Generating a corpus of Hazel programs from ill-typed
OCaml programs (Extended Abstract)

Patrick Ferris
University of Cambridge
United Kingdom

Abstract

When developing a new programming language, having a
large corpus of both correct and incorrect programs allows
language designers to test and explore the capabilities of
their new language. However, bootstrapping such a corpus
of incorrect programs is time consuming and arduous. We
therefore explore how to reuse code from more mature lan-
guages to generate a corpus of ill-typed code for newer ones.
We have developed a compiler to Hazel, an emerging lan-
guage with typed holes, from the more mature OCaml ecosys-
tem. We find it practical to generate a comprehensive corpus
of ill-typed programs for Hazel development, and discuss
future larger scale efforts towards bridging ecosystems.

CCS Concepts: « Software and its engineering — Source
code generation.

Keywords: source code generation, type errors, OCaml, Hazel

1 Introduction

Over the past 70 years, there has been a wonderful bloom of
diverse programming languages, each with its own ances-
try, variations and features [12]. It can be difficult for new
functional programming languages to meet the expectations
set by more mature languages with larger, well-established
ecosystems. Older languages have benefited from years of
compiler development and maintenance, with comprehen-
sive test suites and users with large codebases. These benefits
extend to programming language research as well, where
older languages benefit from the existence of corpuses of
ill-typed programs [10] and comprehensive fuzz testing [5].

In this abstract, we provide an example of reusing an ex-
isting language’s programs to help improve a new functional
programming language. Our goal is to explore novel ways
to quickly generate examples of ill-typed programs for the
Hazel [3] programming language, which features typed holes
and live programming environments to interactively debug
type errors. We show how we built an OCaml to Hazel com-
piler, and why such an approach may be more broadly useful
to bridge ecosystems.

2 Background

OCaml is a general-purpose functional programming lan-
guage that has been around in some form since 1996 [4].
Hazel is a new, pure functional programming language with
typed holes [8]. Both OCaml and Hazel share an ML lineage

Anil Madhavapeddy

University of Cambridge
United Kingdom

which provides just enough similarity, particularly in their
purely functional core, that compiling bidirectionally is quite
possible for a large subset of both languages.

Both Hazel and OCaml offer algebraic data types, recur-
sion and pattern-matching. Consider the following simple
code fragment in OCaml:

type itree =

| Leaf
| Branch of int * itree x itree

let rec sum = function
| Leaf -> Leaf
| Branch (i, 1, r) -=> i + sum 1 + sum r

The same type declaration and function expression follows
in Hazel instead:

type itree =
+ Leaf
+ Branch (Int, itree, itree)
in
let sum : itree -> Int = fun t -> case t

| Leaf => 0
| Branch (i, 1, r) = i + sum(l) + sum(r)
end in

There are some syntactic changes, but otherwise the two
are very similar. OCaml is a stable, conservative language
with a high degree of backwards compatibility [11]. In con-
trast, Hazel is a hotbed for programming language research
and undergoing rapid development to introduce new fea-
tures such as live literals for filling holes with GUIs [7], live
pattern-matching [13] and bidirectionally typed, collabora-
tive editors [1] (to name but a few). This makes Hazel an
exciting language to target, but difficult to keep up with!

Our overall goal is to explore Hazel’s typed holes, which
make it a very developer-friendly choice as a target language.
When developing our hazel_of_ocaml compiler, any por-
tions of OCaml code that is not straightforward to translate
could be transformed into a typed hole, making it easier to
check the validity of programs in the online editor. Using
OCaml as the source language works well, given the sim-
ilarities between the two languages and the tendency for
many OCaml programs to use straightforward functional
programming features. And in particular, this bridge would
give us a readymade source of useful programs to bootstrap
a more realistic Hazel codebase where none currently exists.

https://orcid.org/0000-0002-0778-8828
https://orcid.org/0000-0001-8954-2428

3 Implementation

We first describe how our hazel_of_ocaml compiler works
and some of the more difficult parts of the compilation. Going
forward, we use OCaml version 5. 2.0 and Hazel as of Git
commit d7a2b93.

3.1 A Transformation of Syntax

A majority of the hazel_of_ocaml compiler is a syntax-
driven transformation, thanks to the shared ML ancestry
of OCaml and Hazel. We map the OCaml abstract syntax
tree (AST) on to the Hazel AST, raising errors where non-
translatable OCaml features are used (e.g. first-class mod-
ules). The definition of itree earlier is a good example of a
syntax transformation, where a sum type uses | to separate
constructors in OCaml and + in Hazel. The tuple argument
of the Branch case is also syntactically different between the
two languages.

Some transformations also require a desugaring of OCaml
syntax. For example, disjunctive pattern-matching cases.

let rec equal eq 11 12 =
match 11, 12 with
| [1, [1 -> true
| 01, _::_ | _::_, [1 -> false
| al::11, a2::12 -> eq al a2 && equal eq 11 12

Listing 1. A higher-order equality function for lists in OCaml

The second case for equal combines the case where the
left or the right list are longer and in both cases returns
false. When compiling to Hazel, which does not support
disjunctive pattern-matching cases, these can be copied into
two separate pattern-matching cases where the right-hand
side is duplicated.

3.2 Using OCaml to Type Hazel

OCaml has a more mature type system than Hazel that sup-
ports type inference. At the time of writing, Hazel is still lim-
ited to explicit polymorphism a la System F. Using OCaml’s
type inference, we can rewrite functions in Hazel with type
quantification and where that function is used, perform the
correct type applications. For example, consider a polymor-
phic map function in Listing 2.

let rec map f = function

| [1-> 0[]

| x :: xs => f x :: map f xs
let floats = map float_of_int [1; 2; 3]

Listing 2. A recursive map function for lists in OCaml

1Hazel only supports parametric polymorphism for lists.

Ferris et al.

OCaml infers the principal type as Vaf.(a — f) —
a list — B list. In the recursive call to map in the func-
tion body, OCaml infers that the arguments are fully poly-
morphic and when creating the list of floating point numbers
it unifies & with int and § with float. Our compiler reuses
this type information to generate an explicitly polymorphic
version of the map function in Hazel.

let map :

forall a -> forall b -> (a -> b) -> [a] > [b] =
typfun a -> typfun b -> fun f -> fun xs ->

case Xs

| [1=>11

| x :: xs => f (x) :: map@<a>@(f)(xs)
end in
let floats =

map@<Int>@<Float>(float_of_int)([1, 2, 31)
in

Listing 3. An explicitly polymorphic map function for lists
in Hazel derived from Listing 2

Type quantifications are introduced in the type annota-
tion with forall and type abstractions are introduced with
typfun. The @<Int> syntax is used for type application.

4 Use Cases

With this work, we hoped to accelerate the creation of Hazel’s
ecosystem by reusing existing code from OCaml’s standard
libary and aid programming language research by providing
derived corpora of programs from other languages. These
corpora could be used in research like “Total Type Error
Localization and Recovery with Holes” or as compiler unit
tests [3, 14].

4.1 A Derived Corpus of Programs

Our primary goal with this work was to derive a corpus of
programs to help better understand how features of Hazel
might help new programmers. In their paper “Dynamic wit-
nesses for static type errors” Sedeil et al. create and use
a dataset of ill-typed OCaml programs from their UC San
Diego undergraduate programming languages course [9, 10].
We took the same dataset and derived ill-typed Hazel
programs. Whilst these do not reflect what a user might
write (Hazel’s structured editor might help or hinder novice
programmers), we do get ill-typed programs for free and can
use them to examine how Hazel’s type errors perform.
Consider the example in Listing 4, an ill-typed program
for summing a list of integers.
Using the ill-typed sumList from Listing 4 we can derive
an ill-typed Hazel program. This is shown in figure 1.
There are multiple errors being indicated by the Hazel
editor. First, the case-statement is not exhaustive. Second,
the integer plus operator (+) is inconsistent with the return

Generating a corpus of Hazel programs from ill-typed OCaml programs (Extended Abstract)

let rec sumList xs =
match xs with
[[1->1[]
| h1::h2::t -> h1 + (h2 sumList t)

Listing 4. An ill-typed OCaml program to sum an integer
list.

let sumList
forall a -> [Int] -> [,a], =5
typfun a —> fun xs -> case xs

L) 5

t = h1 # h2(sumList) (t)

Figure 1. An ill-typed Hazel program derived from Listing
4 shown in the Hazel online editor.

type of the sumList (a list). And third, h2 has been given the
integer type by the type constraint, its use as a function is
marked as incorrect.

It is possible to derive programs without using any of
OCaml’s typechecking. These programs will make use of
Hazel’s gradual type system instantiating many holes where
a type is unknown. The same example from Listing 4 when
derived without any type information is shown in figure
2. In this case, with less type information, the error is only
about the pattern-matching not being exhaustive.

= fun xs -> icase xs

=> hl + h2(sumlList)(t)

Figure 2. An ill-typed Hazel program derived from Listing
4 shown in the Hazel online editor without any type annota-
tions.

It is important to note that in this example, the ill-typed
program has gone wrong in the first case too, returning a
list where the user would want to return a zero. The type
that OCaml derived and that hazel_of_ocaml added to the
Hazel program is working against the user.

All of this is useful information for developing better type
error handling, for use as compiler unit tests and to build
better Uls to help novice programmers. This suggests another
source of ill-typed programs, the OCaml compiler’s extensive
testsuite, which has comprehensive coverage for many edge
cases that would be suitable for a Hazel corpus of typed
holes.

5 Future Work

This work has showed promise and aided in undergraduate
research into better type error debugging in Hazel. There
are plenty of avenues for further development.

Large scale compilation. Compiling larger projects from
OCaml to Hazel will require more knowledge about the con-
texts in which a portion of code is being typed. Generat-
ing Hazel code across OCaml compilation units (modules)
would likely require reusing existing tooling from the OCaml
ecosystem like Merlin and ocamldep.

Bidirectional translation. There have been adjacent ef-
forts to compile a subset of Hazel to OCaml.? Continuing this
work alongside our hazel_of_ocaml tool will create a pow-
erful, bidirectional translation between a subset of OCaml
and a subset of Hazel. OCaml developers could benefit from
Hazel’s gradual type system and typed holes when develop-
ing their programs, whilst Hazel developers gain access to
an industry-tested compiler toolchain that supports multiple
operating systems and architectures.

Supporting more OCaml. We took 65 functions from
list.ml in OCaml’s standard library and compiled them to
Hazel revealing more corners of the language to support such
as: handling external modules like Option, working around
OCaml!’s built-in, structural, polymorphic comparison opera-
tors perhaps by making functions that use them higher-order
and supporting more desugaring such as OCaml’s when syn-
tax for conditional pattern-matching.

Using typed holes. So far we have only used Hazel’s
typed holes to aid in the development of hazel_of_ocaml.
To build a more comprehensive corpus of Hazel programs
we would need to explore typed holes as an actual language
feature rather than as an escape hatch. To this end future
work could translate OCaml programs that use assertions
as a means to write partial programs or translate subsets of
other languages with full support for typed holes such as
Agda and Idris [2, 6].

The hazel_of_ocaml compiler is available under a liberal
open source license from https://github.com/patricoferris/
hazel_of_ocaml. There are plans to upstream hazel_of_ocaml
to the Hazel codebase.

References

[1] Michael D Adams, Eric Griffis, Thomas] Porter, Sundara Vishnu Satish,
Eric Zhao, and Cyrus Omar. 2025. Grove: A Bidirectionally Typed
Collaborative Structure Editor Calculus. Proceedings of the ACM on
Programming Languages 9, POPL (2025), 2176-2204.

[2] EDWIN BRADY. 2013. Idris, a general-purpose dependently typed pro-
gramming language: Design and implementation. Journal of Functional
Programming 23, 5 (2013), 552-593. doi:10.1017/S095679681300018X

[3] Hazel Developers. 2025. Hazel. https://github.com/hazelgrove/hazel

Zhttps://github.com/hazelgrove/hazel/tree/transpile

https://github.com/patricoferris/hazel_of_ocaml
https://github.com/patricoferris/hazel_of_ocaml
https://doi.org/10.1017/S095679681300018X
https://github.com/hazelgrove/hazel
https://github.com/hazelgrove/hazel/tree/transpile

(11]

(12]

(13]

(14]

Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier
Rémy, KC Sivaramakrishnan, and Jérome Vouillon. 2025. The OCaml
system release 5.3. https://ocaml.org/manual/5.3/ocaml-5.3-refman.
pdf

Jan Midtgaard, Mathias Nygaard Justesen, Patrick Kasting, Flemming
Nielson, and Hanne Riis Nielson. 2017. Effect-driven QuickChecking
of compilers. Proc. ACM Program. Lang. 1, ICFP, Article 15 (Aug. 2017),
23 pages. doi:10.1145/3110259

Ulf Norell. 2009. Dependently typed programming in Agda. In Pro-
ceedings of the 4th international workshop on Types in language design
and implementation. 1-2.

Cyrus Omar, David Moon, Andrew Blinn, Ian Voysey, Nick Collins, and
Ravi Chugh. 2021. Filling typed holes with live GUIs. In Proceedings
of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation. 511-525.

Cyrus Omar, Ian Voysey, Ravi Chugh, and Matthew A Hammer. 2019.
Live functional programming with typed holes. Proceedings of the
ACM on Programming Languages 3, POPL (2019), 1-32.

Eric L Seidel and Ranjit Jhala. 2017. A Collection of Novice Interactions
with the OCaml Top-Level System. doi:10.5281/zenodo.806814

Eric L Seidel, Ranjit Jhala, and Westley Weimer. 2016. Dynamic wit-
nesses for static type errors (or, ill-typed programs usually go wrong).
In Proceedings of the 21st ACM SIGPLAN International Conference on
Functional Programming. 228-242.

KC Sivaramakrishnan, Stephen Dolan, Leo White, Sadiq Jaffer, Tom
Kelly, Anmol Sahoo, Sudha Parimala, Atul Dhiman, and Anil Mad-
havapeddy. 2020. Retrofitting parallelism onto OCaml. Proceedings
of the ACM on Programming Languages 4, ICFP (aug 2020), 1-30.
doi:10.1145/3408995

Peter Van Roy and Seif Haridi. 2004. Concepts, Techniques, and Models
of Computer Programming (1st ed.). The MIT Press.

Yongwei Yuan, Scott Guest, Eric Griffis, Hannah Potter, David Moon,
and Cyrus Omar. 2023. Live pattern matching with typed holes. Pro-
ceedings of the ACM on Programming Languages 7, OOPSLA1 (2023),
609-635.

Eric Zhao, Raef Maroof, Anand Dukkipati, Andrew Blinn, Zhiyi Pan,
and Cyrus Omar. 2024. Total type error localization and recovery with
holes. Proceedings of the ACM on Programming Languages 8, POPL
(2024), 2041-2068.

Ferris et al.

https://ocaml.org/manual/5.3/ocaml-5.3-refman.pdf
https://ocaml.org/manual/5.3/ocaml-5.3-refman.pdf
https://doi.org/10.1145/3110259
https://doi.org/10.5281/zenodo.806814
https://doi.org/10.1145/3408995

	Abstract
	1 Introduction
	2 Background
	3 Implementation
	3.1 A Transformation of Syntax
	3.2 Using OCaml to Type Hazel

	4 Use Cases
	4.1 A Derived Corpus of Programs

	5 Future Work
	References

