
ar
X

iv
:2

50
6.

10
80

3v
1

 [
cs

.S
E

]
 1

2
Ju

n
20

25

-

Solving Package Management via Hypergraph Dependency
Resolution
RYAN GIBB, University of Cambridge, United Kingdom

PATRICK FERRIS, University of Cambridge, United Kingdom

DAVID ALLSOPP, Tarides, United Kingdom

MICHAEL WINSTON DALES, University of Cambridge, United Kingdom

MARK ELVERS, Tarides, United Kingdom

THOMAS GAZAGNAIRE, Tarides, France
SADIQ JAFFER, University of Cambridge, United Kingdom

THOMAS LEONARD, University of Cambridge, United Kingdom

JON LUDLAM, Tarides, United Kingdom

ANIL MADHAVAPEDDY∗, University of Cambridge, United Kingdom

Package managers are everywhere, with seemingly every language and operating system implementing

their own solution. The lack of interoperability between these systems means that multi-lingual projects

are unable to express precise dependencies across language ecosystems, and external system and hardware

dependencies are typically implicit and unversioned. We define HyperRes, a formal system for describing

versioned dependency resolution using a hypergraph that is expressive enough to model many ecosystems and

solve dependency constraints across them. We define translations from dozens of existing package managers

to HyperRes and comprehensively demonstrate that dependency resolution can work across ecosystems

that are currently distinct. This does not require users to shift their choice of package managers; instead,

HyperRes allows for the translation of packaging metadata between ecosystems, and for solving to be precisely

specialised to a particular deployment environment.

1 INTRODUCTION
Almost every programmer uses package managers to manage their codebases, but they remain

mysteriously ad-hoc and non-interoperable. Package management software originally began with

operating system distributions in the 1990s, popularised by Debian, Red Hat and Slackware. These

system package managers are responsible for distributing, assembling and managing filesystems

which boot a distribution, and they typically focus on binary distributions to their users [42]. A

few years on, they were joined by language-specific package managers [45, 54] that sit alongside

the system package managers and offer more flexible and domain-specific interfaces to individual

language ecosystems. A language package manager typically allows for selecting from multiple

versions of a particular library, and for easier source-based compilation of a development branch.

Today, there is an explosion of both system and language package managers, each with seemingly

incompatible interfaces. This leads to all sorts of problems when trying to use packages from

different ecosystems together. Consider, for example, a project which uses a combination of C, Rust

and OCaml code for a static binary, with more dynamic Python bindings that use GPU drivers that

depend on a particular kernel driver. Getting these (sometimes interlocked) dependencies resolved

and stable is a Herculean task that is difficult to automate and keep reproducible. The complexity

led to the rise of containerization technologies like Docker, which sidestep the problem by bundling

Authors’ addresses: Ryan Gibb, ryan.gibb@cl.cam.ac.uk, University of Cambridge, United Kingdom; Patrick Ferris, University

of Cambridge, United Kingdom; David Allsopp, Tarides, United Kingdom; Michael Winston Dales, University of Cambridge,

United Kingdom; Mark Elvers, Tarides, United Kingdom, mte24@cam.ac.uk; Thomas Gazagnaire, Tarides, France, thomas@

tarides.com; Sadiq Jaffer, University of Cambridge, United Kingdom, sj514@cam.ac.uk; Thomas Leonard, University of

Cambridge, United Kingdom; Jon Ludlam, Tarides, United Kingdom; Anil Madhavapeddy, University of Cambridge, United

Kingdom, anil.madhavapeddy@cam.ac.uk.

HTTPS://ORCID.ORG/0009-0009-5702-3143
HTTPS://ORCID.ORG/0000-0002-0778-8828
HTTPS://ORCID.ORG/0000-0001-8954-2428
https://orcid.org/0009-0009-5702-3143
https://orcid.org/0000-0002-0778-8828
https://orcid.org/0000-0001-8954-2428
https://arxiv.org/abs/2506.10803v1

- Gibb et al.

all dependencies together, but ultimately result in rather brittle deployments which are difficult to

manage across ecosystems. In our earlier example, four separate package managers are required to

deploy this program: opam, Cargo, pip and APT. If the program is to be portable beyond Debian,

then even more will be required (e.g. APK for Alpine, or RPM for Red Hat Linux). Such a project

might also break if the kernel GPU driver is updated, or if a Rust library is updated to a version

that is incompatible with the particular version of Python used in the machine learning codebases.

If a security hole is found in one component, the whole stack must be upgraded very carefully

indeed. If continuous integration is deployed against the project, then all the package managers

must be carefully managed to keep the deployment reproducible. This situation is unergonomic,

error-prone and deeply unsatisfying.

Yet all these package managers share a common core: they all resolve dependencies from a

package repository and eventually output a filesystem subtree. In this paper, we present a formal

system that teases apart the seemingly monolithic features of package managers across both

the operating system and programming language ecosystems, which we call the ‘hypergraph

dependency resolution’ (HyperRes) formalism. HyperRes can not only be used to model many

real-world package managers, but also forms the basis for the new ability to unify resolution

requests across package management ecosystems with a single formula. HyperRes can even be

used to bidirectionally translate requirements directly into the package manager native formats,

thus simplifying day-to-day management of multi-language and OS-portable software projects. In

the longer term, the HyperRes unified approach to version specification is vital towards securing

software supply chains that are increasingly targeted by malicious actors.

HyperRes aims to extract a common core expressive enough to model numerous package man-

agers, allowing resolution across their ecosystems. In our earlier example, we would construct a

single formula that would resolve OCaml, Python and Rust packages together with the system

dependencies already available with a given Linux distribution. HyperRes lifts the insight from

earlier work [58] that package managers can be modelled as a constraint satisfaction problem,

but extends it to a hypergraph structure that is suitable for bidirectional translation of the reso-

lution formulae between ecosystems. Thus, we can now even mechanically take a complex (e.g.)

OCaml/Rust/Python project and create a binary deb package that is binary-compatible with a given

version of Debian Linux, by finding the common subset of packages that are already pre-packaged

on that distribution vs those that need to be compiled from sources due to being only present in a

particular package management ecosystem. Today, this is a laborious and error-prone task that

needs to be repeated per-distribution and per-architecture.

In the remainder of this paper, we will first sketch out HyperRes informally (§1.1). We then

classify the commonality between many package managers (§2), and define the formal system for

reasoning about dependency resolution from a resolution hypergraph to a resolved graph (§3). We

show how this system is expressive enough to model many real-world package managers (§4) and

how we can use it as the basis to resolve dependencies across package management ecosystems (§5).

Finally, we consider related work and directions for future work (§6) and conclude (§7).

1.1 An Illustrated Resolution Hypergraph
We will first begin with a sketch of the HyperRes formalism (§3), with Figure 1 showing an example

of a cross-ecosystem package hypergraph. A hypergraph is a generalisation of a graph in which a

‘hyperedge’ can join any number of vertices. The diagram shows a hyperedge-labelled directed

hypergraph representing a dependency resolution problem across ecosystems. Vertices in this graph

are packages, defined as a pair of package name and package version. The packages included are

real, but their relationships are chosen to illustrate interesting scenarios and to omit uninteresting

incidental detail.

Solving Package Management via Hypergraph Dependency Resolution -

(polars, 0.31.0)

(polars, 0.32.0)

Rust (cargo)OCaml (opam)

(a)

(d)

(b)

(either, 0.1.7)

(either, 1.0.0)

(either, 1.0.1)

(either, 0.1.6)

(either, 0.1.5)

(polars-arrow, 0.31.0)

(getrandom, 0.2.15)

(e)

(conf-libev, 4-12)

(conf-libev, 4-11)

(ocaml, 5.0.0)

(ocaml, 4.14.1)

(ocaml, 4.14.0)

(polars, 0.1.0)

Debian (apt/dpkg)Alpine (apk)

(libev-dev, 4.33-2.1build1)

(libev-dev, 4.33.1)

(f)

(c)

(ssh-server, 𝜖)

(openssh-server, 1:9.2p1-2)

(dropbear-bin, 2022.83-1)

(lsh-server, 2.1-13)

(tinysshd, 20230101)

(h)
(ubuntu, 24.04)

(debian, 10.13)

(libev-dev, 1:4.25-1)

(eio_linux, 1.0.0)

(uring, 0.9)

(liburing, 0.7)

(alpine, 3.13)

(alpine, 3.10)

(linux-kernel, 5.10.7)

(linux-kernel, 4.19.53)

...

macOS (homebrew)
Windows (winget)

OpenBSD (pkg_add)
…

Redhat (rpm)
NixOS (nix)
Arch (pacman)
…

(g)

(i)

Fig. 1. An example cross-ecosystem hypergraph illustrating some of the challenges in package management.

- Gibb et al.

1.1.1 Types of Dependencies. Figure 1 shows three types of relationships between packages:

Strong dependencies. A hypergraph is a graph where ‘hyperedges’ are between sets rather than

individual vertices. One such hyperedge represents ‘dependency’ relationships where a package de-

pends on a set of others, one of which can satisfy the dependency. This is represented by a solid black

line. Note that we restrict the domain of directed hyperedges in our hypergraph to a size of 1 – de-

pendencies can only be from one package. For example, Figure 1 (a) shows polars depending on the

ocaml compiler with a hyperedge from ({(polars, 0.1.0)}, {(ocaml, 4.14.1), (ocaml, 4.14.0)}).
This means polars requires either ocaml with version 4.14.0 or 4.14.1. In a package manager

file format
1
that is often expressed with a version formula such as "ocaml" {>= "4.14.0" & <

"5.0.0"}. The fact that this relationship is a dependency is encoded in a labelling of the hyperedges.

Optional Dependencies. Another such hyperedge represents ‘optional dependency’ relationships,

a set of packages which a package will use one of if present, but does not strongly require. Figure 1 (b)

shows such a dependency from (eio_linux, 1.0.0) to (uring, 0.9), meaning that eio_linux
can use the Linux IO libraries if they are installed, but otherwise falls back to more portable libev-
based ones. Optional dependencies are commonly used to activate features across packages, such

as enabling GPU support in a machine learning library if a GPU driver is present.

Conflicts. The final package relationship type is a ‘conflict’. In our running example, the OCaml

toolchain only supports selecting a single version of a package, and so each ocaml package conflicts
with every other ocaml package at Figure 1 (c), expressed as a (red) labelled hyperedge.

({(ocaml, 4.14.0)}, {(ocaml, 4.14.1), (ocaml, 5.0.0)})
({(ocaml, 4.14.1)}, {(ocaml, 4.14.0), (ocaml, 5.0.0)})
({(ocaml, 5.0.0)}, {(ocaml, 4.14.0), (ocaml, 4.14.1)})

For the simplicity of diagramming we represent this as an undirected ‘conflict set’ where every

package connected to the solid line conflicts with all the others. Rust, in contrast, supports multiple

versions of the same library and so does not need these conflicts for its packages. Conflicts are

usually introduced due to active software evolution such as incompatible APIs due to semantic

versioning [17], or due to some negative trust relationship between packages such as a security

vulnerability or a bug in a particular version of a package [50].

1.1.2 Cross-Ecosystem Dependency Resolution. The core dependency resolution problem [58] is

based on the above three relationships. It consists of mapping this hypergraph to a graph with

concrete versions selected for each dependency, with optional dependencies selected if they are

present in the graph due to another dependency, and with no conflicting packages.

We have described dependencies within the OCaml ecosystem so far, but Figure 1 (d) introduces

a dependency across ecosystem boundaries from OCaml to the Rust (polars, 0.31.0) package.
Packages in different ecosystems are represented as vertices with a distinct namespace in the

hypergraph, but that prefix is omitted in the diagram for clarity. This is a novel feature of HyperRes,

as existing package managers do not support cross-ecosystem dependencies.

1.1.3 Multiple Versions of a Dependency. A transitive dependency of (polars, 0.31.0) is the
either package, through (polars-arrow, 0.31.0) and (getrandom, 0.2.15). However, they
are dependent on different versions of the either package, leading to a diamond dependency

problem (Figure 4) where two versions of the same package are required to satisfy the dependency

chain (Figure 1 (e)). Some ecosystems forbid this behaviour (§2.2.5) due to toolchain limitations

or policy (due to the complexity of reasoning about the resulting graph). Others, like the Rust

1
In OCaml’s case, this is the opam [2] package manager; see Table 1 for details.

Solving Package Management via Hypergraph Dependency Resolution -

ecosystem, support using multiple versions of the same library if they have different major versions,

so these dependencies of (polars, 0.31.0) are satisfiable [5].

1.1.4 Operating System Dependencies. While cross-ecosystem dependency resolution is not sup-

ported by existing package managers, some such as opam have an ‘external dependency’ mechanism

for installing system dependencies by invoking the system package manager [2]. External depen-

dencies are platform dependent, for example,

["libev-dev"] {os-distribution = "debian"}
["libev-dev"] {os-distribution = "alpine"}

Figure 1 (f) shows this system dependency from eio_linux on libev-dev from either Debian or

Alpine Linux, depending on which operating system the package is being installed on. For clarity, we

omit the many possible, alternative systems that someone may be using. These system dependencies

are unversioned in existing package managers, and a frequent source of user-facing problems if

they update their system package manager without updating the corresponding packages in the

language package manager. However, we can express these in HyperRes via cross-ecosystem

dependencies (§1.1.2).

At the lower end of the userspace software stack, it is also common to have packages that are

tied to a particular OS kernel version or other hardware availability. The liburing example in

Figure 1 (g) shows how it depends not only on the Alpine OS version, but also the Linux kernel

version. Another notable example of this class of problem is with handling the injection of GPU

drivers into the software dependency stack, which is a common requirement for machine learning

software running on the cloud [46].

1.1.5 Repository Selection. Debian Linux has package repositories associated with different releases
of the operating system. The APT package manager uses the repository associated with the

currently installed Debian version, each of which contain distinctly versioned binary packages.

When upgrading the operating system, the package manager will select the repository associated

with the new version and upgrade all packages to the new versions available in that repository.

HyperRes can identify which Debian release version satisfies a given package dependency query

by modelling Debian and all of its releases as packages in the hypergraph. Figure 1 (h) shows

(libev-dev,1:4.33-2.1build1) depending on Ubuntu 24.04 Noble (a variant of Debian) and

(libev-dev,1:4.25-1) depending on Debian 10.13 (Buster).

1.1.6 Dependencies on Different Package Names. Except for our cross-ecosystem dependency in the

Debian and Alpine namespaces (§1.1.4), we have so far only expressed dependencies on packages of

the same name. However, several package managers (such as Debian) have a mechanism for express-

ing dependencies on virtual packages that can be satisfied by different implementation packages.

Figure 1 (i) shows one such package — ssh-server — that is provided by either openssh-server,
dropbear-bin, lsh-server, or tinysshd. These are represented naturally in the hypergraph a

hyperedge to these various virtual packages.

Beyond this illustrative example, there are numerous other features of package managers that can

be modelled in HyperRes, such as CPU architecture selection, operating system variants, feature

flags for packages, optimisation flags, kernel version probing, and more. These parameters, along

with the hypergraph structured described earlier, all form the set of inputs to a resolver that can

output a single, consistent, and reproducible set of packages that can be deployed to a machine. We

will next dive into how we can break down real-world package managers into a more digestible

form for conversion to and from the HyperRes formalism.

- Gibb et al.

Packaging

Language

Metadata

Bundle

Resolution

Hypergraph

Resolved

Graph

Filesystem

Evaluation

§2.1.1

Parsing

§2.1.1

Resolution

§2.1.2

Deployment

§2.1.3

Feedback

§2.1.2

Fig. 2. The package management pipeline showing mappings between data structures,
with dotted lines denoting optional components.

2 FINDING THE COMMON PIECES ACROSS PACKAGE MANAGERS
There are a lot of package managers in use in the wild, each with their own unique features and

quirks, and the past two decades have seen a big surge in language-specific ones that sit alongside

the more traditional system package managers. But across them all, there are commonalities that

can be used to build a reusable semantic core, leaving a smaller set of differences to be modelled

as special cases. We will now explore the design space of package managers by considering a

representative selection of 36 out of a set of nearly 100 which we initially surveyed.
2
Before we

dive into the details, we will first define a common vocabulary for the typical stages in a package

management pipeline as mappings between the data structures in Figure 2.

2.1 The Package Management Pipeline
2.1.1 Parsing. Each package manager supports one or more repository formats, which are used

to store the collection of available packages and consistency rules across them. The ‘metadata

bundle’ is the collection of metadata associated with a given package that maps it into the package

manager’s repository format. This is typically held outside the source code, since different package

managers have different metadata formats and can update those independently of the releases

of the downstream software. For example, Debian’s APT has a control archive in the .deb file

format, OCaml’s opam has opam files, Rust’s Cargo has Cargo.toml files, and Nix [28, 29] has store
derivation .drv JSON files.

This bundle may be contained in metadata files checked into version control for individual

projects, and/or indexed in central repositories. For instance, APT has a control file in .deb files
along with an archive of the binary package, but also has a Package archive containing the same

data for every package in a repository. OCaml projects often have a .opam file checked into their

version control repositories, and an opam repository contains the associated opam files for many

projects, with a central ocaml/opam-repository representing the primary repository for that

ecosystem.

Some package managers express their packages as embedded DSLs [35] in a host language (such

as Homebrew with Ruby). An ‘evaluation’ step maps this packaging eDSL to the corresponding

metadata bundle for that package (such as a JSON format in Homebrew). Other package managers

have a tighter integration between their packaging language and the bundle format, and define a

concrete DSL [19] exposed to users. Cabal and opam, for example, each have their own (different)

DSLs to describe packages, supporting features like variable assignment and boolean algebra which

also includes references to evaluation steps such as build scripts.

2
The keen reader may wish to skip ahead to Table 1 to see the full set of package managers we model using HyperRes.

Solving Package Management via Hypergraph Dependency Resolution -

The set of metadata bundles per ecosystem are then parsed into our resolution hypergraph.

2.1.2 Resolution. The resolution hypergraph is a representation of the dependency resolution

problem: given a set of version constraints, how do we find the freshest set of packages that satisfy

them? The ‘resolution’ step maps the hypergraph to a simpler ‘resolved’ graph with concrete

package versions selected. This problem is NP-hard, as noted in earlier work [12, 57, 58], but

nowadays straightforward to solve using modern SAT solvers – if the right cost functions are

applied to the resolution process.

Some package managers also take the existing installed state of the system into account when

performing dependency resolution, denoted by the ‘feedback’ loop from the resolved graph to

hypergraph. For example, Debian’s supports an ‘apt-get upgrade’ operation that modifies the

version of a select set of packages to their latest versions, resolving any conflicts along the way.

Slackware is a notable exception to the norm in package management dependency resolution;

official mechanisms do not provide any support for dependency tracking, instead relying on the

user to manually install dependencies of a package. This reflects that distribution’s philosophy of

simplicity and user control over a more rigorous dependency resolution system as found in (e.g.)

Debian or Red Hat.

2.1.3 Deployment. The final mapping is from the resolved package graph to a filesystem subtree

that can be deployed. In some specialised cases (such as embedded systems such as Busybox or

Yocto), the deployment step may be to a firmware image rather than a filesystem, but the principle

remains the same. The specifics of the deployment steps varies on the nature of the package manager.

Source-based language package managers for dynamic languages such as JavaScript might simply

place source code into a local directory, as npm does. System package managers that handle binary

packages might unpack archives into the file system hierarchy. Other package managers might

build the software according to instructions in the package metadata, as happens with cargo, opam

or cabal.

Package managers might also make network requests to download source or binary code during

deployment if a local repository is not present (e.g. opam), or have all the source code provided

directly within the metadata bundle format (e.g. APT).

The specifics of how package managers manage resolved graphs varies, depending on how the

clients handle state management. OCaml’s opam uses global or project-local ‘switches’, allowing

multiple resolved graphs to live-side-by side [2]. JavaScript’s npm puts sources into a project-local

node_modules/ directory. APT uses dpkg to unpack prebuilt packages into the Linux Filesystem

Hierarchy Standard (FHS). Nix places built packages at a path containing a cryptographic hash

of their store derivation in the ‘Nix store’ (usually found in /nix). Meanwhile, Haiku OS deploys

packages by mounting them in a union filesystem, allowing for layering and sharing of multiple

packages.

2.2 A Categorisation of Package Managers
Table 1 fits the numerous package managers we surveyed into the pipeline in Figure 2. The table

is a representative sample of interesting properties across the much larger set that we surveyed.

For the purposes of brevity, we preferred open source ecosystems and did not include ‘app store’

managers like Google Play or Apple’s App Store, nor did we include package managers that are

not primarily used for software deployment, such as TEX’s CTAN.

2.2.1 Ecosystems. The first section of Table 1 describes the particular use case a package manager

was created for. As noted, package managers generally fall into two categories: language package

managers and system package managers. The intended use for language package managers is in

Description Functionality Pipeline

Package
Manager
Name

Number of
Packages3

(magnitude)

Open Source
Ecosystem

§2.2.1

Release
Cycle
§2.2.2

Binary
Distribution

§2.2.3

Dependency
Formula
§2.2.4

Concurrent
Versions
§2.2.5

Toolchain
Integration4

§2.2.6

Sandboxed
Builds
§2.2.7

Packaging
Language
§2.1.1

Metadata
Bundle
§2.1.1

Resolution
Hypergraph

§2.1.2

Resolved
Graph
§2.1.2

Filesystem
State
§2.1.3

Maven 2 × 10
7

Java Rolling Binary ✓ ✓ P B ✗ ✗ pom.xml maven maven Local Repository

pip 6 × 10
6

Python Rolling Binary ✓ ✗ P ✗ ✗ pyproject.toml5 pip wheel virtual environments

Poetry 6 × 10
6

Python Rolling Source ✓ ✗ P ✗ ✗ pyproject.toml poetry poetry.lock Virtual environment

npm 3 × 10
6

Javascript Rolling Source ✓ ✓ P ✗ ✗ package.json npm package.lock node_modules

Yarn 3 × 10
6

Javascript Rolling Source ✓ ✓ P ✗ ✗ package.json yarn yarn.lock node_modules

Cargo [4] 1 × 10
6

Rust Rolling Source ✓ ✓ P B 6 ✗ ✗ Cargo.toml cargo cargo Cargo cache

Spack [31] 4 × 10
5

HPC Versioned Evaluated ✓ ✓ P ✓ Python package.py clingo spack SPACK_ROOT

Conda 3 × 10
5

Python Rolling Source ✓ ✗ P ✗ ✗ meta.yml conda conda Conda environment

CPAN 2 × 10
5

Perl Rolling Source ✓ ✗ P ✗ ✗ cpanfile cpan cpan /.cpan

Chocolatey 2 × 10
5

Windows Rolling Binary ✓ ✗ P ✗ ✗ .nuspec (XML) .nuspec 7 choco Program Files

Gem 2 × 10
5

Ruby Rolling Source ✓ ✗ P ✗ Ruby Gemfile.lock bundle bundle A RubyGems directory

Cabal [9] 1 × 10
5

Haskell Rolling Source ✓ ✗ P B 8 ✓ .cabal .cabal cabal ghc-pkg Cabal cache

Nix [28] 9 × 10
4

Various Versioned
9

Evaluated ✗ ✓ P ✓ Nix expressions store derivations Nix realise Nix realise Nix store

RPM 8 × 10
4

Fedora Versioned Binary ✗ ✗ P ✗ ✗ .rpm dnf rpm FHS

APT 6 × 10
4

Debian Linux Versioned Binary ✓10 ✗ P ✗ ✗ .deb apt dpkg FHS

RPM 5 × 10
4

OpenSUSE Versioned Bundles ✗ ✗ P ✗ ✗ .rpm zypper using libsolv rpm FHS

winget 5 × 10
4

Windows Rolling Binary ✗ ✗ P ✗ ✗ YAML Manifest .installer.yaml 11 winget-cli Program Files

pkg 4 × 10
4

FreeBSD Versioned Binary ✗ ✗ P ✗ ✗ .pkg12 pkg pkg FHS

opam [2] 3 × 10
4

OCaml Rolling Source ✓ ✗ P 13 ✓ opam file opam file opam opam Opam switch

Guix [25] 3 × 10
4

Various Rolling Evaluated ✗ ✓ P ✓ Scheme store derivations Guix build Guix build Guix store

Zero Install 3 × 10
4

Cross-platform Rolling Binary ✓ ✓ P ✗ ✗ feed.xml 0install select selections.xml 0install cache

pacman 2 × 10
4

Arch Linux Rolling Binary ✗ ✗ P ✗ ✗ PKGBUILD pacman pacman FHS

APK 2 × 10
4

Alpine Linux Versioned Binary ✓ ✗ P ✗ ✗ .apk apk apk FHS

Portage 2 × 10
4

Gentoo Rolling Source ✓ ✓14 P ✓ ebuild scripts ebuild scripts emerge emerge FHS

CRAN 2 × 10
4

R Versioned Source ✗ ✗ P ✗ ✗ DESCRIPTION packages15 packages Local directory

TLmgr 8 × 10
3

TeX Live Versioned Source ✗ ✗ P ✗ ✗ tlpkg directory tlmgr tlmgr texmf trees

Homebrew 7 × 10
3

macOS Rolling Binary ✗ ✓16 P ✗ Ruby Formula brew brew Cellar

pkgman 4 × 10
3

Haiku OS Versioned Binary ✓ ✗ P ✗ ✗ .PackageInfo pkgman pkgman Union FS

Stack 3 × 10
3

Haskell Versioned Source ✓ ✗ P B ✓ ✗ .cabal stack ghc-pkg Stack cache

pkgtools [1] 2 × 10
3

Slackware Versioned Binary ✗ ✗ P ✗ ✗ .tgz ✗ ✗17 FHS

RPM 2 × 10
3 18

Red Hat Linux Versioned Binary ✗ ✗ P ✗ ✗ .rpm dnf rpm FHS

pkg_add 1 × 10
3

OpenBSD Versioned Binary ✗ ✗ P ✗ ✗ .tgz pkg_add pkg_add FHS

PEAR 6 × 10
2 19

PHP Versioned Source ✓ ✗ P ✗ ✗ package.xml pear pear PEAR directory

Go modules [8] n/a
20

Go n/a
21

Source ✗22 ✓23 P B C ✗ ✗ go.mod go go.sum Go Module Cache

Bazel n/a
24

Multi-language n/a Source ✓ ✗ P B 25 ✓ ✗ WORKSPACE file bazel bazel Bazel directory

Table 1. A comparison of representative package managers.

3
Package name and version pairs in the primary repository rounded to the nearest significant figure.

4
Whether a tool is a P ackage manager, B uild system, and/or a C ompiler.

5
pip previously used requirements.txt.

6
Cargo is a package manager and build system.

7
Installation sources (.msi,.msix,.appx,.exe) may manage their own dependencies.

8
Cabal is a package manager and build system.

9
Nix channels act as versioned repositories.

10
Debian often doesn’t specify dependency versions and relies on a repository keeping a compatible package set.

11
Installation sources (.msi,.msix,.appx,.exe) may manage their own dependencies.

12 .tgz file format

with JSON manifest.
13

Opam supports language-agnostic build scripts.
14

Limited support with ‘Slotting’.
15

CRAN packages are installed from invoking an R function in the source of a package.
16

By manual name

mangling, and only done for 1% of packages.
17

Slackware doesn’t track dependencies.
18

Without subscription.
19

We only count the number of unique package names in PEAR as versioning information was not accessible.

20
Go doesn’t have a central repository.

21
Go doesn’t use repositories by default, but can be configured to do so.

22
Go uses Minimal Version Selection [26].

23
The Go tool is a package manager, build system, and compiler.

24
Bazel doesn’t have a software repository, instead declaring ‘external dependencies’.

25
Bazel is a build system with package management functionality.

Solving Package Management via Hypergraph Dependency Resolution -

distributing libraries and tools to developers in a specific language, and system package managers

in administrating a full operating system. The lines between these often blur; systems package

managers do distribute language libraries, and language package managers can facilitate setting

up a development environment with system dependencies. The system package managers tend to

lag behind in the latest versions of libraries as they are more conservative in their updates, while

language package managers typically offer less consistent integration across each other.

2.2.2 Repositories. Packages managers almost always group packages together in a centralised

repository, allowing for discoverability and upgrades. Some package managers keep one main

repository where changes are made continuously, dubbed a ‘rolling release’. Others periodically

release a version of their repository, much as a new package version is released, representing a

‘versioned release’ of their operating system distribution. Security and other updates are usually

backported to previous release of their repository for some time, creating ‘minor’ releases which

should be safe for every user to upgrade to without risking software incompatibilities. Multiple

repositories can be also often be combined with, for example, non-free packages, or unofficial

user-contributed packages. A notable exception to this structure that does not require a package

repository is Go, instead pointing to packages via a URL.

2.2.3 Bundling Mechanism. All package managers wrap an existing set of source code with some

metadata to eventually install some entries into a filesystem, but the specifics can vary.

Source bundles. Some package managers only deal with deploying the sources for packages which

are then built as part of a project, or interpreted. For example, the Go module system assembles

all the sources before invoking its integrated build system. Others, such as npm, assemble the

source packages (e.g. of JavaScript, an interpreted language) along with C bindings and other

conventionally compiled files, and support builds via pre- or post-publishing scripts that can, for

example, transpile from TypeScript to ES5 [10] or invoke a C compiler. Other approaches build

projects using a shell script from the package metadata as part of deploying them (§2.1.3), like

opam, Portage, and Nix. All of these are denoted as ‘source’ in Table 1.

Binary bundles. Some package managers — typically the operating system oriented ones —

specifically have prebuilt binary packages as part of the bundle format. APT and RPM are two

such examples; they begin their package lifecycle via source packages that are compiled to create

multiple binary packages which are then installable by the end-user. These can be viewed as a

staged version of source bundles, but with a concrete binary packaging format that is optimised

for deployment for the resulting binaries that uses a simpler version specification than the source

packages (§2.1.2). These are all denoted ‘binary’ in Table 1.

Evaluated bundles. Nix or Guix [25] are a combination of the above two schemes: they build

projects in a sandboxed environment via a computed package specification DSL, with precisely

specified inputs that track their dependency chains as the DSL is evaluated. This results in a single

binary deployment of the collection of selected packages as a transparent optimisation of source

deployment, but potentially requires much more recomputation by the end-user than a binary

system. These are denoted as ‘evaluated’ in Table 1.

2.2.4 Dependency Formula. Version formulae are used by a package to express a set of possible

packages that can satisfy a dependency. For example, a package depending on 1 ≤ a ≤ 3 might

depend on a set containing a.1, a.2, and a.3. Some package managers have limited dependency

formulae consisting of a single range, others have arbitrarily complex boolean algebra, and others

still support only specifying a single package that can satisfy a dependency.We differentiate between

- Gibb et al.

those that support expressing a dependency on a set of possible packages versus those that can

only depend on an exact package in the ‘dependency formula’ field of the table.

The ‘packaging language’ and ‘metadata bundle’ fields show the languages and formats described

in Section 2.1.1. The ‘resolution hypergraph’ and ‘resolved graph’ fields show the tooling typically

used to interact with these data structures. For example, apt is used for dependency resolution and,

with a topological sort over the resolved graph, the lower-level dpkg is used to deploy individual

binary packages. Finally, the ‘filesystem state’ field shows how the packages are deployed to the

filesystem.

2.2.5 Concurrent Versions. Some package managers allow only one version of a package name in

a resolved graph due to deployment constraints such as requiring unique symbols when linking

objects, or storing packages at a unique path in the filesystem. For example, the OCaml toolchain

does not support multiple versions of a package in the same switch. As such, while opam supports

multiple resolved graphs living side-by-side in separate switches (§2.1.3), it doesn’t support multiple

versions in one dependency resolution. System package managers often put a package at a particular

path in the filesystem, so multiple versions of the same package would collide.

Other package managers allow multiple versions of the same package name existing in a resolved

graph, ‘concurrent versions’, by supporting deploying multiple versions of the same package name.

Cargo uses name mangling in order to support linking multiple versions of a single library into

the same binary, where typically only one version can be used at the same time due to duplicate

symbols. Note that Cargo only does this for packages with different major package versions as

part of the semantic versioning scheme [5, 49]. Nix diverges from the Linux Filesystem Hierarchy

Standard[3] to packages at paths containing unique cryptographic hashes, allowing the installation

of multiple versions of a package on the same system.

2.2.6 Toolchain Integration. Some package managers, especially language package managers, have

some degree of integration with other parts of the toolchain; build systems and compilers. Opam

includes build scripts in package metadata which can invoke a build system or compiler, but is

language-agnostic. This is similar to how a build system’s rules will include invocations to a

compiler, such as a makefile target invoking gcc. Other ecosystems have tighter integration; cargo

is the Rust ecosystem’s package manager and build system. The Go tool is a package manager, build

system, and compiler. This enables functionality that might not be otherwise possible without a

well-defined API between these parts of the toolchain. For example, Cargo’s concurrent version

support is enabled by using knowledge of package management to provide unique symbols using

package versions.

2.2.7 Sandboxing. Sandboxing is employed by package managers to ensure reproducibility and

isolation during the build process. For example, opam and Nix sandbox builds when building

packages for deployment (§2.2.3). The technologies used for sandboxing are often similar to

those employed in containerisation and virtualisation. For example, Linux namespaces allow

for the creation of lightweight environments where builds have access only to explicitly defined

resources, such as specific file systems, process trees, and network interfaces. Sandboxing in package

management is distinct from reproducible builds, which aim for bit-for-bit identical binaries and

require determinism in all parts of the toolchain [38].

3 A FORMAL SYSTEM FOR DEPENDENCY RESOLUTION
In this section, we define the HyperRes formalism that allows us to reason about dependency

resolution and extract a common core to package management. This addresses the resolution

mapping (§2.1.2) from Figure 2.

Solving Package Management via Hypergraph Dependency Resolution -

3.1 HyperRes

(A, 1)

(B, 1) (C, 1)

(D, 2)

(D, 1)

(D, 3)

(a) A resolution
hypergraph 𝐻 .

(A, 1)

(B, 1) (C, 1)

(D, 2)

(b) A resolved graph 𝐺 .

Fig. 3. Example of a
resolution from 𝐻 and

𝑞 = 𝐴1 to 𝐺 .

The resolution hypergraph is a hyperedge-labelled directed hypergraph,

where a hyperedge represents a relationship from one package to a set

of packages. The type of this relationship is denoted by a hyperedge-

label and is one of ‘dependency’, ‘optional dependency’, or ‘conflict’.

The resolution hypergraph is resolved to a subgraph which satisfies

the dependency constraints in a process we refer to as dependency

resolution.

To start, we define a set of package names 𝑁 , and a set of versions𝑉𝑛
for every package name 𝑛 in 𝑁 . The set of packages is often expressed

with dependency formula (§2.2.4). Though there are many versioning

schemes out there, we do not attach any particular semantics or ordering

to versions. We define a set of all packages as name-version pairs,

𝑃 = {(𝑛, 𝑣) | 𝑛 ∈ 𝑁, 𝑣 ∈ 𝑉𝑛}

A package 𝑝 ∈ 𝑃 can express a dependency on a set of packages

𝑑 ⊆ 𝑃 , one of which can satisfy the dependency. Package 𝑝 can have

multiple dependencies, all of which must be satisfied. Similarity, a pack-

age 𝑝 can express an optional dependency on a set of packages 𝑜 ⊆ 𝑃 ,

one of which can satisfy the dependency; and a conflict on a set of

packages 𝑐 ⊆ 𝑃 which 𝑝 cannot co-exist with. We define functions

𝑑𝑒𝑝𝑠 : 𝑃 → 2
2
𝑃

mapping a package to the set of its dependencies,

𝑜𝑝𝑡𝑠 : 𝑃 → 2
2
𝑃

mapping a package to set of its optional dependencies,

and 𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 : 𝑃 → 2
2
𝑃

mapping a package to the set of its conflicts.

We define a set of ordered pairs of relationships as,

𝑅 =
{
({𝑝} , 𝑑) ∈ 2

𝑃 × 2
𝑃 | 𝑝 ∈ 𝑃,𝑑 ∈ 𝑑𝑒𝑝𝑠 (𝑝)

}
∪
{
({𝑝} , 𝑜) ∈ 2

𝑃 × 2
𝑃 | 𝑝 ∈ 𝑃, 𝑜 ∈ 𝑜𝑝𝑡𝑠 (𝑝)

}
∪
{
({𝑝} , 𝑐) ∈ 2

𝑃 × 2
𝑃 | 𝑝 ∈ 𝑃, 𝑜 ∈ 𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 (𝑝)

}
We define the resolution hypergraph as a directed hypergraph𝐻 with

vertices 𝑃 and hyperedges 𝑅, where hyperedges from a package (the

domain) to a set of packages (the codomain) [20]. Note that we restrict the domain to a size of one

– we can only express a dependency from one package.

We define labels for the hyperedges of our hypergraph as a mapping 𝐿 : 2
𝑃 × 2

𝑃 → 𝑇

from hyperedges to a relationship 𝑇 = {𝛿, 𝜎,𝛾}, where 𝛿 encodes a dependency, 𝜎 an optional

dependency, and 𝛾 a conflict. Note that this means we cannot depend, optionally depend, or conflict

with the same package set.

∀𝑝 ∈ 𝑃,∀𝑑 ∈ 𝑑𝑒𝑝𝑠 (𝑝), 𝐿 (({𝑝} , 𝑑)) = 𝛿

∀𝑜 ∈ 𝑜𝑝𝑡𝑠 (𝑝), 𝐿 (({𝑝} , 𝑜)) = 𝜎

∀𝑐 ∈ 𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 (𝑝), 𝐿 (({𝑝} , 𝑐)) = 𝛾

We define the dependency resolution problem as mapping a set of query packages 𝑄 and the

resolution hypergraph𝐻 , to resolved graph𝐺 , selecting packages to satisfy dependency constraints.

Formally, given a set of packages𝑄 ⊆ 𝑃 and a hyperedge-labelled directed hypergraph𝐻 , resolution
builds a directed graph 𝐺 with vertices 𝑉 (𝐺) and edges 𝐸 (𝐺) where,

- Gibb et al.

(1) 𝐺 contains the query packages,

∀𝑞 ∈ 𝑄,𝑞 ∈ 𝑉 (𝐺)
(2) 𝐺 satisfies dependencies,

∀𝑝 ∈ 𝑉 (𝐺),∀𝑑 ∈ 𝑑𝑒𝑝𝑠 (𝑝), ∃!𝑒 ∈ 𝑑 : (𝑝, 𝑒) ∈ 𝐸 (𝐺) ∧ 𝑒 ∈ 𝑉 (𝐺)
If a package 𝑝 is in 𝑉 (𝐺) and 𝑑 is a dependency of 𝑝; then exactly one package 𝑒 , that

satisfies 𝑑 , is in an edge from 𝑝 to 𝑒; and 𝑒 is also in 𝑉 (𝐺).
(3) 𝐺 satisfies optional dependencies,

∀𝑝 ∈ 𝑉 (𝐺),∀𝑜 ∈ 𝑜𝑝𝑡𝑠 (𝑝), (∃𝑒 ∈ 𝑜 : 𝑒 ∈ 𝑉 (𝐺)) =⇒ (∃!𝑒 ∈ 𝑜, (𝑝, 𝑒) ∈ 𝐸 (𝐺))
If package 𝑝 has its optional dependency 𝑜 satisfied by a package in 𝑉 (𝐺), then there is

exactly one package 𝑒 that satisfies that dependency in an edge from 𝑝 to 𝑒 .

(4) 𝐺 satisfies conflicts,

∀𝑝 ∈ 𝑉 (𝐺),∀𝑐 ∈ 𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 (𝑝), 𝑝 ∈ 𝑉 (𝐺) =⇒ (𝑐 ∩𝑉 (𝐺) = ∅)
If package 𝑝 is in 𝑉 (𝐺) then no package 𝑝 conflicts with is in 𝑉 (𝐺).

An illustrated hypergraph is shown in figure 3, which is resolved to graph𝐺 according to these

dependency constraints. Formally, hypergraph 𝐻 has ∀𝑟 ∈ 𝑅, 𝐿(𝑟) = 𝛿 and,

𝑅 = {({𝐴1}, {𝐵1}), ({𝐴1}, {𝐶1}), ({𝐵1}, {𝐷1, 𝐷2}), ({𝐶1}, {𝐷2, 𝐷3})}

This hypergraph is resolved, with 𝑄 = {𝐴1} to a graph 𝐺 with

𝐸 (𝐺) = {(𝐴1, 𝐵1), (𝐴1,𝐶1), (𝐵1, 𝐷2), (𝐶1, 𝐷2)}

3.2 NP-completeness
We define the DependencyResolution decision problem as whether a𝐺 exists for a given𝑄 and𝐻 .

We can show the DependencyResolution decision problem is NP-complete by proving that it is

in NP and that it is NP-hard. First, DependencyResolution is in NP as it has a proof, 𝐺 , which

can be verified in polynomial time by checking that𝐺 , (1) contains the query packages, (2) satisfies

dependencies, (3) satisfies optional dependencies, (4) satisfies conflicts. This requires iterating over

every vertex and edge in 𝐺 , so can be done in polynomial time.

Second, we can prove that DependencyResolution is NP-hard by a polynomial time reduction

from the boolean satisfiability problem (SAT), which is well-known to be NP-complete [24]. The

SAT instance is defined as a formula 𝐹 in conjunctive normal form (CNF) with 𝑥 variables and 𝑦

clauses. To construct an instance of DependencyResolution from an instance of SAT,

(1) For each variable we define two packages representing true and false value assignments,

(𝑛𝑖 ,𝑇𝑅𝑈𝐸) , (𝑛𝑖 , 𝐹𝐴𝐿𝑆𝐸) ∈ 𝑃 | 1 ≤ 𝑖 ≤ 𝑥 where 𝑛𝑖 ∈ 𝑁 and {𝐹𝐴𝐿𝑆𝐸,𝑇𝑅𝑈𝐸} = 𝑉𝑛𝑖 .

The two packages representing true and value assignments for the same variable conflict,

𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 ((𝑛𝑖 ,𝑇𝑅𝑈𝐸)) = {{(𝑛𝑖 , 𝐹𝐴𝐿𝑆𝐸)}} , 𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 ((𝑛𝑖 , 𝐹𝐴𝐿𝑆𝐸)) = {{(𝑛𝑖 ,𝑇𝑅𝑈𝐸)}} | 1 ≤ 𝑖 ≤ 𝑥

(2) For each clause we create a package with a dependency that is the set of packages corre-

sponding to literals in the clause, with versions satisfying the literal polarity. We create

a package for each clause (𝑐 𝑗 , 𝜖) ∈ 𝑃 | 1 ≤ 𝑗 ≤ 𝑦 where 𝑐 𝑗 ∈ 𝑁 and {𝜖} = 𝑉𝑐 𝑗 . Let the 𝑘
th

literal in this clause have variable 𝑛 𝑗,𝑘 and let 𝑙 𝑗 denote the number of literals in clause 𝑐 𝑗 .

Let 𝑏 𝑗,𝑘 represent the polarity of the literal 𝑘 th literal, where 𝑏 𝑗,𝑘 = 𝑇𝑅𝑈𝐸 if the literal is

positive and 𝑏 𝑗,𝑘 = 𝐹𝐴𝐿𝑆𝐸 if the literal is negative. We define,

𝑑𝑒𝑝𝑠
(
𝑐 𝑗
)
=
{{(

𝑣 𝑗,𝑘 , 𝑏 𝑗,𝑘
)
| 0 ≤ 𝑘 ≤ 𝑙 𝑗

}}
| 1 ≤ 𝑗 ≤ 𝑦

Solving Package Management via Hypergraph Dependency Resolution -

(3) We define 𝑄 = {𝑞} as the query package set, with 𝑑𝑒𝑝𝑠 (𝑞) = {{𝑐 𝑗 } | 1 ≤ 𝑗 ≤ 𝑦}, which
represents the formula 𝐹 .

Note that we express disjunctions in clauses with multiple packages that can satisfy a single

dependency, and conjunctions between clauses with multiple dependencies.

The reduction process can be performed in polynomial time. Creating packages and package

conflicts for 𝑥 variables takes 𝑂 (𝑥) time. Creating packages for 𝑦 clauses takes 𝑂 (𝑦) time. And

creating dependencies for each clause takes time proportional to the numbers of literals in the

clause. Letting 𝑙 denote the total number of literals across all clauses, then creating dependencies

for all clauses takes 𝑂 (𝑙) time. The total time complexity for the reduction is 𝑂 (𝑥 + 𝑦 + 𝑙), which is

classified as polynomial time.

Finding a package set that satisfies all dependencies is equivalent to finding a truth assignment

that satisfies all clauses, therefore the reduction holds and DependencyResolution is NP-hard.

Since DependencyResolution is both in NP and NP-hard, it is NP-complete.

3.3 Resolution with SAT Solvers
We express a SAT instance as an DependencyResolution instance to prove that it is NP-hard, but

we can also express a DependencyResolution instance as a SAT instance to perform dependency

resolution with a SAT solver. First, for each package we create a Boolean variable ∀𝑝 ∈ 𝑃, ∃𝑋𝑝 ;

and for each package that satisfies a dependency we create a boolean variable ∀(𝑝, 𝑑) ∈ 𝐷,∀𝑒 ∈
𝑑, ∃𝑋 (𝑝,𝑒) . We then create a SAT instance in conjunctive normal form containing:

(1) Clauses to select the query packages ∀𝑞 ∈ 𝑄, (𝑋𝑞).
(2) A clause that states if a package is chosen to satisfy a dependency then that package must

be selected,

∀𝑝 ∈ 𝑃,∀𝑑 ∈ 𝑑𝑒𝑝𝑠 (𝑝),∀𝑒 ∈ 𝑑,
(
¬𝑋 (𝑝,𝑒) ∨ 𝑋𝑒

)
For each dependency of each package, a clause that states if the package is selected at least

one package must satisfy that dependency,

∀𝑝 ∈ 𝑃,∀𝑑 ∈ 𝑑𝑒𝑝𝑠 (𝑝) , 𝑑 =
{
𝑒1, 𝑒2, ...𝑒 |𝑑 |

}
,

(
¬𝑋𝑝 ∨ 𝑋 (𝑝,𝑒1) ∨ 𝑋 (𝑝,𝑒2) ∨ 𝑋 (𝑝,𝑒3) ∨ ... ∨ 𝑋 (𝑝,𝑒 |𝑑 |)

)
And a set of clauses to ensure that at most one element is chosen to satisfy the dependency,

∀𝑝 ∈ 𝑃,∀𝑑 ∈ 𝑑𝑒𝑝𝑠 (𝑝),∀𝑒1, 𝑒2 ∈ 𝑑 where 𝑒1 ≠ 𝑒2, (¬𝑋 (𝑝,𝑒1) ∨ ¬𝑋 (𝑝,𝑒2))

(3) For each optional dependency of each package, a set of clauses that state if a package that

satisfies the optional dependency is selected, at least one package must satisfy the optional

dependency,

∀𝑝 ∈ 𝑃,∀𝑜 ∈ 𝑜𝑝𝑡𝑠,∀𝑒 ∈ 𝑜, 𝑜 =
{
𝑒1, 𝑒2, ...𝑒 |𝑑 |

}
,

(
¬𝑋𝑝 ∨ ¬𝑋𝑒 ∨ 𝑋 (𝑝,𝑒1) ∨ 𝑋 (𝑝,𝑒2) ∨ 𝑋 (𝑝,𝑒3) ∨ ... ∨ 𝑋 (𝑝,𝑒 |𝑑 |)

)
A set of clauses that state if a package satisfies an optional dependency then it must be

selected,

∀𝑝 ∈ 𝑃,∀𝑜 ∈ 𝑜𝑝𝑡𝑠,∀𝑒 ∈ 𝑜,
(
¬𝑋 (𝑝,𝑒) ∨ 𝑋𝑒

)
And a set of clauses to ensure that at most one element is chosen to satisfy the optional

dependency,

∀𝑝 ∈ 𝑃,∀𝑜 ∈ 𝑜𝑝𝑡𝑠 (𝑝),∀𝑒1, 𝑒2 ∈ 𝑑 where 𝑒1 ≠ 𝑒2, (¬𝑋 (𝑝,𝑒1) ∨ ¬𝑋 (𝑝,𝑒2))

(4) A set of clauses that ensure conflicting packages are not present,

∀𝑝 ∈ 𝑃,∀𝑐 ∈ 𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 (𝑝),∀𝑒 ∈ 𝑐,
(
¬𝑋𝑝 ∨ ¬𝑋𝑒

)

- Gibb et al.

We can extract 𝐺 from the SAT solution, where 𝑋𝑝 ⇔ 𝑝 ∈ 𝑉 (𝐺), and 𝑋𝑝,𝑑 ⇔ (𝑝, 𝑒) ∈ 𝐸 (𝐺).
By our construction of the SAT instance this means 𝐺 satisfies the DependencyResolution

constraints (§3.1). Hence, if there is a satisfying assignment for the SAT instance, there is a valid

resolution in the DependencyResolution instance, and this reduction is sound.

Given a solution for the DependencyResolution instance we can extract an assignment of

variables, where 𝑝 ∈ 𝑉 (𝐺) ⇔ 𝑋𝑝 , and (𝑝, 𝑒) ∈ 𝐸 (𝐺) ⇔ 𝑋𝑝,𝑑 . This assignment satisfies all the

clauses in the CNF of the SAT instance by the construction method. Hence, if there is a solution to

the DependencyResolution instance, then there is a satisfying assignment in the SAT instance,

and this reduction is complete.

We emphasise that this is not to designed to be an efficient SAT encoding, rather to demonstrate

that this formalism can be mechanically solved.

4 MODELLING PACKAGE MANAGERS
In this section we will illustrate how a variety of properties of real-world package managers (§2)

can be modelled in the HyperRes formalism (§3). This formalism has been defined to be as minimal

as possible to capture the common core of package management, but is expressive enough to model

complex functionality such as boolean algebra (§4.2.1) and features parameterisation (§4.3.2).

4.1 APT
APT is the package manager for the Debian Linux distribution (Table 1). It manages system-wide

packages, ensuring that dependencies are met and conflicts are avoided. It handles a single version

of a package at a time, and supports virtual packages which allow multiple packages to provide the

same functionality.

(A, 1)

(B, 1) (C, 1)

(D, 3)

(D, 1)

Fig. 4. A resolution
hypergraph 𝐻 exhibiting
the ‘diamond problem’.

4.1.1 Single Versions. As with many packages managers APT only

supports deploying a single version of a package name at a time (§2.2.5).

We can encode this in the HyperRes formalism by saying for each

package 𝑝 , 𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 (𝑝) contains every other package with the same

package name,

∀(𝑛, 𝑣) ∈ 𝑃, {(𝑛, 𝑣 ′) | 𝑣 ′ ∈ 𝑉𝑛, 𝑣
′ ≠ 𝑣} ⊆ 𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 ((𝑛, 𝑣))

This means that for all package names in 𝑉 (𝐺), there exists exactly one

version for each,

∀(𝑛, 𝑣) ∈ 𝑉 (𝐺),∀(𝑛′, 𝑣 ′) ∈ 𝑉 (𝐺), 𝑛 = 𝑛′ =⇒ 𝑣 = 𝑣 ′

Consider a hypergraph as depicted in Figure 4, where only a single

version of a package name is allowed, as encoded as a conflict between

D1 and D2. Note that for diagramming simplicity we represent this as

an undirected ‘conflict set’ where every package connected to the solid

line conflicts with all the others. This hypergraph exhibits the ‘diamond

dependency problem’, so called as the graph with edges {(𝐴, 𝐵), (𝐴,𝐶), (𝐵, 𝐷), (𝐶, 𝐷)} forms a

diamond, which has no solution. Formally, 𝐻 has,

𝐷 = {({𝐴1}, {𝐵1}), ({𝐴1}, {𝐶1}), ({𝐵1}, {𝐷1}), ({𝐶1}, {𝐷3})}
𝐶 = {({𝐷1}, {𝐷3}), ({𝐷3}, {𝐷1})}

∀𝑟 ∈ 𝐷, 𝐿(𝑟) = 𝛿 ∀𝑟 ∈ 𝐶, 𝐿(𝑟) = 𝛾 𝑅 = 𝐷 ∪𝐶

4.1.2 Version Ordering. Like many package managers APT imposes a total lexicographical ordering

of versions [6]. For example, version 2.0 of a package will be greater than version 1.0. The

Solving Package Management via Hypergraph Dependency Resolution -

dependency resolution problem does not specify a preference, but an algorithm to solve the

problem can take this into account by trying packages with higher versions first. For example, if

we create literals in a SAT clause (§3.3) according to this ordering and try literals in the order they

appear in the clause, we will prefer higher versions.

(q, 𝜖)
(A, 2)

(A, 1)

(B, 1)

(B, 2)

Fig. 5. A resolution
hypergraph expressing an

upgrade.

4.1.3 Upgrades. The feedback mapping in Figure 2 shows an input

from the resolved graph into the resolution graph, but the HyperRes

formalism doesn’t take the existing state of the system into account.

HyperRes doesn’t consider how package managers like APT are used

to upgrade individual packages. We can model this by pinning installed

versions in our query set.

Consider a scenario where we have updated the Debian reposi-

tory (§2.2.2) and want to upgrade a single package to a new version. We

can represent this in our formalism by creating a virtual package that

has a dependency set containing the versions greater than the current

versions of the package name being upgraded, as well as a dependency

on every other installed package. To deploy the upgrade we can take

the difference from the resulting resolved graph and the pre-upgrade resolved graph, removing

and adding packages as appropriate. This doesn’t consider a scenario where the upgraded package

and existing packages can’t co-exist.

If there’s a conflict with the versions of the installed packages, we can depend on their greater

versions. That is, for each installed package name, add a dependency set on the current version and

any greater versions to the virtual package. Figure 5 shows a resolution hypergraph with a virtual

package 𝑞 where 𝑄 = {𝑞} expressing an upgrade on package 𝐴1 with an installed package 𝐵1. The

installed package 𝐵1 conflicts with the new version of 𝐴, so 𝐵1 will also need upgrading. We could

express a preference for minimising upgrades with a ordering of these installed package versions

preferring lower versions (§4.1.2).

The Common Upgradeability Description Format (CUDF) [56] provides a standard format for

expressing such upgrade problems that can be solved by various algorithms.

4.1.4 Virtual Packages. APT packages can express dependencies on virtual packages that other

packages ‘provide’ [7]. For example, both openssh-server and dropbear-bin provide the virtual

package openssh-server. We can encode a dependency on a virtual package in the resolution

hypergraph with a dependency on the set of all packages which provide it, as depicted in Fig-

ure 1 (§1.1.6). Assuming a set of virtual packages 𝑃𝑣 and a function which contains the set of virtual

packages a provided by a package, 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑠 : 𝑃 → 2
𝑃
, we can formally define this encoding with,

∀𝑝𝑣 ∈ 𝑃𝑣, 𝑑𝑒𝑝𝑠 (𝑝𝑣) = {{𝑝 | 𝑝𝑣 ∈ 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑠 (𝑝),∀𝑝 ∈ 𝑃}}

(A, 1-x86_64)

(A, 1-arm64)

(A, 1-i386)

(Arch, arm64)

(Arch, x86_64)

(Arch,i386)

Fig. 6. Encoding computer
architecture in the resolution

hypergraph.

4.1.5 Computer Architecture. Packages managers that provide

binary packages often provide different versions of a package for

different architectures, and APT is no exception. APT points to

different package versions depending on the architecture of the

machine it is running on. We can encode computer architecture

as a package in the resolution hypergraph in order to support

resolving for a particular architecture.

We create a name arch in 𝑁 . The versions of this name will

be the enumeration of supported architectures, e.g.

{x86_64, ARM64, i386} = 𝑉arch

- Gibb et al.

We define conflicts between all the architecture versions to force a selection,

∀𝑣 ∈ 𝑉arch, {(arch, 𝑣 ′) | 𝑣 ′ ∈ 𝑉arch, 𝑣
′ ≠ 𝑣} ⊆ 𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠 ((arch, 𝑣))

The associated architecture for a debian package can be added as a dependency. Figure 6 shows

a package A with versions 1-x86_64, 1-ARM64, and 1-i386 depending on the appropriate arch
version. By including an arch package in the query set a resolve can be restricted according to the

hardware available.

4.2 Opam
Opam is the package manager for the OCaml programming language (Table 1). It supports complex

dependency formulae with global and local variables, and requires an acyclic resolved dependency

graph to perform build steps in an order such that all the dependencies of a package are built before

it is built.

(A, 1)

(&, 𝜖) (&’, 𝜖)

(B, 2)

(B, 1)

(C, 1)

Fig. 7. Encoding boolean
algebra in a hypergraph.

4.2.1 Dependency Formula.

Boolean Algebra. Opam supports ‘package formula’ and ‘version for-

mula’, boolean algebra of packages names and package versions respec-

tively [2]. As we have shown (§3.2) we can encode a SAT expression

in our HyperRes formalism, and can encode opam’s package formulae

in the same way. Disjunctions can be represented by a dependency set,

conjunctions with a ‘virtual’ package that depends on both the operands

of the conjunctions, and negations with conflicts.

Figure 7 demonstrates how boolean algebra can be represented in

HyperRes with a dependency from A1 that corresponds to the boolean

expression, (𝐵1 ∧𝐶1) ∨ (¬𝐶1 ∧ 𝐵2). Note that the & symbol represents

a virtual package with an empty version 𝜖 and a globally unique name.

Variables. Opam also supports global and package-local variables in

its package formulae. With the global os-distribution variable in a

package formula, the formula’s dependency will be conditional on the operating system the package

manager is deploying the package on (§1.1.4). We can encode this in resolution hypergraph as we

did with computer architecture for APT (§4.1.5). That is, we create a package os-distribution
with versions enumerating the possible operating system distributions. For a package dependent

upon ["gcc"] {"os-distribution" = "debian"} we can depend on a virtual package which

itself depends on the os-distribution package with version debian, and a version of gcc.
Package-local variables can be encoded as optional dependencies. The package-local with-test

denotes variables that are only required if tests have been enabled for the package. For example,

consider a package (polars, 0.1.0) that has a dependency on "alcotest" {with-test}. We

can create a virtual package (polars, (0.1.0, test)) which (polars, 0.1.0) optionally

depends on, where (polars, (0.1.0. test)) depends on alcotest. To enable tests for (polars,
0.1.0) the package (polars, (0.1.0. test)) can be installed.

4.2.2 Acyclic Resolved Graph. Opam has an additional requirement for the resolved graph over

those specified in section 3.1, that it must be acyclic. As part of its deployment (§2.1.3) opam

performs a topological sort of the graph — which is only possible with a directed acyclic graph —

to assemble a list of actions to be executed sequentially. These actions build packages, and if all

the required dependencies of a package aren’t provided prior to its build, the build will fail. An

exception to this is packages marked with the post variable, which denotes where the cycle can be

broken as a dependency isn’t a build-time dependency. Other package managers deal with cycles

Solving Package Management via Hypergraph Dependency Resolution -

by breaking them at some arbitrary point, like APT with binary packages [7]; or not performing a

topological sort at all, npm lays out files and relies on language support to break cycles between

modules.

We can formally define this as for the resolved graph𝐺 , for any sequence of edges 𝑒1, 𝑒2, ..., 𝑒𝑛 in

𝐺 where 𝑒𝑖 = (𝑝𝑖 , 𝑒𝑖), for 1 ≤ 𝑖 ≤ 𝑛, it holds that 𝑝𝑖 ≠ 𝑝𝑖+1 for any 1 ≤ 𝑖 < 𝑛.

4.3 Cargo
Cargo is the package manager is the Rust language’s package manager and build system (Table 1). It

supports multiple versions of the same package coexisting in a project, provided they have different

major versions. It also uses features to enable or disable optional functionality in packages.

(A, 1)

(B, 1) (C, 1)

(D, 1)

(D, 3)

Fig. 8. A multi-version
resolved graph 𝐺 .

4.3.1 Concurrent Versions. As discussed in section 2.2.5, Cargo supports
multiple versions of packages in a resolved graph. To be precise, it

only allows different major version numbers in the semantic versioning

scheme [5, 49]. To model this in the HyperRes formalism, we can add

conflicts as described in section 4.1.1, but only if the packages share the

same major version. Figure 1 demonstrates this (§1.1.3).

This easing of the constraints allows a solution to the diamond de-

pendency problem from Figure 4. If we remove the conflicts set 𝐶 , and

let 𝑅 = 𝐷 , then 𝐺 in Figure 8 represents a solution.

4.3.2 Features. Rust supports parametrising packages with features.

For example, the regex package has features to enable performance

optimisations and Unicode support. When enabled features can require

additional dependencies. Packages express features that they require

when depending on a package, and when resolving dependencies packages will take the union of

all the features that they are depended upon with. We will describe an extension to the HyperRes

formalism to support parametrising dependencies with features, and show how we can encode this

extended formalism using versions in the original formal system.

(A, 1)

(B, 1) (C, 1)

(D, 1)
⍺ β

Fig. 9. A resolution
hypergraph where
hyperedges are

parameterised by features.

Extending HyperRes to support features. To start, we define a set of

package features for every package, ∀𝑝 ∈ 𝑃, ∃𝐹𝑝 ⊆ 𝐹 and 𝐹 as the set

of all possible features. Then, we define a multi-label function map-

ping the dependency hyperedges of the resolution hypergraph 𝐻 to

sets of features required for the dependency. We define this mapping

𝐿𝐹 : 2
𝑃 × 2

𝑃 → 𝐹 where ∀ 𝑝 ∈ 𝑃, ∀ 𝑑 ∈ 𝑑𝑒𝑝𝑠 (𝑝), 𝐿𝐹 (({𝑝}, 𝑑)) is
the set of features required by hyperedge ({𝑝}, 𝑑). Note that we assume

the same feature set can be applied to all packages that can satisfy a

dependency, ∀𝑝 ∈ 𝑃,∀𝑑 ∈ 𝑑𝑒𝑝𝑠 (𝑝), ∃𝐹𝑑 : 𝑒 ∈ 𝑑 =⇒ 𝐹𝑒 = 𝐹𝑑 .

We add a criterion to the dependency resolution problem, that 𝐺

unifies features, with a multi-label function mapping the vertices of the

resolved graph 𝐺 to sets of features used by that package 𝐿𝑉 : 𝑃 → 𝐹 .

∀𝑝 ∈ 𝑉 (𝐺),∀𝑑 ∈ 𝑑𝑒𝑝𝑠 (𝑝), ∃!𝑒 ∈ 𝑑 : (𝑝, 𝑒) ∈ 𝐸 (𝐺), 𝐿𝐹 (({𝑝} , 𝑑)) ⊆ 𝐿𝑉 (𝑒)

Meaning that for each package 𝑒 chosen to satisfy dependency 𝑑 of package 𝑝 , the features selected

for 𝑒 – 𝐿𝑉 (𝑒) – must include the features required by dependency 𝑑 – 𝐿𝐹 ((𝑝,𝑑)).
The features of a package can affect its dependencies, we define a function 𝑓 𝑑𝑒𝑝𝑠 : 𝑃 × 𝐹 → 2

2
𝑃

function which maps a package and its feature to a set of additional dependencies required by that

- Gibb et al.

feature. We add another criterion of HyperRes that 𝐺 satisfies feature dependencies,

∀𝑝 ∈ 𝑉 (𝐺),∀𝑓 ∈ 𝐿𝑉 (𝑝),∀𝑑 ∈ 𝑓 𝑑𝑒𝑝𝑠 ((𝑝, 𝑓)),
∃!𝑒 ∈ 𝑑 : (𝑝, 𝑒) ∈ 𝐸 (𝐺) ∧ 𝑒 ∈ 𝑉 (𝐺)

Meaning if a package 𝑝 is in𝑉 (𝐺) with features 𝑓 selected, and 𝑑 is a dependency of 𝑝 with features

𝑓 ; then exactly one package 𝑒 , that satisfies 𝑑 , is in an edge from 𝑝 to 𝑒; and 𝑒 is also in 𝑉 (𝐺).
Figure 9 shows an example hypergraph where 𝐵1 depends on 𝐷1 with feature 𝛼 and 𝐶1 depends

on 𝐷1 with feature 𝛽 . Formally,

𝐹𝐷1 = {𝛼, 𝛽}, 𝐿𝐹 (({𝐵1} , {𝐷1})) = 𝛼, 𝐿𝐹 (({𝐵1} , {𝐷1})) = 𝛽

(A, 1)

(B, 1) (C, 1)

(D, 1⍺)

(D, 1)

(D, 1β)

Fig. 10. A resolution
hypergraph where features
are encoded as optional

dependencies.

Encoding the extended formalism in HyperRes. To show that the Hy-

perRes formalism is expressive enough to describe features, we will

encode the extended formalism in the HyperRes formalism. For every

package name we define a ‘feature version’ set as pairs of version and

feature supported by that version,

∀𝑛 ∈ 𝑁, ∃𝐹𝑉𝑛 =
{
(𝑣, 𝑠) | 𝑓 ∈ 𝐹 (𝑛,𝑣) , 𝑣 ∈ 𝑉𝑛

}
Assuming an ordering of features, and a new separator, we can encode

this feature version as a string. If we had a package name D with version

1, and features a and b, we could encode the new versions as 1+a and
1+b.

We define a new version set for each package name containing the

normal versions and feature versions,

∀𝑛 ∈ 𝑁, ∃𝑉 ′
𝑛 = 𝑉𝑛 ∪ 𝐹𝑉𝑛

And we define a new package set,

𝑃 ′ =
{
(𝑛, 𝑣) | 𝑛 ∈ 𝑁, 𝑣 ∈ 𝑉 ′

𝑛

}
We define a new dependency function 𝑑𝑒𝑝𝑠′ and let,

∀𝑛 ∈ 𝑁,∀(𝑣, 𝑓) ∈ 𝐹𝑉𝑛, 𝑑𝑒𝑝𝑠
′ ((𝑛, (𝑣, 𝑓))) = {{(𝑛, 𝑣)}} ∪ 𝑓 𝑑𝑒𝑝𝑠 ((𝑛, 𝑣), 𝑓)

Meaning for every new feature version package we depend on the corresponding package version

without the feature version; as well as any new dependencies introduced by said feature. So package

(D,1+a) would depend on package (D,1). We also let,

∀𝑝 ∈ 𝑃,𝑑𝑒𝑝𝑠′ (𝑝) = 𝑑𝑒𝑝𝑠 (𝑝) ∪ {{(𝑛, (𝑣, 𝑓)) | (𝑛, 𝑣) ∈ 𝑑} | ∀𝑓 ∈ 𝐿𝐹 (({𝑝} , 𝑑)) , 𝑑 ∈ 𝑑𝑒𝑝𝑠 (𝑝)}

Meaning where we depended on a package 𝑝 , we now also depend on the versions representing

the features that we depended on 𝑝 with. If we depended on a package with D with version 1 and
feature a, we would now depend on versions 1 and 1+a.

We construct the hypergraph as before with 𝑃 ′
in place of 𝑃 and 𝑑𝑒𝑝𝑠′ in place of 𝑑𝑒𝑝𝑠 . Figure 10

shows an example of an encoding of Figure 9 with this scheme. Not that we omit separators between

versions and features for the sake of brevity.

With a resolution to a resolved graph 𝐺 ′
, we can extract the feature set of packages in 𝑃 with,

∀𝑛 ∈ 𝑁,∀(𝑣, 𝑓) ∈ 𝑉𝐹𝑛, (𝑛, (𝑣, 𝑓)) ∈ 𝑉 (𝐺 ′) =⇒ 𝑓 ∈ 𝐿𝑉 ((𝑛, 𝑣))

And the dependencies introduced by feature selection with,

∀𝑛 ∈ 𝑁,∀(𝑣, 𝑓) ∈ 𝑉𝐹𝑛, {(𝑛, (𝑣, 𝑓)) , 𝑑} ∈ 𝐸 (𝐺 ′) =⇒ ({(𝑛, 𝑣)} , 𝑑) ∈ 𝐸 (𝐺)

Solving Package Management via Hypergraph Dependency Resolution -

4.4 Nix
Nix is a package manager that pioneered the functional model of software deployment [28]. It

describes packages in Nix DSL expressions which are ‘translated’ with nix-instantiate to store

derivations, a JSON file describing the inputs, outputs, and build steps of a derivation (package).

Store derivations are ‘realised’ into files in the Nix store with nix-store –realise. In our package

management pipeline the translation is modelled as evaluation of the packaging language to bundle

format, and realisation as deployment of the bundle formats to the filesystem (Table 1).

4.4.1 Specific dependencies. The store derivation format of Nix does not support expressing a set

of possible packages that can satisfy a dependency, instead pointing to the exact package required.

We can model this in the resolution hypergraph by restricting the codomain to a size of one,

∀𝑟 ∈ 𝑅, 𝑟 = ({𝑝} , {𝑒}) : 𝑝 ∈ 𝑃 ∧ 𝑒 ∈ 𝑃

Nix also does not support optional dependencies or conflicts ∀𝑟 ∈ 𝑅, 𝐿(𝑟) = 𝛿 . Instead of optional

dependencies, derivations are generated by functions in the Nix DSL which can be parameterised

to enable varying functionality. And as Nix stores components at paths containing unique crypto-

graphic hashes, it allows multiple packages to co-exist that would otherwise conflict with each

other (§2.2.5). This turns the dependency resolution problem to a simple walk of the tree where

satisfying dependencies means,

∀𝑝 ∈ 𝑉 (𝐺) : 𝑑𝑒𝑝𝑠 (𝑝) = {𝑒}, (𝑝, 𝑒) ∈ 𝐸 (𝐺) ∧ 𝑒 ∈ 𝑉 (𝐺)

5 BRIDGING ECOSYSTEMS
Having established that HyperRes (§3) can model a wide array of package managers individu-

ally (§4), we now turn our attention to the bigger picture of how to unify these ecosystems by

resolving dependencies across them all. We aim to enable projects that span multiple languages

and platforms to manage their dependencies coherently, overcoming the current fragmentation

caused by incompatible package management systems.

We thus extend the HyperRes formalism to support cross-ecosystem dependencies (§5.1), demon-

strate how to resolve such dependencies (§5.2), and outline how translating packages bidirectionally

between ecosystems is now possible (§5.3).

5.1 HyperRes for Multiple Ecosystems
Our early example in Figure 1 shows a resolution hypergraph including packages from multiple

different ecosystems, with some dependencies transcending these boundaries. To introduce this

notion of ecosystem to the HyperRes formalism, we can add an ecosystem vertex labelling to

distinguish packages belonging to different ecosystems.

We define a set of ecosystems 𝑇 , with a package namespace for each ∀𝑡 ∈ 𝑇, ∃𝑁𝑡 . We define the

set of names 𝑁 = {𝑛 | 𝑛 ∈ 𝑁𝑡 , 𝑡 ∈ 𝑇 }, and a package set for each ecosystem using the version sets

as previously defined ∀𝑡 ∈ 𝑇, 𝑃𝑡 = {(𝑛, 𝑣) | 𝑣 ∈ 𝑉𝑛, 𝑛 ∈ 𝑁 }. And we define an ecosystem labelling

function, 𝐿𝑒 : 𝑃 → 𝑇 as, ∀𝑡 ∈ 𝑇,∀𝑝 ∈ 𝑃𝑡 , 𝐿𝑒 (𝑝) = 𝑡 . Cross-ecosystem relationships are relationships

where, ({𝑝}, {𝑑}) ∈ 𝑅, ∃𝑒 ∈ 𝑑 : 𝐿𝑒 (𝑝) ≠ 𝐿𝑒 .

We distinguish between ecosystems with this labelling as they differ in how their metadata

bundles are parsed to create a hypergraph (the ‘on-ramp’ to the formalism from the ecosystem),

and how packages in the resolved graph are provided (the ‘off-ramp’ to the formalism to invoke

the lower-level installer for that ecosystem).

This allows HyperRes graphs to be resolved in one pass across ecosystems with no modification
to HyperRes aside from this additional labelling. In this cross-ecosystem HyperRes, we can include

multiple repositories in any ecosystem modelled by packages. This lets us, for example, determine

- Gibb et al.

which version of Debian Linux would provide the required version of a language dependency

(§1.1.5). We can also include the default Linux kernel version provided by various repository

versions as a cross-ecosystem package (1.1.4), allowing for low-level dependencies or GPU drivers

to be resolved reliably, and percolate these constraints higher up the stack into language-specific

ecosystems such as Python’s. We can further model constraints such as computer architecture

(§4.1.5) to select for optimised or hardware-dependent solutions, or do the opposite and scan for a

portability matrix for a given software release.

5.2 Cross-Ecosystem Resolution
We have implemented a number of translations from ecosystem-specific metadata bundles to

a prototype HyperRes encoding. For some package managers, like APT and APK, this involves

parsing and translating static metadata. For others with tighter integration between their packaging

language and metadata bundles, like opam and Cabal (§2.1.1), OCaml and Haskell libraries were

used to interpret opam and Cabal files to an in-memory representation that was translated to the

HyperRes encoding. We currently have translations from APK, Cabal, Cargo, CentOS, Debian,

Fedora, Homebrew, opam, OpenSUSE, and Pacman; totalling just over 1.7 million packages.

While none of these ecosystems natively supports cross-ecosystem resolving, we can add these

ecosystem-transcending dependencies (§1.1.2). Packages which vendor packages from other ecosys-

tems are a prime example, like the polarsOCaml package with a number of Rust packages. Another

is packages which have some ad-hoc mechanism for invoking system packages managers to provide

dependencies, such as opam’s external dependencies mechanism. We can mechanically translate

external dependencies to cross-ecosystem dependencies for various operating systems.

We have written a custom resolver to operate on this hypergraph using a SAT encoding. De-

spite the large number of packages, the performance of the resolution is a function of the size

of the dependency cone and has remained tractable thus far. Figure 11 diagrams a subgraph of

the resolved graph resulting from the query set containing opam’s polars.1.0.0 library de-

scribed in Figure 1. The Debian dependencies come from a dependency on the system Rust

compiler (Figure 11 (a)), and the Cargo packages come from the Rust component of this bind-

ings library. Note the cycle between deb-libgcc1.1-8.3.0-6 and deb-libc6.2.28-10+deb10u1
which is broken by Debian [7] (Figure 11 (b)), and the cycle between opam-ocaml.4.14.3 and

opam-ocaml-variants.4.14.3+trunk which is broken by a post variable (Figure 11 (c)) [2]. Also

note the use of optional dependencies which have been resolved to a concrete set of features

encoded as dependencies of opam-ocaml-variants.4.14.3+trunk. In the current state these Rust

dependencies are vendored into the projects source repository, and Debian dependencies are ad-hoc

and unversioned.

As every ecosystem has a different translation to the resolution hypergraph, so they all have a

different mechanism of providing the resulting packages (§2.1.3). Some are easier to integrate than

others. We can perform a topological sort over the resolved graph and, for example, Debian’s dpkg
can be easily invoked to install a single package. Alpine’s APK can be used to install a package and

resolve dependencies, but if we invoke it in topological order it will simply verify that our resolve

has indeed provided all the required dependencies. Even monolithic tools like Rust’s Cargo can

similarly be invoked to provide HyperRes resolved dependencies.

5.3 Ecosystem Translations
So far, we discussed the 𝑁 + 𝑁 problem for 𝑁 ecosystems: we write translations from ecosystem

metadata to the resolution hypergraph (𝑁) and interface with ecosystem tooling in order to deploy

them (𝑁). This allows us to resolve dependencies across ecosystems and make package managers

interoperable. However, there is also an 𝑁 ×𝑁 problem of translating between ecosystem metadata

Solving Package Management via Hypergraph Dependency Resolution -

cargo-bytemuck.1.18.0

cargo-cfg-if.1.0.0

cargo-cty.0.2.2

cargo-dyn-clone.1.0.17

cargo-either.1.13.0

cargo-equivalent.1.0.1

cargo-ethnum.1.5.0

cargo-hashbrown.0.14.5

cargo-libc.0.2.158

cargo-num-traits.0.2.19

cargo-ocaml-boxroot-sys.0.3.1

cargo-once_cell.1.19.0

cargo-scopeguard.1.2.0

cargo-simdutf8.0.1.4

cargo-smallvec.1.13.2

cargo-static_assertions.1.1.0

cargo-streaming-iterator.0.1.9

cargo-strength_reduce.0.2.4

deb.buster

opam-base-bigarray.base

opam-base-threads.base

opam-base-unix.base

opam-host-arch-x86_64.1

opam-host-system-other.1

cargo-ahash.0.8.11 cargo-zerocopy.0.8.0-alpha.21

cargo-getrandom.0.2.15

cargo-wasi.0.13.2+wasi-0.2.1

cargo-chrono.0.4.38

cargo-indexmap.2.5.0

cargo-lock_api.0.4.12

cargo-ocaml.0.22.4

cargo-ocaml-sys.0.24.0

cargo-ocaml-interop.0.10.0

cargo-parking_lot.0.12.3

cargo-parking_lot_core.0.9.10 cargo-redox_syscall.0.5.4

cargo-polars-arrow.0.43.1

cargo-polars-schema.0.43.1

cargo-polars-error.0.43.1

cargo-thiserror.1.0.63

cargo-polars-compute.0.43.1

cargo-polars-core.0.43.1

cargo-polars-row.0.43.1

cargo-polars-sql.0.32.1

deb-cargo.0.43.1-3~deb10u1

deb-gcc.4-8.3.0-1

deb-rustc-mozilla.1.59.0+dfsg1-1~deb10u3

deb-libssh2-1.1.8.0-2.1

deb-libgcc1.1-8.3.0-6

deb-libc6.2.28-10+deb10u1

deb-zlib1g.1-1.2.11.dfsg-1+deb10u1

opam-base.v0.16.3

opam-dune.3.16.0

opam-ocaml.4.14.3 opam-ocaml-variants.4.14.3+trunk

opam-conf-rust-2021.1

opam-core.v0.16.2

opam-stdio.v0.16.0

opam-polars.0.0.1

(b)

(c)

(a)

Fig. 11. A subgraph of the full cross-ecosystem resolved graph querying opam’s polars.1.0.0 library.
(a) shows a Rust to Debian dependency, (b) shows a Debian cycle, (c) shows an OCaml post-cycle.

■ Cargo ■ Debian ■ Opam

- Gibb et al.

bundles. This would allow the many millions of packages spread across ecosystems (Table 1) to

be directly incorporated into other ecosystems. For example, Debian packages could be created

directly from all the language-specific package managers that are binary compatible with the

existing Debian packages, and without requiring the labour-intensive process of creating a Debian

package for each language-specific package.

This translation process is easier for some package managers than others, and made significantly

easier by the HyperRes formalism. For example, translating an opam file to a deb archive is quite

feasible due to the simple archive format of Debian source packages. Others are harder, like the Nix

package manager, but given an API into the Nix store the tools could create derivations translated
from another ecosystem. Such metadata translations would allow the resolved graphs to all be

translated to one target ecosystem, allowing for the deployment of packages using a single tool.

Package managers are often platform-specific, but this ‘protocol’ for package management would

allow for package management systems specific to platforms, using technologies like namespaces on

Linux and Jails on FreeBSD, still to interoperate. This enables a new generation of package managers

using a common protocol that can be hyper-specialised to an operating system or environment.

6 RELATEDWORK
SAT for Package Resolving. The core idea of using a formalism to aid with package versioning

dates back to Opium [58] in 2007, which adapted Debian’s apt-get to use a SAT solver for dependency

resolution. Opium showed that such resolving could be done efficiently, and later work on CUDF [56]

specified a file format that could be used by specialised package resolvers. One such early resolver

used answer-set programming [32], which also found use in high-performance computing software

infrastructure for solving dependencies with support for a rich set of user-specified resolver

preferences [30]. However, these systems did not halt the proliferation of package managers in

the past decade, and the problem of cross-ecosystem dependencies has only grown worse in the

intervening years.

Abate et al. noted in 2020 that while SAT-based dependency solving did find traction among

some package manager implementations, the idea of using reusable components for version solving

had not taken off [11]. In recent years, some of the larger package ecosystems such as NPM are

under severe scaling pressure, and it is becoming increasingly important to revisit the question of

how to reuse knowledge across ecosystems. For example, PacSolve’s MaxSMT based resolver is a

drop-in replacement to NPM that reduced vulnerabilities in resolved packages and picked fresher

and fewer dependencies [48]. Approximate solving has also been useful for package selection under

bounded latency situations [36]. However, these systems are still tied to a single ecosystem, and

HyperRes is our attempt to bridge this gap and provide a ‘babelfish’ for package management that

will allow for the reuse of knowledge across ecosystems.

Open-source Ecosystems. There is an enormous and increasing amount of open-source software

being published, and the problem of managing dependencies is only going to get worse. Software

Heritage is building a universal archive of this source code [13], and HyperRes offers the chance to

build a higher-level and cross-ecosystem semantic representation of these interdependencies.

Maintainers of some of the key distributions such as Debian (which form the basis for many other

downstream products) are having to scale their automation in order to manage the ever-growing

package set [18] and vulnerabilities [40]. The HyperRes approach of bringing common semantic

meaning across language ecosystems should help reuse tooling that is currently language-specific

to support the distribution maintainers such as those in Debian or CentOS. Being able to reason

about large-scale dependencies is also important to alleviating the reproducibility crisis in scientific

Solving Package Management via Hypergraph Dependency Resolution -

computing [37], and HyperRes could (with sufficient tooling) support the longer-term availability

of published scientific results.

Build Systems. Package management also has a close tie-in to build systems, which are equally

surprisingly poorly-specified [44]. Build systems and package management systems are sometimes

unified in newer toolchains (Table 1), but doing so makes it difficult to compose projects that span

ecosystems (e.g. consider the difficulty of depending on a Rust library from OCaml code with just

two package managers involved). Therefore, the HyperRes approach of specifying a formalism that

can be implemented as a translation library across package ecosystems maintains the separation

from the underlying build systems. In the long term, creating a composable formal theory of build

systems and package managers [14] would let us combine cross-ecosystem codebases to conduct

correctness testing across the vast amount of source code published [41]. It would also allow the use

of fuzzing techniques on HyperRes to spot incorrect packaging specifications, which is a technique

successfully applied to build systems [39].

Software Supply Chain Security. The increasing complexity of cross-ecosystem dependency

chains puts pressure on the security of software supply chains, both on the choice of dependencies

selected for a software project [15, 16, 59] but also in vulnerabilities in the many package managers

available [21, 22]. Software Bill of Materials (SBOMs) manifests are being rapidly adopted [23]

to specify the full set of versioned dependencies that go into a given application. However, the

same problem of uneven quality across ecosystems applies here, with the JavaScript ecosystem

being particularly unpredictable [51]. HyperRes could be used to generate SBOMs systematically, to

reduce transitive trust dependencies across language and OS ecosystems [53], drop resource usage

by debloating unnecessary packages [47], and reduce the latency of applying security updates in

third party dependencies [52, 55].

Some popular languages, such as C++, have had surprisingly limited uptake of package man-

agement. Survey results [43] show that many of the features needed by users to adopt package

management are reflected in the HyperRes formalism set, but users also require close integration

with the system package manager — another new feature supported by HyperRes.

Human-in-the-loop Automation. LLMs are increasingly used for code generation tasks, and

package management metadata is well-placed for automation here, with some early work showing

promising results [27]. One future direction that HyperRes could go in is to support LLM-driven

human-in-the-loop package management [33] via its concise and information-dense hypergraph

representation. Similar work on automating Dockerfile repair [34] has shown promising results,

and the same techniques could apply to simplifying the housekeeping of the many package manager

metadata files in use today.

7 CONCLUSION
We have presented HyperRes, a formalism that finds commonality among the many diverse package

managers in wide use for software development today. We have surveyed a representative set

of package managers in use today and used HyperRes to translate individual packaging systems

into our formalism, and then taken advantage of modern constraint solvers to answer versioning

queries that span operating system and programming language ecosystems. And we have also

shown a path to developing a ‘babelfish’ for package management that can use HyperRes to

support the bidirectional translation of packages between ecosystems. This in turn will allow for

the reuse of packaging knowledge across open-source ecosystems, and greatly simplify and secure

the increasingly complex software supply chain in use today.

- Gibb et al.

REFERENCES
[1] 2012. Slackware Package Management. https://docs.slackware.com/slackware:package_management

[2] 2013. OCaml Package Manager, The opam manual. https://opam.ocaml.org/doc/Manual.html

[3] 2015. Linux Standard Base specification. https://refspecs.linuxfoundation.org/lsb.shtml

[4] 2024. The Cargo Book. https://doc.rust-lang.org/cargo/

[5] 2024. Cargo Resolver. https://github.com/rust-lang/cargo/blob/15fbd2f607d4defc87053b8b76bf5038f2483cf4/src/cargo/

core/resolver/mod.rs

[6] 2024. Debian Policy Manual: Chapter 5 - Control files and their fields. https://www.debian.org/doc/debian-policy/ch-

controlfields.html

[7] 2024. Debian Policy Manual: Chapter 7 - Declaring relationships between packages. https://www.debian.org/doc/

debian-policy/ch-relationships.html

[8] 2024. Go Modules Reference. https://go.dev/ref/mod

[9] 2024. The Haskell Cabal. https://www.haskell.org/cabal/

[10] 2024. npm Docs Scripts. https://docs.npmjs.com/cli/v10/using-npm/scripts

[11] Pietro Abate, Roberto Di Cosmo, Georgios Gousios, and Stefano Zacchiroli. 2020. Dependency Solving Is Still Hard, but

We Are Getting Better at It. In 2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering
(SANER). 547–551. doi:10.1109/SANER48275.2020.9054837

[12] Pietro Abate, Roberto DiCosmo, Ralf Treinen, and Stefano Zacchiroli. 2011. MPM: a modular package manager. In

Proceedings of the 14th International ACM Sigsoft Symposium on Component Based Software Engineering (Boulder,

Colorado, USA) (CBSE ’11). Association for Computing Machinery, New York, NY, USA, 179–188. doi:10.1145/2000229.

2000255

[13] Jean-François Abramatic, Roberto Di Cosmo, and Stefano Zacchiroli. 2018. Building the universal archive of source

code. Commun. ACM 61, 10 (Sept. 2018), 29–31. doi:10.1145/3183558

[14] Snorri Agnarsson and M. S. Krishnamoorthy. 1985. Towards a theory of packages. ACM SIGPLAN Notices 20, 7 (June
1985), 117–130. doi:10.1145/17919.806833

[15] Mahmoud Alfadel, Diego Elias Costa, and Emad Shihab. 2023. Empirical analysis of security vulnerabilities in Python

packages. Empirical Software Engineering 28, 3 (March 2023). doi:10.1007/s10664-022-10278-4

[16] Mahmoud Alfadel, Diego Elias Costa, Emad Shihab, and Bram Adams. 2023. On the Discoverability of npm Vulnerabil-

ities in Node.js Projects. ACM Trans. Softw. Eng. Methodol. 32, 4, Article 91 (May 2023), 27 pages. doi:10.1145/3571848

[17] Cyrille Artho, Kuniyasu Suzaki, Roberto Di Cosmo, Ralf Treinen, and Stefano Zacchiroli. 2012. Why do software

packages conflict?. In 2012 9th IEEE Working Conference on Mining Software Repositories (MSR). 141–150. doi:10.1109/
MSR.2012.6224274

[18] Benedikt Becker, Nicolas Jeannerod, Claude Marché, Yann Régis-Gianas, Mihaela Sighireanu, and Ralf Treinen. 2022.

The CoLiS platform for the analysis of maintainer scripts in Debian software packages. International Journal on
Software Tools for Technology Transfer 24, 5 (Sept. 2022), 717–733. doi:10.1007/s10009-022-00671-1

[19] Jon Bentley. 1986. Programming pearls: little languages. Commun. ACM 29, 8 (Aug. 1986), 711–721. doi:10.1145/6424.

315691

[20] Claude Berge. 1970. Graphes et hypergraphes. Dunod, Paris, France.
[21] Aarnav M. Bos. 2023. A Review of Attacks Against Language-Based Package Managers. doi:10.48550/ARXIV.2302.08959

[22] Justin Cappos, Justin Samuel, Scott Baker, and John H. Hartman. 2008. A look in the mirror: attacks on package

managers. In Proceedings of the 15th ACM Conference on Computer and Communications Security (Alexandria, Virginia,

USA) (CCS ’08). Association for Computing Machinery, New York, NY, USA, 565–574. doi:10.1145/1455770.1455841

[23] Serena Cofano, Giacomo Benedetti, and Matteo Dell’Amico. 2024. SBOM Generation Tools in the Python Ecosystem:

an In-Detail Analysis. doi:10.48550/ARXIV.2409.01214

[24] Stephen A. Cook. 1971. The complexity of theorem-proving procedures. In Proceedings of the Third Annual ACM
Symposium on Theory of Computing (Shaker Heights, Ohio, USA) (STOC ’71). Association for Computing Machinery,

New York, NY, USA, 151–158. doi:10.1145/800157.805047

[25] Ludovic Courtès. 2013. Functional package management with guix. arXiv preprint arXiv:1305.4584 (2013).
[26] Russ Cox. 2018. Go & Versioning: Minimal Version Selection. https://research.swtch.com/vgo-mvs

[27] Andres Diaz Pace, Antonela Tommasel, and Hernan Ceferino Vazquez. 2024. The JavaScript Package Selection Task: A

Comparative Experiment Using an LLM-based Approach. CLEI Electronic Journal 27, 2 (July 2024). doi:10.19153/cleiej.

27.2.4

[28] Eelco Dolstra, Merijn de Jonge, and Eelco Visser. 2004. Nix: A Safe and Policy-Free System for Software Deployment.

In Proceedings of the 18th USENIX Conference on System Administration (Atlanta, GA) (LISA ’04). USENIX Association,

USA, 79–92.

[29] Eelco Dolstra and Andres Löh. 2008. NixOS: a purely functional Linux distribution. In Proceedings of the 13th ACM
SIGPLAN International Conference on Functional Programming (Victoria, BC, Canada) (ICFP ’08). Association for

https://docs.slackware.com/slackware:package_management
https://opam.ocaml.org/doc/Manual.html
https://refspecs.linuxfoundation.org/lsb.shtml
https://doc.rust-lang.org/cargo/
https://github.com/rust-lang/cargo/blob/15fbd2f607d4defc87053b8b76bf5038f2483cf4/src/cargo/core/resolver/mod.rs
https://github.com/rust-lang/cargo/blob/15fbd2f607d4defc87053b8b76bf5038f2483cf4/src/cargo/core/resolver/mod.rs
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://www.debian.org/doc/debian-policy/ch-relationships.html
https://www.debian.org/doc/debian-policy/ch-relationships.html
https://go.dev/ref/mod
https://www.haskell.org/cabal/
https://docs.npmjs.com/cli/v10/using-npm/scripts
https://doi.org/10.1109/SANER48275.2020.9054837
https://doi.org/10.1145/2000229.2000255
https://doi.org/10.1145/2000229.2000255
https://doi.org/10.1145/3183558
https://doi.org/10.1145/17919.806833
https://doi.org/10.1007/s10664-022-10278-4
https://doi.org/10.1145/3571848
https://doi.org/10.1109/MSR.2012.6224274
https://doi.org/10.1109/MSR.2012.6224274
https://doi.org/10.1007/s10009-022-00671-1
https://doi.org/10.1145/6424.315691
https://doi.org/10.1145/6424.315691
https://doi.org/10.48550/ARXIV.2302.08959
https://doi.org/10.1145/1455770.1455841
https://doi.org/10.48550/ARXIV.2409.01214
https://doi.org/10.1145/800157.805047
https://research.swtch.com/vgo-mvs
https://doi.org/10.19153/cleiej.27.2.4
https://doi.org/10.19153/cleiej.27.2.4

Solving Package Management via Hypergraph Dependency Resolution -

Computing Machinery, New York, NY, USA, 367–378. doi:10.1145/1411204.1411255

[30] Todd Gamblin, Massimiliano Culpo, Gregory Becker, and Sergei Shudler. 2022. Using Answer Set Programming for

HPC Dependency Solving. In SC22: International Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 1–15. doi:10.1109/SC41404.2022.00040

[31] Todd Gamblin, Matthew LeGendre, Michael R. Collette, Gregory L. Lee, Adam Moody, Bronis R. de Supinski, and Scott

Futral. 2015. The Spack package manager: bringing order to HPC software chaos. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis (Austin, Texas) (SC ’15). Association for

Computing Machinery, New York, NY, USA, Article 40, 12 pages. doi:10.1145/2807591.2807623

[32] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. 2011. Multi-Criteria Optimization in

Answer Set Programming. In Technical Communications of the 27th International Conference on Logic Programming
(ICLP’11) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 11), John P. Gallagher and Michael Gelfond

(Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 1–10. doi:10.4230/LIPIcs.ICLP.2011.1

[33] Wenbo Guo, Chengwei Liu, Limin Wang, Jiahui Wu, Zhengzi Xu, Cheng Huang, Yong Fang, and Yang Liu. 2024.

PackageIntel: Leveraging Large Language Models for Automated Intelligence Extraction in Package Ecosystems. arXiv
preprint arXiv:2409.15049 (2024).

[34] Jordan Henkel, Denini Silva, Leopoldo Teixeira, Marcelo d’Amorim, and Thomas Reps. 2021. Shipwright: A Human-in-

the-Loop System for Dockerfile Repair. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
1148–1160. doi:10.1109/ICSE43902.2021.00106

[35] Paul Hudak. 1996. Building domain-specific embedded languages. ACM Comput. Surv. 28, 4es (Dec. 1996), 196–es.
doi:10.1145/242224.242477

[36] Alexey Ignatiev, Mikoláš Janota, and Joao Marques-Silva. 2014. Towards efficient optimization in package management

systems. In Proceedings of the 36th International Conference on Software Engineering (Hyderabad, India) (ICSE 2014).
Association for Computing Machinery, New York, NY, USA, 745–755. doi:10.1145/2568225.2568306

[37] Peter Ivie and Douglas Thain. 2018. Reproducibility in Scientific Computing. ACM Comput. Surv. 51, 3, Article 63 (July
2018), 36 pages. doi:10.1145/3186266

[38] Chris Lamb and Stefano Zacchiroli. 2021. Reproducible Builds: Increasing the Integrity of Software Supply Chains.

CoRR abs/2104.06020 (2021). arXiv:2104.06020 https://arxiv.org/abs/2104.06020

[39] Nandor Licker and Andrew Rice. 2019. Detecting Incorrect Build Rules. In 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE). 1234–1244. doi:10.1109/ICSE.2019.00125

[40] Jiahuei Lin, Haoxiang Zhang, Bram Adams, and Ahmed E. Hassan. 2023. Vulnerability management in Linux

distributions: An empirical study on Debian and Fedora. Empirical Software Engineering 28, 2 (Feb. 2023). doi:10.1007/

s10664-022-10267-7

[41] Christian Macho, Fabian Oraze, and Martin Pinzger. 2024. DValidator: An approach for validating dependencies in

build configurations. Journal of Systems and Software 209 (2024), 111916. doi:10.1016/j.jss.2023.111916
[42] Fabio Mancinelli, Jaap Boender, Roberto di Cosmo, Jerome Vouillon, Berke Durak, Xavier Leroy, and Ralf Treinen. 2006.

Managing the Complexity of Large Free and Open Source Package-Based Software Distributions. In 21st IEEE/ACM
International Conference on Automated Software Engineering (ASE’06). 199–208. doi:10.1109/ASE.2006.49

[43] André Miranda and João Pimentel. 2018. On the use of package managers by the C++ open-source community.

In Proceedings of the 33rd Annual ACM Symposium on Applied Computing (Pau, France) (SAC ’18). Association for

Computing Machinery, New York, NY, USA, 1483–1491. doi:10.1145/3167132.3167290

[44] Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones. 2018. Build systems a la carte. In International Conference on
Functional Programming (ICFP’18). ACM. https://www.microsoft.com/en-us/research/publication/build-systems-la-

carte/

[45] HishamMuhammad, Lucas C. Villa Real, andMichael Homer. 2019. Taxonomy of PackageManagement in Programming

Languages and Operating Systems. In Proceedings of the 10th Workshop on Programming Languages and Operating
Systems (Huntsville, ON, Canada) (PLOS ’19). Association for Computing Machinery, New York, NY, USA, 60–66.

doi:10.1145/3365137.3365402

[46] Moses Openja, Forough Majidi, Foutse Khomh, Bhagya Chembakottu, and Heng Li. 2022. Studying the Practices of

Deploying Machine Learning Projects on Docker. In Proceedings of the 26th International Conference on Evaluation and
Assessment in Software Engineering (Gothenburg, Sweden) (EASE ’22). Association for Computing Machinery, New

York, NY, USA, 190–200. doi:10.1145/3530019.3530039

[47] Pardis Pashakhanloo, Aravind Machiry, Hyonyoung Choi, Anthony Canino, Kihong Heo, Insup Lee, and Mayur Naik.

2022. PacJam: Securing Dependencies Continuously via Package-Oriented Debloating. In Proceedings of the 2022
ACM on Asia Conference on Computer and Communications Security (Nagasaki, Japan) (ASIA CCS ’22). Association for

Computing Machinery, New York, NY, USA, 903–916. doi:10.1145/3488932.3524054

[48] Donald Pinckney, Federico Cassano, Arjun Guha, Jonathan Bell, Massimiliano Culpo, and Todd Gamblin. 2023. Flexible

and Optimal Dependency Management via Max-SMT. In 2023 IEEE/ACM 45th International Conference on Software

https://doi.org/10.1145/1411204.1411255
https://doi.org/10.1109/SC41404.2022.00040
https://doi.org/10.1145/2807591.2807623
https://doi.org/10.4230/LIPIcs.ICLP.2011.1
https://doi.org/10.1109/ICSE43902.2021.00106
https://doi.org/10.1145/242224.242477
https://doi.org/10.1145/2568225.2568306
https://doi.org/10.1145/3186266
https://arxiv.org/abs/2104.06020
https://arxiv.org/abs/2104.06020
https://doi.org/10.1109/ICSE.2019.00125
https://doi.org/10.1007/s10664-022-10267-7
https://doi.org/10.1007/s10664-022-10267-7
https://doi.org/10.1016/j.jss.2023.111916
https://doi.org/10.1109/ASE.2006.49
https://doi.org/10.1145/3167132.3167290
https://www.microsoft.com/en-us/research/publication/build-systems-la-carte/
https://www.microsoft.com/en-us/research/publication/build-systems-la-carte/
https://doi.org/10.1145/3365137.3365402
https://doi.org/10.1145/3530019.3530039
https://doi.org/10.1145/3488932.3524054

- Gibb et al.

Engineering (ICSE). IEEE, 1418–1429. doi:10.1109/ICSE48619.2023.00124
[49] Tom Preston-Werner. 2023. Semantic Versioning 2.0.0. https://semver.org/

[50] Giuseppe Primiero and Jaap Boender. 2018. Negative trust for conflict resolution in software management. InWeb
Intelligence, Vol. 16. IOS Press, 251–271.

[51] Md Fazle Rabbi, Arifa Islam Champa, Costain Nachuma, and Minhaz Fahim Zibran. 2024. SBOM Generation Tools

Under Microscope: A Focus on The npm Ecosystem. In Proceedings of the 39th ACM/SIGAPP Symposium on Applied
Computing (Avila, Spain) (SAC ’24). Association for Computing Machinery, New York, NY, USA, 1233–1241. doi:10.

1145/3605098.3635927

[52] Kristiina Rahkema and Dietmar Pfahl. 2022. Analysing the Relationship Between Dependency Definition and Updating

Practice When Using Third-Party Libraries. In Product-Focused Software Process Improvement, Davide Taibi, Marco

Kuhrmann, Tommi Mikkonen, Jil Klünder, and Pekka Abrahamsson (Eds.). Springer International Publishing, Cham,

90–107.

[53] Martin Schwaighofer, Michael Roland, and René Mayrhofer. 2024. Extending Cloud Build Systems to Eliminate

Transitive Trust. In ACM Workshop on Software Supply Chain Offensive Research and Ecosystem Defenses (SCORED24)
(Salt Lake City, Utah, USA). ACM.

[54] Manuel Serrano and Erick Gallesio. 2007. An adaptive package management system for scheme. In Proceedings of the
2007 Symposium on Dynamic Languages (Montreal, Quebec, Canada) (DLS ’07). Association for Computing Machinery,

New York, NY, USA, 65–76. doi:10.1145/1297081.1297093

[55] Jacob Stringer, Amjed Tahir, Kelly Blincoe, and Jens Dietrich. 2020. Technical Lag of Dependencies in Major Package

Managers. In 2020 27th Asia-Pacific Software Engineering Conference (APSEC). 228–237. doi:10.1109/APSEC51365.2020.
00031

[56] Ralf Treinen and Stefano Zacchiroli. 2009. Common Upgradeability Description Format (CUDF) 2.0. The Mancoosi
project (FP7) 3 (2009). https://www.mancoosi.org/reports/tr3.pdf

[57] Paulo Trezentos, Inês Lynce, and Arlindo L. Oliveira. 2010. Apt-pbo: solving the software dependency problem using

pseudo-boolean optimization. In Proceedings of the 25th IEEE/ACM International Conference on Automated Software
Engineering (Antwerp, Belgium) (ASE ’10). Association for Computing Machinery, New York, NY, USA, 427–436.

doi:10.1145/1858996.1859087

[58] Chris Tucker, David Shuffelton, Ranjit Jhala, and Sorin Lerner. 2007. Opium: Optimal package install/uninstall manager.

In 29th International Conference on Software Engineering (ICSE’07). IEEE, ACM, Minneapolis, MN, USA, 178–188.

[59] Lyuye Zhang, Chengwei Liu, Sen Chen, Zhengzi Xu, Lingling Fan, Lida Zhao, Yiran Zhang, and Yang Liu. 2023.

Mitigating Persistence of Open-Source Vulnerabilities in Maven Ecosystem. In 2023 38th IEEE/ACM International
Conference on Automated Software Engineering (ASE). ACM/IEEE, 191–203. doi:10.1109/ASE56229.2023.00058

https://doi.org/10.1109/ICSE48619.2023.00124
https://semver.org/
https://doi.org/10.1145/3605098.3635927
https://doi.org/10.1145/3605098.3635927
https://doi.org/10.1145/1297081.1297093
https://doi.org/10.1109/APSEC51365.2020.00031
https://doi.org/10.1109/APSEC51365.2020.00031
https://www.mancoosi.org/reports/tr3.pdf
https://doi.org/10.1145/1858996.1859087
https://doi.org/10.1109/ASE56229.2023.00058

	Abstract
	1 Introduction
	1.1 An Illustrated Resolution Hypergraph

	2 Finding the Common Pieces across Package Managers
	2.1 The Package Management Pipeline
	2.2 A Categorisation of Package Managers

	3 A Formal System for Dependency Resolution
	3.1 HyperRes
	3.2 NP-completeness
	3.3 Resolution with SAT Solvers

	4 Modelling Package Managers
	4.1 APT
	4.2 Opam
	4.3 Cargo
	4.4 Nix

	5 Bridging Ecosystems
	5.1 HyperRes for Multiple Ecosystems
	5.2 Cross-Ecosystem Resolution
	5.3 Ecosystem Translations

	6 Related Work
	7 Conclusion
	References

