful for humans to use. With the efforts described in
this paper, we hope to see a coevolution in OCaml tooling
towards AI-assistance improving the overall quality of code,
and not drowning in “AI slop”.

References
[1] Federico Cassano, John Gouwar, Francesca Lucchetti, Claire

Schlesinger, Anders Freeman, Carolyn Jane Anderson, Molly Q Feld-
man, Michael Greenberg, Abhinav Jangda, and Arjun Guha. 2024.
Knowledge Transfer from High-Resource to Low-Resource Program-
ming Languages for Code LLMs. Proc. ACM Program. Lang. 8, OOP-
SLA2, Article 295 (Oct. 2024), 32 pages. doi:10.1145/3689735

[2] Ryan Gibb, Patrick Ferris, David Allsopp, Michael Winston Dales,
Mark Elvers, Thomas Gazagnaire, Sadiq Jaffer, Thomas Leonard, Jon
Ludlam, and Anil Madhavapeddy. 2025. Solving Package Management
via Hypergraph Dependency Resolution. arXiv:2506.10803 [cs.SE]
https://arxiv.org/abs/2506.10803

[3] Jeremy Howard. 2024. The /LLMS.TXT file – LLMS-txt. https://llmstxt.
org/

[4] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin
Pei, Ofir Press, and Karthik R Narasimhan. 2024. SWE-bench: Can
LanguageModels Resolve Real-world Github Issues?. In The Twelfth In-
ternational Conference on Learning Representations. https://openreview.
net/forum?id=VTF8yNQM66

[5] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J:
a database of existing faults to enable controlled testing studies for
Java programs. In Proceedings of the 2014 International Symposium
on Software Testing and Analysis (San Jose, CA, USA) (ISSTA 2014).
Association for Computing Machinery, New York, NY, USA, 437–440.
doi:10.1145/2610384.2628055

[6] David Kaloper-Mersinjak, Hannes Mehnert, Anil Madhavapeddy, and
Peter Sewell. 2015. Not-Quite-So-Broken TLS. In 24th USENIX Security
Symposium (USENIX Security 15). USENIX Association, Washington,
D.C., 223–238. https://www.usenix.org/conference/usenixsecurity15/
technical-sessions/presentation/kaloper-mersinjak

[7] Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano,
Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei
Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur
Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov,
Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu,
Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wen-
hao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey,
Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muh-
tasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou,
MayankMishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier
Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten
Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson,

Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite,
CarlosMuñoz Ferrandis, Lingming Zhang, SeanHughes, ThomasWolf,
Arjun Guha, Leandro von Werra, and Harm de Vries. 2024. StarCoder
2 and The Stack v2: The Next Generation. arXiv:2402.19173 [cs.SE]
https://arxiv.org/abs/2402.19173

[8] Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji,
Alane Suhr, and Yizhe Zhang. 2025. Training Software Engineering
Agents and Verifiers with SWE-Gym. In ICLR 2025 Third Workshop on
Deep Learning for Code. https://openreview.net/forum?id=lpFFpTbi9s

[9] Minh V. T. Pham, Huy N. Phan, Hoang N. Phan, Cuong Le Chi, Tien N.
Nguyen, and Nghi D. Q. Bui. 2025. SWE-Synth: Synthesizing Verifiable
Bug-Fix Data to Enable Large Language Models in Resolving Real-
World Bugs. arXiv:2504.14757 [cs.SE] https://arxiv.org/abs/2504.14757

[10] Stefano Rando, Luca Romani, Alessio Sampieri, Luca Franco, John
Yang, Yuta Kyuragi, Fabio Galasso, and Tatsunori Hashimoto. 2025.
LongCodeBench: Evaluating Coding LLMs at 1M Context Windows.
arXiv:2505.07897 [cs.CL] https://arxiv.org/abs/2505.07897

https://doi.org/10.1145/3689735
https://arxiv.org/abs/2506.10803
https://arxiv.org/abs/2506.10803
https://llmstxt.org/
https://llmstxt.org/
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://doi.org/10.1145/2610384.2628055
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/kaloper-mersinjak
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/kaloper-mersinjak
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://openreview.net/forum?id=lpFFpTbi9s
https://arxiv.org/abs/2504.14757
https://arxiv.org/abs/2504.14757
https://arxiv.org/abs/2505.07897
https://arxiv.org/abs/2505.07897

	Abstract
	1 Introduction
	2 Three Questions for OCaml and AI
	2.1 How well do locally-runnable AI models handle OCaml code generation?
	2.2 What differentiates OCaml agentic coding?
	2.3 Should OCaml develop new tools for agentic integration?

	3 Conclusions
	References

