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A B S T R A C T

Forest-focused Natural Climate Solutions (F-NCS) are crucial for climate change mitigation through emissions 
reductions and carbon sequestration. The Voluntary Carbon Market directs finance to F-NCS activities by the sale 
of carbon credits to offset emissions. However, inconsistent implementation and imprecise rules have led to over- 
crediting and other integrity challenges, reducing confidence in F-NCS effectiveness. Despite these concerns, 
assessments of the limitations of current protocols and how scientific advances could improve VCMs effectiveness 
have been piecemeal and limited in scope. To address this applied research gap, we review current and emerging 
methodologies for monitoring carbon impacts of forest protection and restoration activities, covering methods 
for monitoring carbon stock change, additionality, leakage, and non-durability, with an emphasis on integrating 
remote sensing (RS) technologies alongside field-based methods and emerging statistical approaches. We 
recommend 1) that the VCM needs to evolve as science advances. Carbon standards should also improve carbon 
estimates by 2) incorporating use of high-resolution maps of carbon stocks and change into standards; 3) 
establishing and sustainably financing a federated forest plots database for training and validation of carbon 
maps and testing new machine learning approaches; 4) calculate additionality for projects using causal 
inference methods that statisticians have developed for analysing changes in land cover and carbon density 
maps; 5) better understand the interaction between project and jurisdictional assessment of REDD+ projects; 
address leakage by 6) harnessing remote sensing to estimate its extent and evaluate the effectiveness of sus
tainable development measures designed to minimise it; 7) factor in non-durability upfront in F-NCS projects 
by leveraging map-based modelling of persistence. Implementation of these recommendations would improve 
accuracy and build confidence in the VCM, leading to real benefits for people, nature and the climate.

1. Introduction

Annual CO2 net emissions, which stood at 41 gigatons in 2024 
(Friedlingstein et al., 2024), will need to fall by 23 gigatons by 2030 in 
order to stand a reasonable chance of keeping global air temperature 
rises below 1.5 ◦C (Adams et al., 2021). Forest-focused natural climate 
solutions (F-NCS), which seek to protect, sustainably manage, and 
restore natural and modified forests could reduce net emissions by 16.2 
gigatons CO2e annually (Griscom et al., 2017), particularly in the tropics 
(Griscom et al., 2020), and provide substantial benefits for human 
livelihoods, biodiversity conservation and ecosystem service provision 

(Seddon et al., 2020). However, they are not currently being created at 
scales commensurate with the biodiversity and climate crises (Balmford 
et al., 2023a).

F-NCS interventions include activities that reduce emissions into the 
atmosphere by avoiding deforestation (often termed Reducing Emis
sions from Deforestation and forest Degradation; REDD+), activities that 
remove carbon from the atmosphere through afforestation, reforestation 
and revegetation (ARR), and activities that increase carbon storage in 
managed forests (Improved Forest Management; IFM). Recognition of 
their large mitigation potential has led to the integration of F-NCS into 
the net-zero commitments of many countries, which are included in 
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Nationally Determined Contributions (NDCs) to the United Nations 
Framework Convention on Climate Change (Committee on Climate 
Change, 2019; European Commission, 2020; Tong et al., 2020). For 
example, there are ambitious commitments to restore between 7.7 and 
10 million km2 of land to forest (Sewell et al., 2020). However, five years 
into the UN Decade on Ecosystem Restoration, progress in restoring and 
protecting forests falls far short of the levels needed to meet net zero 
commitments (Stanturf and Mansourian, 2020).

The voluntary carbon market (VCM) remains a key mechanism to 
channel private finance into forest conservation and restoration activ
ities (Seymour and Langer, 2021). Standards bodies, such as Verra and 
Gold Standard, regulate the market by developing protocols for moni
toring the carbon impact of projects, and calculating how many carbon 
credits (each equivalent to 1 metric ton of CO2) can be sold. However, 
recent high-profile research has argued that many F-NCS projects have 
issued far too many carbon credits through these standards (“over- 
crediting”), based on re-evaluation of available data using alternative 
statistical approaches (West et al., 2020; Badgley et al., 2022b; West 
et al., 2023). These findings have led to a lack of investor confidence in 
the processes used to generate carbon credits which is contributing to 
the failure of F-NCS to mitigate climate change at a meaningful scale 
(Balmford et al., 2023a). In addition, media attention associated with 
these publications has accused major corporations of greenwashing, 
which has further dented confidence in F-NCS crediting (Lakhani, 2024; 
Swinfield et al., 2024).

While the discourse around F-NCS crediting has led to refinements in 
voluntary carbon market methodologies for both REDD+ and ARR 
projects, the integration of Remote Sensing (RS) data into methodolo
gies remains somewhat limited. Current methods continue to heavily 
rely on a few time-consuming field measurements and expert knowl
edge, despite the emergence of transformative remote sensing technol
ogies that enable large-scale and frequent monitoring at a relatively low 
cost. In parallel, recent advances in statistical inference, and probabi
listic risk analyses applied to RS data offer potential for improving the 
reliability of F-NCS carbon credits. Yet, there is no comprehensive and 
critical review that assesses these new methods or explores how they 
could be effectively integrated into carbon verification and certification 
standards. Furthermore, Most methodological discussions have focused 
on REDD+ activities, which account for 87 % of nature-based carbon 
credits issued since 2002 (Haya et al., 2023a), while ARR (11 % of 
credits) and IFM (2 % of credits) have received less attention, though 
their share is expected to grow significantly in the coming years.

Here we address these knowledge gaps by reviewing current and 
emerging remote sensing methods for calculating carbon credits and by 
considering the transferability of methods between REDD+ and ARR 
projects. We are not addressing IFM activities as the inclusion of har
vesting makes monitoring more complex and difficult to improve via 
remote sensing; assessment of IFM carbon monitoring has also been 
conducted in detail elsewhere (see: Haya et al., 2023b). The review is 
split into four sections that evaluate approaches used: (a) to track forest 
carbon through time; (b) to measure a project’s ‘additionality’ by 
comparing changes in the project area with predictions of what would 
have happened without the project intervention; (c) to evaluate the 
extent of ‘leakage’, which occurs when prevention of deforestation or 
agricultural expansion in a project area displaces these economic ac
tivities elsewhere, and to assess the effectiveness of sustainable devel
opment activities aimed at preventing leakage; and (d) methods to 
calculate the carbon credits given the likely ‘non-durability’ of a 
project. For each section, we review pertinent advances in remote 
sensing. We also evaluate the commonalities and disparities between 
REDD+ and ARR methodological approaches and provide recommen
dations for integrating emerging methods into VCM methodologies. We 
aim for this review to support the development of more unified, scien
tifically grounded remote sensing-based approaches that strengthen the 
credibility, environmental integrity, and overall effectiveness of nature- 
based carbon credit mechanisms.

2. Tracking forest carbon stocks

Accurately quantifying forest carbon stocks across space and time is a 
prerequisite to integrating F-NCS into the Voluntary Carbon Market 
(VCM). In this section, we summarize the development of systems for 
mapping aboveground forest carbon stocks (typically reported in Mg C 
per hectare), starting with field plots and land-cover maps, through 
airborne laser scanning, to the newest generation of spaceborne radar 
and LiDAR sensors (Fig. 1). We then describe the state of VCM carbon 
measurement within this context (Section 2.2), highlighting where 
newer remote sensing techniques can support improved monitoring of 
REDD+ and ARR projects.

2.1. Advancements in carbon mapping

2.1.1. Field plots and land-cover mapping
Field plots are the foundation of all systems that track forest carbon, 

but their contribution is evolving from primary information source to 
the training and validating dataset for remotely sensing products 
(Duncanson et al., 2019). With their origins in timber inventories, these 
plots are designed to estimate aboveground biomass (AGB, the total dry 
mass of plant material contained in an area of forest) with well- 
characterized accuracy (e.g. Coomes et al., 2002), from which carbon 
stock is calculated by multiplying by carbon content (Martin and 
Thomas, 2011). AGB is not usually measured directly in forest inventory 
plots but estimated from tree height and trunk diameter, which are then 
related to biomass by per-species or per-biome allometric equations 
(Chave et al., 2014; Réjou-Méchain et al., 2017). Allometric equations 
are typically calibrated using destructively sampled (felled) trees. 
However, due to the high cost and ecosystem impact of destructive 
sampling, often merchantable timber species and young trees are over
represented in calibration, while large old trees and protected species 
are underrepresented (Jucker et al., 2022). Forest plots have been 
widely used to monitor forest AGB as data collection requires widely 
available equipment and follow finely honed protocols upon which field 
teams can be trained. However, a core limitation of forest plots is their 
restricted spatial and temporal coverage: logistical challenges involved 
in data collection typically result in sparse, spatially clustered samples 
that may not represent entire landscapes or projects, as well as sub
stantial potential for human error in measuring and recoding data 
(Cushman et al., 2023). Estimation of forest carbon from field plots has 
advanced thanks to the creation of global databases of wood densities 
(Zanne et al., 2009) and allometries (Henry et al., 2013), as well as 
standardised analysis packages (Réjou-Méchain et al., 2017). Terrestrial 
Laser Scanning (TLS) is starting to provide an extra layer of refinement – 
the high-pulse-density point clouds it produces are being used to 
generate 3D reconstructions of the aboveground volume of individual 
trees which, when combined with wood density estimates, can estimate 
AGB accurately without relying on traditional allometric models or 
destructive sampling (Demol et al., 2022).

The classic approach to estimating national / landscape-scale carbon 
stocks is to multiply the mean carbon stock within a vegetation type by 
the area of that vegetation type and then sum across all vegetation types 
(e.g. Coomes et al., 2002). Reviewing the remarkable advances in 
vegetation type mapping is beyond the scope of this review but is 
important for accurate project monitoring (but see, for example Xie 
et al., 2008, Pandey et al., 2021). Changes in carbon storage are then 
assessed by tracking deforestation, degradation and reforestation across 
regions of interest either with local or global products (Hansen et al., 
2013; Vancutsem et al., 2021; Reiche et al., 2024). Similar approaches 
are employed in the VCS and in recently published REDD+ monitoring 
approaches such as CPACT, which uses GEDI estimates of carbon stock 
to generate mean values within different land cover types (Balmford 
et al., 2024). However, one often overlooked issue related to land cover 
mapping is differences in the rates of omission and commission errors 
which lead to bias in the deforestation estimates. For example, Hansen 
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et al. (2013), has greater omission errors in the stable forest class than 
the deforestation class, leading to systematic underestimation of defor
estation in a project area (Mitchard et al., 2023). To meet IPCC good- 
practice standards, deforestation estimates based on counting pixel 
area must be adjusted for the omission and commission errors inherent 
to RS-based maps using a high-quality local reference dataset (Olofsson 
et al., 2014). Despite the longstanding use of land-use change products 
in project monitoring, such adjustments are not required as they are 

poorly understood, however could easily be incorporated into VCM 
methodologies to improve the accuracy of deforestation monitoring. 
More generally, locally calibrated maps especially those calibrated with 
TLS data (Krause et al., 2023) are likely to provide better performance 
than global maps of forest carbon stocks and land-use (Lui and Coomes, 
2015), however there is a balance to be struck between using stand
ardised global products across all projects verses potentially higher ac
curacy local products which require project level validation (Wang 

Fig. 1. The progression of forest carbon density mapping approaches illustrated using the Malaysian state of Sabah as an example region. A. Classically, field plot 
networks across a region were combined with land cover maps to estimate mean carbon density per land-cover class and multiplied by class areas to give carbon 
stocks. B. Airborne lidar surveys calibrated with data from field plots network have delivered high-resolution carbon density maps, with machine learning used to 
predict carbon density in regions which were not flown (Asner et al., 2018). C. The relationship between file plot AGB and L-band SAR backscatter can produce 
carbon maps but these saturate at low AGB, necessitating the integration of LiDAR. D. the availability of spaceborne lidar allows machine learning approaches to be 
conducted globally, using LiDAR waveform data as ground truth data, producing global maps of forest height (Ma et al., 2023), which can be used to estimate AGB 
from field or TLS data. (Land cover map in a. from Vancutsem et al., 2021, Figures in b. taken from Asner et al., 2018, SAR data in c. from ALOS PALSAR2 sensor, 
Global forest height map in d taken from Ma et al., 2023).
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et al., 2023).

2.1.2. Airborne laser scanning
Airborne laser scanning (ALS) has significantly enhanced mapping of 

AGB in natural forests at regional scales (Disney et al., 2018). Lidar point 
clouds capture the three-dimensional structure of forests by measuring 
the height and distribution of surfaces such as leaves and branches, 
enabling detailed mapping of canopy properties. ALS surveys much 
larger areas than traditional field plots, surveying regions of around 
400–1000 km2 per day. The production of native forest carbon maps for 
the Malaysian state of Sabah illustrates the utility of ALS (Fig. 1; Coomes 
et al., 2017, Asner et al., 2018, Jucker et al., 2018). A statistical model 
was developed that related lidar top-of-canopy height (TCH) to above
ground carbon density (ACD), using ALS data combined with forest plot 
data. Uncertainty was quantified and propagated using Monte Carlo 
simulations, accounting for field measurement errors, allometric model 
uncertainty, and GPS location error, yielding distributions of ACD esti
mates that reflect error at hectare resolution. Maps of ACD generated for 
areas surveyed by ALS were then upscaled to wall-to-wall coverage via a 
deep learning approach that linked LiDAR-calibrated carbon values to 
these geospatial layers (including Landsat reflectance, radar and eleva
tion) for every forested area in the state at 30 m resolution (Asner et al., 
2018). However, the maps produced by ALS has limited use for REDD+
or ARR activities, as it provides a snapshot of aboveground carbon, 
rather than tracking changes through time.

2.1.3. Early space-based remote sensing
Space-based remote sensing can overcome limitations of field and 

ALS dataset by expanding data coverage across time and space. Passive 
optical sensors are one satellite technology capable of measuring forest 
bio-optical properties by recording reflected sunlight within different 
bands of set spectral ranges. The presence and density of vegetation can 
then be estimated from these measurements by exploiting reflectance 
properties of photosynthesizing cells, quantifying the “greenness” of a 
pixel (Chakraborty et al., 2018). Active sensors, which include Synthetic 
Aperture Radar (SAR) and LiDAR, are also widely used for carbon stock 
estimation. Active sensors emit electromagnetic waves and measure the 
return signal from objects on the earth’s surface. The wavelength of the 
SAR sensors determines the extent of its penetration through surface 
objects. Both C-band SAR (3.8–7.5 cm wavelength) and L-band SAR 
(15–30 cm wavelength) have been widely used for estimation of AGB 
(Mitchard et al., 2009).

Optical, and C-band SAR sensors interact mainly with the upper 
portion of the canopy in a dense forest, whilst L-band SAR interacts with 
forest structural components like trunks and large branches of similar 
size to its wavelength, producing backscatter signals correlated with 
AGB (Mitchard et al., 2011). However, signals from optical and short- 
wavelength SAR sensors tends to saturate, reaching a threshold 
beyond which they are no longer sensitive to biomass differences. For 
example, L-band SAR has been used to provide high-resolution (10 m 
resolution) biomass estimates in low-biomass woodland (McNicol et al., 
2018), but signal saturates in high AGB forests, typically >150 Mg C 
ha− 1 (Fig. 1.b; Joshi et al., 2017). In addition, these sensors are affected 
by confounding variables, for example, passive optical signals respond 
strongly to seasonal changes in leaf greenness (Tang and Dubayah, 
2017), whilst L-band SAR effectively measures vegetation moisture 
content, therefore backscatter signals change with drought conditions 
and diurnal water cycles (Kim et al., 2016).

2.1.4. Next-generation space-based remote sensing
Since 2018, a new generation of sensors have launched that are 

explicitly designed to measure forest structure and biomass, overcoming 
many of the limitations of earlier satellites. The Global Ecosystem Dy
namics Investigation (GEDI) uses a LiDAR sensor that can penetrate 
dense forest canopies to create detailed vertical vegetation profiles and 
measure high-biomass regions without saturating (Duncanson et al., 

2022). The BIOMASS mission, launched in 2025, uses P-band (~70 cm) 
SAR, which has deep canopy penetration and primarily interacts with 
the high-biomass components of trees (i.e. large trunks) thereby signif
icantly reducing confounding seasonal effects from foliage. Further, no 
significant signs of saturation even at values greater than 300 Mg AGB 
ha− 1, have been observed, meaning BIOMASS will enable repeatable 
mapping of AGB, enhancing our understanding of deforestation, 
degradation, and regrowth in tropical forests (Ramachandran et al., 
2023). These new sensors promise to meet the criteria of global con
sistency and cost-effectiveness called for in prior research (Cook-Patton 
et al., 2021).

The Global Canopy Atlas (GCA) also represents a landmark advance 
for training and validating of new models produced by these next- 
generation sensors, offering the first harmonized, analysis-ready 
airborne lidar dataset covering over 3400 woody ecosystem sites and 
more than 55,000 km2 across all major biomes worldwide (Fischer, 
2025). As illustrated above, ALS is essential for upscaling from limited 
field datasets (Asner et al., 2018). By standardizing ALS data acquisition, 
processing, and quality control across a diverse range of landscapes, the 
atlas provides high-resolution (1 m2) maps of canopy height, terrain, 
and structural attributes that are robustly comparable between regions, 
addressing spatial, algorithmic, and metadata inconsistencies typical of 
earlier LiDAR collections. GCA will enable improved assessment of 
model performance, refinement of remote-sensing algorithms, and far 
more reliable estimation of forest carbon stocks and their dynamics 
across the world’s forests (Fischer, 2025).

2.2. Current VCM approaches to carbon monitoring across landscapes

All VCM methodologies have, until recently, relied on forest plot 
data to estimate carbon stocks (e.g. UNFCCC/CDM, 2015; VCS, 2023d). 
Whilst, remote sensing data has typically been limited to land cover and 
land-use change products for baseline estimation, selection of control 
areas and stratification of landscapes, rather than directly tracking 
changes in carbon stocks (VCS, 2015, 2020, 2023a, 2023d). For 
example, REDD+ projects have classically used land-use change maps 
(e.g. Table 1), combined with forest plots located in different forest 
strata across a project landscape, to estimate emissions following 
deforestation (e.g. Coomes et al., 2002). Meanwhile, ARR projects have 
typically relied on repeat-census plot data to estimate carbon seques
tration rates or used space-for-time substitutions, with the observed rate 
of change in plots then scaled up to the project area (e.g. Wheeler et al., 
2016).

Large quantities of field data will continue to be collected in REDD+
and ARR projects, due to its relative simplicity of use, coupled with the 
ability to collect site specific species data and engage local participants, 
promoting buy-in from communities, which often improves the success 
of project activities (Evans et al., 2018). However, currently, carbon 
standards do not require projects to submit forest plot data to any cen
tralised database, or have quality control measures in place. Forest plot 
data is a key source of calibration and validation data for all RS maps of 
forest carbon stocks and land-use. Therefore, not fully compiling and 
utilizing data collected within validated REDD+ and ARR projects 
constitutes a substantial missed opportunity. If such data were made 
available it would be an invaluable repository for calibration and vali
dation of regional and global carbon maps, greatly improving their 
accuracy.

2.2.1. Application of RS carbon mapping for REDD+
There is scope to make better use of RS derived carbon products to 

improve accuracy of avoided emissions estimates in REDD+ projects, 
beyond the widespread use of land-use change products. Rather than 
relying on a small number of field plot estimates, which are often 
spatially clustered, AGB maps (Xu et al., 2021; Santoro and Cartus, 
2023b) could offer reliable estimates that account for mean project AGB, 
AGB variability and uncertainty across a project landscape. 
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Additionally, AGB maps provide data from areas within the project 
boundary where no field data has been collected. AGB maps can have 
high pixel level uncertainties (Santoro and Cartus, 2023b), meaning 
AGB estimates of specific pixels are not always well correlated with AGB 
on the ground at a given point. However, due to large size of REDD+
projects, many >100,000 ha, averaging of predicted AGB values over 
entire project landscapes (or different strata within a project), can pro
vide reliable estimates of mean project AGB, assuming that AGB values 
are averaged over a suitable spatial scale to reduce standard error of the 
mean to an acceptable level (Duncanson et al., 2021).

The bigger challenge in carbon monitoring is for REDD+ projects 
that have degradation within the project boundary. Degradation – the 
reduction in AGB and ecosystem services within forested land – can lead 
to gradual and ongoing losses of AGB, which are much harder to detect 
and quantify using satellite data than deforestation (Gao et al., 2020). 
Whilst, advancements have been accomplished in degradation detection 
with the recent publication of global and regional maps (Vancutsem 
et al., 2021; Reiche et al., 2024), the associated emissions from degra
dation remain poorly understood (Berenguer et al., 2014). Spaceborne 
LiDAR along with ALS offer potential for better capturing degradation 

Table 1 
List of remote sensing products available for tracking land use change and AGB, with details of temporal and spatial resolution, geographic range and sensor.

Product Product type Time period Temporal 
Resolution

Spatial 
Resolution

Geographical range Sensors Source

Joint Research Council 
Tropical Moist Forest 
(TMF) land use 
change

Annual land use 
change product

1990–2022

Annual 30 m Tropical Moist forests NASA Landsat 
archive (optical)

Vancutsem et al. 
(2021)

Deforestation year & 
degradation year 
products

1982–2022

Hansen Global Forest 
Change

Forest change 2000–2023 Annual 30 m Global NASA Landsat 
archive

Hansen et al. (2013)

MapBiomas
Land cover & land 
use change 1985–2022 Annual 30 m

Latin America countries: 
Brazil, Bolivia, Colombia, 
Peru, Venezuela

NASA Landsat 
archive Souza et al. (2020)

Asian countries: 
Indonesia
Latin American biomes: 
Chaco, Amazonia, 
Atlantic Forest, Pampa

ESA CCI Above Ground 
Biomass (V4)

AGB 2010, 
2017–2020

Specific years 100 m Global

ESA Sentinel 1 A & B 
(C-band SAR) 
JAXA ALOS2- 
PALSAR2 
(L-band SAR)

Santoro and Cartus 
(2023b)

Xu AGB Change Map AGB change 2000–2019
Single time 
step 10 km Global

NASA GLAS ICESat 
(LiDAR) 
JAXA ALOS PALSAR

Xu et al. (2021)

Spawn AGB/ BGB Map AGB & BGB 2010 Specific year 300 m Global
Harmonisation of 
ESA CCI AGB & 
Bouvet et al. (2018)

(Spawn et al., 2020)

Product Product type
Time 
period

Temporal 
Resolution

Spatial 
Resolution Geographical range Sensors Source

CTrees individual tree 
AGC

AGC (tree-level) Early 2010’s Single time 
step

Tree level Rwanda

Very high-resolution 
optical imagery: 
WorldView-2, 
Ikonos, Spot and 
QuickBird 
Aerial photographs

Mugabowindekwe 
et al. (2023)

CTrees Land Carbon 
Map*

AGB 2000- 
present

Annual 100 m Global
NASA GEDI (LiDAR) 
NASA GLAS ICESat 
JAXA ALOS PALSAR

Based on Xu et al. 
(2021)

Planet Forest Carbon 
Diligence*

AGC/ Carbon height 2013- 
present

Annual 30 m Global Airborne LiDAR 
NASA GEDI (LiDAR) 
NASA Landsat 
Planet scope 
ESA Sentinel 1 & 2 
JAXA ALOS PALSAR

Planet Lab (2024)
Planet Forest Carbon 

Monitoring* AGC/ Carbon height
2021- 
present Quarterly 3 m Global

Baccini AGB Map AGB Early 2000’s
Single time 
step 500 m Tropics

NASA GLAS ICESat 
NASA MODIS 
(optical)

Baccini et al. (2012)

Saatchi AGB Map AGB Early 2000’s
Single time 
step 1 km Tropics

NASA GLAS ICESat 
NASA MODIS 
NASA QuikSCAT 
(Ku-band SAR)

Saatchi et al. (2011)

Avitabile AGB Map AGB Early 2000’s Single time 
step

1 km Tropics
Harmonisation of 
Baccini & Saatchi 
maps

Avitabile et al. 
(2016)

GEDI L4a
AGB (LiDAR 
footprints) 2019–2023 Sampling

25 m 
diameter 
footprint

±51.6◦latitude NASA GEDI Dubayah et al. (2022)

GEDI L4b AGB (Gridded) 2019–2023 Sampling 1 km ±51.6◦latitude NASA GEDI Dubayah et al. (2023)

This is a non-exhaustive list of LUC & AGB mapped products. Most global level products are presented but only a selection of regional/ national level products is 
included due to the large number of mapped products available. *These are commercial products and not available open source. https://ctrees.org/products/land-ca 
rbon
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emissions as they provide data related to forest vertical structure. For 
instance, multi-temporal ALS was used to identify tree mortality and gap 
dynamics in old-growth forests in French Guiana (Huertas et al., 2022), 
whilst GEDI was used to evaluate understory carbon losses caused by fire 
in the Amazon (Holcomb et al., 2024). However, the application of such 
approaches requires high level of technical expertise making degrada
tion monitoring challenging to implement. In addition to LiDAR anal
ysis, the BIOMASS mission, a P-Band SAR (70 cm wavelength), which is 
designed to work in high AGB forest, could be transformative for 
degradation estimates, delivering repeatable, wall-to-wall carbon loss 
mapping at scales relevant to REDD+ projects. Furthermore, guidance 
on degradation monitoring from VCM certification standards lags 
behind that of deforestation monitoring, for example, Verra have a 
dedicated tool (VMD0055; VCS, 2024) for quantifying emissions from 
deforestation but a similar tool for degradation is not yet available. 
Therefore, development of degradation monitoring in the VCM is 
needed to improve project monitoring.

2.2.2. Application of RS carbon mapping for ARR
ARR projects present distinct monitoring challenges, specifically 

related to quantifying carbon stock change, which is necessary to esti
mate ARR project carbon impacts. ARR projects often comprise of many 
small land parcels, typically under 1 ha, which complicates measure
ments and analysis. Monitoring carbon stock changes generally follows 
two main approaches, either, comparing AGB maps from different time 
points or modelling forest regrowth rates, both which have application 
within the VCM.

Some RS approaches have long-standing application in AGB mapping 
and remain valuable for ARR projects. For example, L-band SAR which 
can map carbon stock change in low AGB forests (McNicol et al., 2018), 
has application in young, planted forests. Furthermore, the availability 
of L-band SAR data from JAXA ALOS PALSAR/2 sensors since 2007 is 
beneficial in understanding carbon stock change in areas prior to pro
jects starting, which is essential for establishing project additionality. 
Such analysis is not possible for some more recent sensors such a GEDI 
which has only collected data since 2019 (Duncanson et al., 2022).

Within the VCM sector there has been a recent surge in the avail
ability of high spatial and temporal resolution AGB products, often using 
deep learning Artificial Intelligence (AI) and LiDAR. Commercial pro
viders such as Planet Labs and CTrees offer annual AGB products at 
resolutions up to 3 m from as early as 2000 (Planet Lab, 2024; Table 1). 
These products show promise for monitoring carbon stock changes at 
relevant scales for ARR projects but are not open-source and both 
require local validation to ensure regional representativeness and 
credibility within a given project landscape.

A significant challenge associated with using annual AGB maps for 
change estimation is due to high pixel-level uncertainties in AGB esti
mates, which can be between 30 and 40 % (Turton et al., 2022). This 
uncertainty can be larger than the actual change between two time 
points, making it difficult to determine whether observed differences in 
AGB stocks are real or simply the result of substantial pixel-level un
certainty. Uncertainties in AGB estimates are often due to either a 
mismatch in size between field plots and mapping pixel resolution, 
geolocation errors which make co-registration between field plots and 
RS data challenging (Duncanson et al., 2021) or limited availability of 
calibration/ validation data. Most regional/ global-level AGB products 
were developed to look at large scale trends in carbon stocks for national- 
level reporting or to feed into climate models (Harris et al., 2021; San
toro and Cartus, 2023a), thus may not be ideally suited for estimating 
local-level carbon stock change as required by VCM projects. Both ESA 
(2023) and Spawn et al. (2020), highlight this issue cautioning against 
the use of their maps for pixel-level predictions and quantifying carbon 
change between maps due to high uncertainty. For project-level 
assessment of carbon stock change it may be preferable to assess 
change over longer time intervals (e.g. every five years, which is the 
typical validation period in the VCM), rather than annually, as change 

over five years will likely exceed pixel-level map uncertainties. Aver
aging rates of carbon stock change across different project activities and 
for each cohort of planted stems will also reduce pixel-level un
certainties in estimates (Duncanson et al., 2021).

There is also a growing body of research quantifying forest regrowth 
rates at the landscape or regional scale under different climatic condi
tions or land-use history (Heinrich et al., 2021; Holcomb et al., 2023). 
For example, Heinrich et al. (2021) used a space-for-time substitution 
approach combining data on secondary forest age with AGB maps, to 
quantify rates of secondary forest regrowth across Amazonia under 
different climatic conditions. Machine learning approaches have also 
been used to quantify forest regrowth globally at 1 km resolution to 
account for spatial (Cook-Patton et al., 2020), and temporal variability 
(Robinson et al., 2024) in forest regrowth rates. These products, which 
predict forest regrowth rates, are particularly valuable for ex-ante pre
dictions of likely carbon impacts of ARR projects and therefore have 
broad application at the early stages of project development.

2.2.3. Integrating RS carbon mapping approaches into the VCM
VCM standards ideally should have carbon monitoring tools 

approved by verification bodies, which are flexible and allow for the 
inclusion of advancing RS approaches, rather relying predominantly on 
field plot data. This is beginning to be seen in newer standards bodies 
such as Isometric, which is encouraging the use of LiDAR data in project 
monitoring (e.g. Isometric, 2024). Secondly, independently verified best 
practice guidelines regarding the use of RS data for carbon monitoring, 
which is regularly updated could help support project development. This 
is where the scientific community could work more closely with in
dustry. For example, industry bodies such as the Integrity Council for the 
Voluntary Carbon Market (ICVCM) could coordinate academic working 
groups to develop best practice guidelines which it endorses, meaning 
guidance is independent of standards bodies. By following such guid
ance projects could ensure they are developing high quality monitoring 
approaches in line with state-of-the-art science and investors would 
have confidence that projects are adhering to best in class monitoring, 
which ultimately will increase the value of carbon credits generated by a 
project (Procton et al., 2024).

3. Additionality

3.1. Current approaches

Additionality is the concept that a given project must demonstrate 
that it has produced an environmental benefit (e.g. cutting emissions, 
preserving ecosystems, or generating renewable energy) that would not 
have happened otherwise. It’s the “additional” gain that can be directly 
credited to the project intervention, beyond what would naturally occur 
under business-as-usual conditions. In the case of REDD+ projects, the 
need to demonstrate additionality means that projects cannot simply 
report that deforestation has decreased within a project boundary. 
Instead, they must show that forest loss has continued at a faster rate in 
counterfactual area(s) that were initially under similar deforestation 
pressure. To be comparable, project and counterfactual sites should be 
as similar as possible, in terms of their drivers and risk of deforestation, 
ecological conditions and socio-economic context (Schleicher et al., 
2020). VCM methodologies have set out criteria for identifying suitable 
control sites, which includes variables related to rainfall, topography, 
vegetation type, population density, land tenure and governance (see 
Table S1 and Table S2). However, REDD+ methodologies have typically 
stopped short of requiring projects to use statistical matching ap
proaches (see next section), or even to provide empirical justifications of 
control site choices, relying instead on expert opinion to provide a 
narrative-based justification (e.g. VCS, 2014). Without robust data- 
driven approaches to selecting control sites, REDD+ projects are 
vulnerable to human error or deliberate exploitation, with projects able 
to cherry pick baseline scenarios with high deforestation rates, thereby 
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generating more carbon credits and profit (Seyller et al., 2016; Swinfield 
et al., 2024). Recent analyses suggest widespread over-crediting among 
REDD+ projects (West et al., 2020; West et al., 2023), generating low 
quality credits upon which major companies have grown excessively 
dependent for achieving net-zero targets (Trencher et al., 2024). A 
consequence of over-crediting is perceptions that REDD+ projects are 
high-risk investments, this has led to ongoing updates to REDD+
methodologies to improve perceptions of project across the sector.

A second problem is that the VCM has principally relied on static 
baselines for calculating additionality (VCS, 2014, 2023a). Under this 
approach, the baseline is calculated every 10 years using historical in
formation rather than being adjusted dynamically as circumstances 
change (e.g. VCS, 2014, 2023a). For REDD+ projects, historical rates of 
forest loss are compared between the project and control areas in the 10 
years preceding the project and used to predict the likely carbon impact 
(i.e. ex-ante predictions) of the project (e.g. Guizar-Coutiño et al., 2022), 
assuming the same trends would continue in the absence of the project. 
This reference point is set when the project’s crediting period begins and 
remains unchanged throughout that period, even as local forest condi
tions, land use pressures, or broader environmental factors may shift 
over time. While static baselines provide clarity and ease of calculation 
for project developers anticipating the volume of carbon credits, they 
may lose accuracy if actual ecological or socio-economic trends diverge 
from original assumptions, potentially resulting in the over- or under- 
issuance of credits. For example, deforestation rates can be heavily 
influenced by shifts in government policy, such as those observed in 
Brazil following changes in government (Silva Junior et al., 2021; 
Rodrigues, 2023). This has led to calls for the introduction of dynamic 
baselines, with some newer standards bodies such as Isometric, adopting 
dynamic baselines within F-NCS methodologies (Isometric, 2024). 
Despite the potential benefits of dynamic baselines, we acknowledge 
that it may not always be feasible to use them due to lack of appropriate 
data, high variance in the matching variables, or inability to find good 
matches, especially in regions with high deforestation, where the only 
non-deforested areas are already protected.

For ARR projects, the baseline scenario is usually relatively simple to 
determine: the forest has already been disturbed or clear cut, and the 
baseline scenario is often business-as-usual. For this reason, ARR pro
jects have typically made before-after comparisons of carbon stocks, 
without comparing against counterfactual sites. Some protocols specify 
that project areas must have been unforested for the 10 years preceding 
the project, with very limited chance of recovering without project ac
tivities (e.g. Gold Standard, 2020). An issue with this approach is that 
landowners who periodically clear woodlands naturally establishing on 
their economically marginal farmland are ineligible to receive carbon 
credits and have no incentive to protect, rather than clear, these early 
successional forests. This is likely shortsighted as natural establishment 
is a potentially low cost and effective option for sequestering carbon 
(Chazdon et al., 2016; Brancalion et al., 2024). The lack of counterfac
tual comparisons in early ARR projects also make it more challenging to 
incorporate natural regeneration in project areas, as the more simplistic 
before-after comparison makes a de-facto assumption that all carbon 
sequestered within project areas is additional. However, this thinking is 
beginning to be challenged with more complex ARR methodologies 
which use counterfactual sites being introduced such as Verra VM0047, 
and Isometric Reforestation methodologies (VCS, 2023b; Isometric, 
2024).

3.2. Research advances

Recognition of the need for robust counterfactuals has driven the 
rapid development of more sophisticated “causal inference” or “quasi- 
experimental” approaches for project evaluation. These approaches are 
statistical methods that create comparable groups for causal inference in 
observational studies where randomisation is not possible (Ferraro, 
2009). Developed for econometric analysis in the 1960s, matching 

approaches have become widely used to assess the impacts of conser
vation and sustainable development programmes, such as the effec
tiveness of protected areas and payments for ecosystem services schemes 
(Ferraro et al., 2015; Oliveira Fiorini et al., 2020). In the context of 
REDD+ this means identifying areas that are under similar levels of 
threat from deforestation as the project (Ferraro et al., 2015, Oliveira 
Fiorini et al., 2020), whereas for ARR projects this means identifying 
areas with a similar likelihood of undergoing restoration. These include 
approaches that (a) match pixels (or clusters of pixels) within project 
areas with pixels in the surrounding landscape that face a similar risk of 
deforestation and (b) matching a few project-size patches (synthetic 
controls). An overview of causal inference approaches are provided in 
Supplementary Information. A study that included 43 REDD+ projects 
showed that these causal inference approaches on average produced 
only 22 % of the carbon credits generated by first-generation VCS 
methods, suggesting that project developers have previously made 
methodological decisions that advantaged the projects financially by 
issuing more carbon credits than was justified (Haya et al., 2023; 
Swinfield et al., 2025), suggesting that integration of these approaches 
into VCM methodologies is warranted.

3.2.1. Integrating causal inference approaches into the VCM
Verra’s VM0048 is a new, consolidated methodology, focusing on 

standardizing how deforestation risk and project baselines are deter
mined to improve transparency and integrity in voluntary carbon mar
kets. Instead of letting each project create its own reference region and 
baseline, VM0048 assigns baselines set at the jurisdictional (region or 
country) level using satellite-derived risk maps provided by Verra, not 
by the project developer directly. These risk maps allow for consistent 
and transparent allocation of crediting baselines across entire regions, 
helping to avoid inflated emission reductions from optimistic local es
timates. Projects submit their specific geographic area to Verra, which 
then supplies an Activity Data report defining the expected baseline 
emissions for that area, based on mapped deforestation risk. Actual 
deforestation (measured by ongoing monitoring) is compared against 
this baseline to determine the credits issued. Reassuringly, a study of 
Colombian REDD+ projects found that this risk map approach generated 
similar estimates of additionality to the pixel- and patch-based ap
proaches described in the supplementary information, i.e. were aligned 
with other causal inference approaches (Pankhurst, 2025; Swinfield 
et al., 2025). Jurisdictional approaches are garnering support from ac
ademics and businesses to rebuild confidence in F-NCS (von Essen and 
Lambin, 2021; DeFries et al., 2022; Barata, 2024). Additionally, the 
ICVCM has recently approved the VM0048 methodology, and Verra has 
mandated that all its REDD+ projects must transition to it by the end of 
2025 (Verra, 2025). Meanwhile, ART TREES v2.0 (Architecture for 
REDD+ Transactions, 2023) provides an architecture for project-level 
implementation alongside jurisdictional accounting. These VCM initia
tives align well with long-standing United Nations ambition to create a 
new global carbon market, under Article 6.4 of the Paris Agreement 
Crediting Mechanism. However, governance issues such as distribution 
of benefits remain a considerable challenge (Streck, 2021).

Remote sensing is central to the implementation of these emergent 
approaches for assessing the additionality of REDD+, by producing 
maps of the drivers of deforestation/degradation risk to be updated 
regularly (Sims et al., 2025), as well as tracking carbon stocks through 
time (as reviewed above). To give one example of driver mapping, roads 
are among the strongest predictors and primary facilitators of forest loss, 
especially in tropical regions, with road expansion opening previously 
intact and remote forests to a range of destructive activities. Recent 
studies have achieved significant progress in mapping small roads in 
tropical regions using remote sensing, overcoming previous obstacles 
related to dense vegetation, persistent cloud cover, and the subtlety of 
informal routes (Sloan et al., 2024). Specifically, application of con
volutional neural networks to high-resolution satellite imagery to 
automatically detect both legal and illegal roads in tropical forests 
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reveal much greater road networks than official records indicated 
(Slagter et al., 2024).

New remotes sensing approaches are also making their way into ARR 
methodologies. VM00047 now addresses the challenge of monitoring 
carbon stock change by allowing project developers to use remotely 
sensed “stocking indices” as proxies for AGB, provided these indices’ 
correlation to field measurements is rigorously demonstrated. This is 
illustrated by a recent approach to monitoring land-use transitions, such 
as converting degraded pastures to species-rich agroforestry. TESSERA 
is a geospatial foundation model that derives embeddings: multidi
mensional features generated using deep neural networks from times- 
series of Sentinel 1 and 2 imagery (Feng et al., 2025). These embed
dings were used in combination with GEDI LiDAR height metrics and 
random forest regression to construct a stocking index. This index, after 
validation and calibration with in situ biomass data from multiple 
agroforestry sites, demonstrated superior performance to several lead
ing global canopy and AGB products. Ultimately, this advancement ex
emplifies the shift under VM00047 towards scalable, transparent, and 
accurate carbon monitoring frameworks that are fully aligned with the 
capabilities of today’s Earth observation and machine learning 
technologies.

4. Leakage in F-NCS

4.1. Current approaches

Leakage – the displacement of economic activities away from a 
project area - significantly undermines climate benefits (Filewod and 
McCarney, 2023; Daigneault et al., 2025). Its impacts are often under
estimated, leading to up to 70 % over-crediting of REDD+ credits 
(Filewod and McCarney, 2023). Local leakage, often termed ‘activity 
shifting’ leakage, occurs when subsistence activities, such as swidden 
agriculture, move immediately outside project boundaries (Streck, 
2021). Market leakage arises when deforestation is displaced to other 
regions, potentially geographically distant, due to reduced commodity 
supply. For example, the Soy Moratorium in the Brazilian Amazon 
reduced soy-related deforestation but led to increased production in the 
Cerrado region about 1000 km away (Magalhães et al., 2020). The 
complexities of global supply chains, and the difficulties of attribution to 
specific projects within a jurisdiction complicates efforts to address 
leakage comprehensively (Meyfroidt et al., 2020; Streck, 2021). For ARR 
activities, market leakage is less likely, as the probability that ARR 
projects will take place in areas producing commodity crops on a com
mercial scale is low, due to high opportunity costs. Indeed, Gold Stan
dard does not even account for market leakage in their methodology 
(Gold Standard, 2023). However, the exception is reforestation of low- 
productivity grazing lands used to rear beef cattle, which could lead 
to market leakage (i.e., displacing cattle rearing to newly deforested 
areas) unless it is associated with sustainable intensification of produc
tion. Sustainable intensification is possible where cattle ranching occurs 
at very low densities, such as in the Brazilian Atlantic Forest, where even 
moderate intensification could free up large areas of land for other uses 
(da Silveira et al., 2022).

Currently the VCM suggest that projects undertake leakage miti
gating activities, but they are not obligatory and there are limited re
quirements to quantify their efficacy (Streck, 2021). Mitigation actions 
can include economic opportunities for locals that would reduce con
version (e.g. employment outside of forestry), sustainable increases in 
production of agricultural crops or timber resources to meet local de
mand or helping communities to secure land tenure which may incen
tivise land holders to reduce clearance (e.g. VCS, 2014). F-NCS projects 
are required to quantify the carbon emissions associated with local 
leakage, based on the assumption that any mitigation actions will reduce 
the rate of leakage. For both ARR and REDD+ projects, across standards 
bodies, relatively similar approaches are used to quantify local leakage. 
Understanding of the spatial dynamics of pre-project activities and the 

likely area where leakage will take place is necessary to calculate 
leakage emissions. Certifiers assume projects have some knowledge of 
where leakage will occur, but this is challenging due to displacements 
beyond national boundaries, time lags in supply responses and the ef
fects of a single project not being large enough to be noticed at a market- 
level (Henders and Ostwald, 2012; Streck, 2021). Furthermore, evidence 
for justifying leakage claims is often minimal, with many projects using 
the lowest possible discount factor available (Atmadja et al., 2022; Fil
ewod and McCarney, 2023).

4.2. Improving leakage estimation and mitigation in the VCM

Improvements to quantification of local leakage can be achieved via 
quasi-experimental pixel matching approaches, such as those outlined in 
Section 3 and supplementary information. Such approaches have been 
used to quantify carbon losses resulting from local leakage in REDD+
projects certified under the VCS (Guizar Coutiño, 2023), and are reliant 
on RS data to identify suitable leakage counterfactuals and track land 
use change through time. The key difference between using such ap
proaches for leakage estimation rather than additionality, is that 
matches are made between a pre-defined leakage belt around a project 
area, and its surrounding landscape (Guizar Coutiño, 2023). Another 
proposed enhancement for addressing market leakage is adopting a 
jurisdictional approach (Seymour, 2020; VCS, 2023c), as leakage asso
ciated with deforestation is captured in national greenhouse gas ac
counting (Streck, 2021). However, this method faces challenges. For 
instance, cross-boundary shifts in deforestation have been observed 
after implementing national forestry policies that restrict timber har
vesting (Meyfroidt and Lambin, 2009), meaning jurisdictional ap
proaches may not capture all market leakage and cross-jurisdictional 
approaches may be needed. Additionally, these approaches apply pri
marily to avoided deforestation activities transitioning to jurisdictional 
methods (e.g. VM0048; VCS, 2023c) and are not suitable for ARR pro
jects where jurisdictional approaches are not being considered. To 
address the trans-boundary nature of market leakage modelling ap
proaches, rather than purely remote sensing derived approaches, may 
show more promise, approaches using Global Timber models and GTAP 
(Global Trade Analysis Project) models have both been used to quantify 
leakage due to market shifts (Villoria et al., 2022). These approaches 
may improve carbon accounting in the face of leakage, but do not 
address the underlying causes of the problem. Efforts are being emerging 
to improve leakage mitigation in ARR projects such as the Verra 
ABACUS label, launched in 2023, which combines dynamic addition
ality baselines with stronger constraints on avoiding displacement of 
food production to mitigate leakage (Verra, 2024).

Building sustainable development into REDD+ and ARR projects 
benefits local people and reduces the chance of leakage. For example, 
crop yields produced by subsistence farmers are often well below what is 
possible (van Ittersum et al., 2016), so providing with higher-yielding 
crop varieties and agronomic training could spare land for reforesta
tion (Phalan et al., 2016; Woittiez et al., 2017). Similarly, fuel-efficient 
stoves can reduce wood consumption if charcoal production drives 
deforestation (Bensch et al., 2021). A considerably body of recent work 
demonstrates that remote sensing can be used to accurately measure 
certain aspects of human development, especially economic well-being 
(Wang et al., 2025), which correlates with local leakage through the 
environmental Kuznets curve (Caravaggio, 2020). However, remote- 
sensed indices can be inaccurate, and indices trained in one geography 
may generalize poorly. Thus, field based evaluation of the effectiveness 
of sustainable development programmes linked to carbon credits are 
needed.
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5. Durability of F-NCS

5.1. Current approaches

Carbon stocks in forest ecosystems are at risk of depletion due to 
degradation or land-use conversion, potentially releasing previously 
sequestered carbon. This vulnerability raises concerns about the 
continued additionality of F-NCS projects, as significant carbon losses 
may occur, jeopardizing their intended impact. Currently, to mitigate 
the risk of non-durability, F-NCS projects typically allocate 20 % of their 
generated credits to a buffer pool, which serves as insurance against 
future reversals, such as small fires within the project boundary (Gold 
Standard, 2023, Plan Vivo, 2024). In such circumstances projects are 
required to ‘pay back’ these emissions into the buffer pool using unsold 
credits. If reversals occurred during the project’s life, buffer credits are 
cancelled from the pool to cover those losses, safeguarding buyers from 
non-permanence risk.

The simplicity of the buffer pool approach makes it appealing for the 
VCM; however, this approach has two significant flaws. Firstly, it as
sumes that people living in or around the project area, including people 
who migrate into a project area, will maintain tree cover without 
financial incentives past the end of the project (Balmford et al., 2023a). 
Secondly, after catastrophic events such as wildfires, there may be 
insufficient credits in the buffer pool, essentially meaning high-risk 
projects may need to buy credits from lower-risk projects, effectively 
requiring lower-risk projects to compensate for higher-risk ones. Cal
ifornia’s experience illustrates these limitations, with wildfires depleting 
20 % of the total buffer pool and 95 % of the wildfire-specific pool in less 
than a decade (Badgley et al., 2022a). This rapid depletion challenges 
the effectiveness of buffer pools in ensuring long-term carbon storage, 
especially in fire-prone regions, and suggests that changes are needed to 
build confidence in nature-based carbon credits.

Several factors increase the risk of non-durability. Firstly, ARR pro
jects need to persist for decades to sequester substantial carbon (Poorter 
et al., 2016). However, regenerating forests are often at high risk of re- 
clearance at relatively young ages (Reid et al., 2019). In Latin America 
alone, an estimated 4.15 million hectares of regenerating forest were 
re-cleared between 2000 and 2014, representing 70 % of all regener
ating forests (Schwartz et al., 2020). Secondly, climate change poses 
significant challenges to the durability of carbon storage in F-NCS pro
jects, as increasing disturbance rates from drought, fire, and storms, lead 
to widespread tree mortality (Anderegg et al., 2020) and heightened 
risks of reversals. While climate change can contribute to non-durability, 
ARR and REDD+ projects can still offer climate benefits if carbon re
leases are accounted for and do not exceed additionality (Balmford et al., 
2023b; Rau et al., 2024). Finally, anthropogenic factors significantly 
influence project durability, as human interactions in forest landscapes 
create variability in outcomes (Gregorio et al., 2020; Nerfa et al., 2021). 
Evidence suggests, that in the case of restoration, social rather than 
ecological factors, are more important in determining durability (Nerfa 
et al., 2021), emphasizing the need for ARR activities to address local 
community needs to incentivise long-term maintenance of forest cover.

5.2. Improving durability assessment in the VCM

There is a clear need to improve on the current buffer pool approach 
used across the VCM, which is out of step with the risk to forest cover in 
the coming decades (Anderegg et al., 2020). Recent research has sug
gested that a better approach would be to consider F-NCS credits as 
impermanent, acknowledge the benefits of impermanent carbon storage 
and build mechanisms to account for potential reversals (Matthews 
et al., 2022). Non-durability of nature-based carbon credits can be 
measured by continuing to monitor –after project funding has ended - 
any changes in carbon stocks in project areas compared to carefully 
matched counterfactual sites, enabling the quantification of any subse
quent reversals over time. Non-durability is quantified as a decline in 

this additionality through, for example, deforestation or fire; these 
events can thus be precisely dated and measured using remote sensing 
technologies. This dynamic, data-driven approach means that non- 
durability can be quantified retrospectively (Balmford et al., 2023b; 
Matthews et al., 2023). The complication, though, is that non-durability 
must be factored into the up-front price because these credits may only 
deliver climate benefits temporarily before the stored carbon is even
tually released due to events like deforestation and fire. To ensure that 
the price reflects the true, time-bound climate value, the market could 
use the concept of “equivalent permanence” which discounts the value 
of temporary carbon storage relative to permanent sequestration (Rau 
et al., 2024). This is done by forecasting potential future reversals and 
reducing the credit’s value according to the expected social cost of these 
releases. By pricing in the risk of reversal and “discounting” the future 
release, the up-front cost of an impermanent credit fairly reflects its 
adjusted climate benefit compared to a durable offset option. This is a 
modelling rather than remote sensing approach (Balmford et al., 
2023b), nevertheless RS data is fundamental input data for modelling 
across project landscapes and therefore is essential to predict the likely 
durability of F-NCS projects.

An alternative approach is to make F-NCS carbon credits valid for a 
fixed period (e.g. 10–20 years) and stipulating that buyers must pur
chase credits again, if they wanted to ensure emissions are fully offset 
(Hunnable et al., 2024). These repeat purchases would either be buying 
more F-NCS carbon credits or permanent carbon credits, from techno
logical carbon drawdown projects such as direct air carbon capture and 
storage (DACCS). This approach has several benefits. Firstly, if future 
purchases were for technological credits this would provide an addi
tional 10–20 years to develop the technology to help reduce imple
mentation costs and increase supply (Küng et al., 2023). Secondly, in 
another 10–20 years several international commitments to halt defor
estation (UKCOP26, 2021) and restore large areas of land (Sewell et al., 
2020) should be well underway, and the VCM would be far more 
developed in terms of the methodologies. Therefore the ‘early’ VCM 
nature-based credits being issues now, which are relatively cheap 
(World Bank, 2023) but have more uncertainties related to durability, 
should be superseded by high quality credits that are developed within a 
very different land use change policy landscape, and could have greater 
assurances of being durable. However, there are also challenges for this 
approach. There is no real mechanism to force buyers to repurchase 
credits. Further, even if legal frameworks were developed to ensure 
repurchase, one cannot guarantee credit purchasing entities will 
continue to exist, so the responsibility for repurchasing becomes un
clear. Unless this issue is resolved F-NCS might simply be removed from 
VCMs because they are regarded as risky investments compared with 
engineering solutions.

6. A case study: contributions of remote sensing to evaluating 
the effectiveness of the Gola REDDþ project

Gola Rainforest National Park (henceforth Gola) in Sierra Leone is 
one of the largest remaining tracts of mature lowland moist forest in 
West Africa, covering an area of approximately 750 km2 (Fig. 2a). It 
represents a critical habitat for biodiversity conservation: hosting over 
60 threatened species, including chimpanzee and pigmy hippo, and over 
160 tree species; Gola also stores and sequesters significant carbon 
(Lindsell and Klop, 2013). Natural forests in West Africa are under 
immense threat: deforestation rates are double the tropical average, 
attributable largely to expansion of cacao production and swidden 
agriculture (Goldman and Weisse, 2024). The landscape around Gola is 
predominantly used for shifting agriculture on nutrient poor soils, 
involving the creation of small fields that are cultivated for just a few 
years before abandonment and gradual succession back to forest 
(Fig. 2b). Biodiversity conservation work began in 2004, supported 
entirely through donations. In the hope of securing more long-term 
support for conservation and sustainable development, two charities 
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partnered with the Sierra Leonean government to create a not-for-profit 
company, which aimed to generate income through a REDD+ pro
gramme registered with Verra. The project began in 2012 and is 
scheduled to continue until 2042 (RSPB, 2021). To measure carbon 
stores using VCS methodologies, a network of 639 forest plots (each 
0.125-ha) was established in 2006 (Lindsell and Klop, 2013). Using the 
Verra standard, it was estimated that the project would generate 
439,000 carbon credits per year within its first decade (RSPB, 2021).

The Gola REDD+ project has worked closely with remote sensing 
scientists, advancing approaches for the mapping of LULC mapping, 
forest biodiversity, forest disturbance and carbon. Neural networks were 
used to create accurate land cover maps, based on high-resolution op
tical imagery combined with L-band SAR imagery (Vaglio Laurin et al., 
2013) while spectral unmixing approaches were used to map the com
plex land uses around Gola (Lui and Coomes, 2015). In addition, an ALS 
and hyperspectral survey, conducted in 2012, provided opportunities to 
evaluate cutting-edge high-resolution approaches. These studies showed 
that forest carbon can be mapped with greater accuracy if hyperspectral 
data is used alongside well-developed lidar approaches (Vaglio Laurin 
et al., 2014b). About a third of Gola was selective logged in the 
1960–1990 period and, although detailed records had been lost, the 

legacies of logging persist (Lindsell and Klop, 2013). Airborne lidar is 
effective at detecting now-subtle differences in forest structure between 
intact and logged forests (Kent et al., 2015) and hyperspectral imaging 
can map tree species richness, opening new opportunities to track 
ecological recovery through time (Vaglio Laurin et al., 2014a). How
ever, given the prohibitive costs of airborne lidar and hyperspectral 
surveys, the adoption of these cutting-edge approaches has thus far been 
limited in the VCM, although airborne remote sensing has played a vital 
role in calibrating spaceborne sensors such as GEDI (Duncanson et al., 
2022).

The Canopy PACT Tropical Moist Forest methodology (see Section 
5.2 for overview and Balmford et al. (2024) for details) uses a combi
nation of remote-sensing, causal-inference and risk-analysis approaches 
to generate estimates of additionality, local leakage and the conse
quences of non-durability (Fig. 2.c). For additionality calculations, 
Canopy PACT uses pixel-based within-country matching, based on 
pairing control and project pixels that have similar deforestation pres
sures, based on seven well-recognised drivers of deforestation (Fig. 2.c). 
Avoided deforestation is calculated by comparing deforestation rates 
within these matched pixels, using the TMF land cover product 
(Vancutsem et al., 2021) of the wet tropics as the source of deforestation 

Fig. 2. The Gola REDD+ project in Sierra Leone illustrates several of the concepts discussed in this review. (a) This carbon-dense and biodiverse remnant of 
rainforest sits within the increasingly human-dominated landscapes of West Africa; (b) outside the boundaries of Gola, the land is largely used for shifting agriculture 
and cacao production; (c) additionality and leakage associated with the REDD+ project can be assessed used pixel-matching approaches; along with forest carbon 
density measurements made by GEDI, a space-borne lidar sampler; (d) the cost of each carbon credit needs to be adjusted upwards from market prices based on older 
approaches, in recognition that recently employed matching approaches tend to generate fewer carbon credits and that adjustments are needed to account for local 
leakage and the likely non-durability of nature-based climate solutions; note that values given in this table are illustrative only. An advantage of this approach is 
comparability of prices against other climate change mitigation solutions such as low-emission concrete and direct air capture.
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data (see time series in project and control pixels in Fig. 2.c). Emissions 
reductions are then calculated by multiply the average forest carbon 
stock, based on foot-print-level biomass estimates from GEDI (Dubayah 
et al., 2022). A similar approach is used to estimate local leakage, this 
time matching forested pixels in the project’s buffer area with pixels 
under similar deforestation pressure across the wider landscape; leakage 
reduces the number of carbon credits produced by a project (i.e. the 
leakage adjustment of 0.4 in Fig. 3.d, which is illustrative). Under the 
pessimistic scenario that, once the REDD+ project ends in 2042, 
deforestation will accelerate to twice the rate observed in counterfactual 
pixels, the Canopy PACT approach is able to make a further adjustment 
to accommodate the impacts of non-durability, based on financial-risk 
analysis approaches (i.e. the non-durability adjustment of 0.32 in 
Fig. 2.d, which is also illustrative). Significantly fewer carbon credits 
tend to be generated by applying the Canopy PACT methodology than 
issued by VERRA using its standards. The hope is that purchasers of 
carbon credits will have greater trust in these methodologies, translating 
into a willingness to pay considerably more for each carbon credit 
(Fig. 2.d). Preliminary analyses based on these approaches suggest that 
carbon credits generated by F-NCS are often cost effective than engi
neering solutions such as direct air capture and reduced-emissions 

concrete production (Swinfield, 2023), and deploying these solutions 
now is far cheaper than repairing the damage caused by greenhouse gas 
emissions later Balmford et al. (2024).

Sustainable development within a buffer zone around Gola is a 
central aim of the REDD+ project. Socio-economic impacts have been 
evaluated using a BACI framework: the treatment group comprised 126 
communities within the 4-km buffer zone around Gola (Malan et al., 
2024). The control group comprised 328 communities that are 4–20 km 
from the park boundary. For control and treatment groups, deforestation 
statistics taken from the Hansen maps and aggregated to village level 
(Wilebore and Coomes, 2016) were compared for the period 
2001–2018, covering before and after the REDD+ project started in 
2014. Household survey data was collected in before and during the 
project’s implementation, from REDD+ and non-REDD+ communities. 
By examining forest loss in eight other protected areas in Sierra Leone, 
the study confirmed that Gola is successful at reducing deforestation. It 
also reduced deforestation in buffer zone communities by 30 % 
compared to control areas. The program appears to have shifted labour 
away from forest-clearance-dependent farming by increasing the value 
of alternative income sources like cacao and other non-timber forest 
products. The social survey revealed no significant impact on economic 
wellbeing or conservation attitudes, which may reflect the relatively 
modest income generated from the sale of carbon credits, particularly 
after the administrative costs are factored in.

The Gola case study highlights opportunities for transforming 
voluntary carbon markets using emergent technologies but also iden
tifies some significant challenges. Remote sensing technologies are 
rapidly advancing on multiple fronts. It is not clear which products are 
best in which circumstance, and we should recognise that different ap
proaches will generate different numbers of carbon credits. Unfortu
nately, this means that “standards” which are supposed to underpin the 
market become outdated and outmoded as technology improves, as 
happened with Verra standards (West et al., 2020). Further, we must 
recognise that additionality and leakage calculations are fundamentally 
modelling exercises attempting to understand what would have 
happened in the absence of a project, and as such are sensitive to arbi
trary choices made in the modelling process. We now know that addi
tionality calculated by various matching approaches are more consistent 
with one another than they are with legacy Verra methodologies 
(Swinfield et al. In review) but differences can still be substantial. Un
fortunately, the VCMs have given insufficient thought to these problems.

7. Discussion

The Voluntary Carbon Market (VCM) aims to channel private finance 
towards F-NCS activities to mitigate climate change while providing co- 
benefits for biodiversity and livelihoods. Although the VCM alone 
cannot fully address climate change impacts, the emission reductions 
and removals it facilitates can create a viable path to decarbonization, 
allowing more time for phasing out fossil fuels and reducing peak 
warming (Griscom et al., 2017; Girardin et al., 2021). To achieve these 
goals, emissions from F-NCS projects must result in real changes on the 
ground (Greenfield, 2023; West et al., 2023). In this review we have 
assessed the limitations of existing VCM methodologies and outlined the 
latest research advances which have potential to improving on the status 
quo.

Recent research has revealed over-crediting in REDD+ projects 
(West et al., 2020; West et al., 2023), emphasizing that more statistically 
robust methods such as pixel matching can enhance project monitoring 
(Guizar-Coutiño et al., 2022). Current VCM methodologies are also 
likely to underestimate leakage (Atmadja et al., 2022; Filewod and 
McCarney, 2023), and the buffer pool approach is inadequate for 
addressing non-durability (Badgley et al., 2022a). Certifiers are updat
ing methodologies in response to these issues (e.g. VCS, 2023c, b). 
However, most of the developments have been around baseline setting 
and selection of reference areas; other areas of project monitoring, 

Fig. 3. Recommendation for improving F-NCS project monitoring and better 
incorporating scientific advances for carbon, additionality, leakage 
and permanence.
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including carbon estimation, leakage and permanence, have not 
received the same level of attention within methodologies, with scien
tific advances outpacing developments. Furthermore, whilst recent 
Verra methodologies (e.g. Verra’s VM0047 & VM0048) both update 
baseline setting using more dynamic approaches, they have tackled 
baselines in very different ways, with REDD+ methodologies moving 
towards jurisdictional approaches and ARR methodologies using a 
project level approach, making integration of REDD+ and ARR activities 
across a region challenging.

The issue of over-crediting is one of the biggest hurdles that needs 
overcoming to improve accuracy in F-NCS project monitoring. Most 
criticism so far has been related to poor baseline setting (Section 3.1) 
and how broad rules allow for ‘gaming the system’ (Seyller et al., 2016). 
Recent research suggests that using impact evaluation techniques such 
as pixel matching (Schleicher et al., 2020) are likely the most promising 
approach for accurate assessment of project carbon impacts (Swinfield 
et al., 2025) and are also compatible with dynamic baseline approaches 
(Section 3.2). Here we provide a set of recommendations for project 
developers and standards bodies-and, to a lesser extent, credit 
purchasers-outlining how to improve monitoring of F-NCS projects by 
embracing recent advances in remote sensing, computer science and 
statistics (Fig. 2). These recommendations are not designed to compre
hensively capture all areas that require development, but rather high
light specific points where we feel scientific advancements and 
technology are able to make useful contributions.

7.1. Co-evolution of standards and science

1) Industry & standards that evolve as the science does: We 
recommend that the VCM community adopt a structured approach to 
integrating emerging insights from academic and space agency 
research, ensuring that standards evolve in line with robust and 
maturing evidence. Specifically, VCM methodologies should explic
itly recognise that F-NCS projects extend beyond carbon metrics and 
must incorporate co-dimensions such as albedo, disturbance dy
namics, below-ground processes, and leakage (Ellis et al., 2024).

Where the evidence base is already strong, e.g. satellite-derived as
sessments of albedo (Hasler et al., 2024; Healey et al., 2025), methods 
should be updated without delay; in areas where near-term advances are 
imminent, such as remote sensing of degradation (Holcomb et al., 2024), 
frameworks should be prepared for rapid integration; and in domains 
where evidence is still contested, such as methane fluxes (Gatica et al., 
2022; Gauci et al., 2024) and impacts of trees on below-ground pro
cesses (McKinley, 2019; Friggens et al., 2020), methodological caution 
and ongoing review are necessary.

Given that global-scale leakage estimation demands complex system 
models beyond the capacity of individual projects (Daigneault et al., 
2025), these issues should be addressed collaboratively at the standard- 
setting level rather than through project-level requirements that push 
additional costs onto project developers. To ensure credibility and trust, 
REDD+ needs to forge alliances similar to the one Symbiosis has formed 
for ARR (Symbiosis Coalition, 2025). Organisations such as the ICVCM 
should establish scientific boards to define when a topic is sufficiently 
mature for incorporation into crediting methodologies, while also 
committing to parity in scrutiny between F-NCS and engineering-based 
removals.

As new digital monitoring, reporting and verification tools are 
deployed, their quality, comparability, transparency, and ex-post con
sistency must be guaranteed through clear protocols for benchmarking, 
disclosure of assumptions, and independent evaluation, ensuring that 
methodological evolution strengthens, rather than undermines, confi
dence in the market. We recognise the challenge here; regular revision of 
standards could be expensive and confusing. But we believe that evo
lution of standards is more feasible than ever as the standards bodies 
shift to using automated approaches to estimated carbon credits, so the 

burden on individual project developers and implementers should be 
minimal. In response, we hope that the carbon credits market will 
respond by increasing the base price of carbon credits to reflect the 
additional methodological trust, thereby paving the way for making new 
F-NCS project development feasible to meet our global goals.

7.2. Carbon monitoring

2) Carbon standards bodies should adjust methodologies to accommo
date high-resolution dynamic carbon maps for the estimation of 
project impacts. There is increasing adoption of RS derived carbon 
products within VCM methodologies (e.g. VCS, 2015), particularly 
by newer standards, such as Isometric, who are promoting the use of 
LiDAR to quantify forest carbon stocks (Isometric, 2024). However, 
many methodologies remaining reliant on field based estimated of 
carbon stocks (e.g. VCS, 2023b), despite considerable research de
velopments in the field of carbon mapping (Xu et al., 2025). There is 
now a wealth of carbon mapping products available both regionally 
and globally (Table 1) and ideally development of the carbon map
ping sector would involve globally accessible, open-source products, 
produced annually, justified by their foundation in publicly funded 
research and their role in serving the common good. However, the 
current landscape is characterized by commercial providers filling 
this niche through proprietary, potentially incomparable, services, 
such as Planet (Planet Lab, 2024), CTrees (Reiner et al., 2022), and 
Space Intelligence (Space Intelligence, 2024). This arrangement may 
be acceptable provided that oversight resides with independent 
accreditation bodies such as Sylvera (Sylvera, 2023), rather than 
commercial developers or certification standards, and robust mech
anisms exist for independent validation of resulting products. The 
critical imperative lies in establishing autonomous verification sys
tems to assess the quality and accuracy of these RS carbon products, 
utilizing established validation methods such as plot-based and 
LiDAR measurements (Duncanson et al., 2021). However, significant 
questions remain regarding the institutional responsibility and 
financial mechanisms necessary to implement such comprehensive 
validation frameworks.

3) Creating a federated database for calibrating and validating 
remote sensing products: Currently, field data availability is un
even; for instance, the ESA Biomass maps were calibrated with only 
630 plots in South America versus 84,000 in Europe (Santoro et al., 
2021). Additionally, existing national forest inventories often focus 
on undisturbed forests, limiting their applicability for recovering 
ecosystems. However, substantial volumes of forest plot data are 
being collected in F-NCS projects that are typically not open-access 
but could contribute significantly to development of mapping 
products. While sharing sensitive data can be complex, remote 
sensing methods necessitate field data for calibration and validation 
(Duncanson et al., 2021). Sharing these across the VCM through a 
loose federation would help reduce map uncertainties. Field data 
could be compiled into federated databases, where project pro
ponents retain ownership of data but others are able to request ac
cess. This would allow for industry and researchers to enhance 
models of carbon stock change and land use change dynamics. 
Standards bodies already make data related to project information 
and credit issuance publicly available in repositories, therefore a 
starting point would be including details of field data available for 
projects with details of how to request access.

The EO community is establishing principles for federation driven by 
the scale of the datasets (Mohr et al., 2025), and similarly site-specific 
data is being compiled into more comprehensive databases to enable 
large scale analysis of forest change by the scientific community. For 
example, the open-access ALS-derived Global Canopy Atlas will be 
foundational for testing and training next-generation satellite products 
(Fischer, 2025). Global initiatives have also generated open-source 
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wood density database (Zanne et al., 2009), and allometry databases for 
estimating AGB from stem dimensions and canopy dimensions (Jucker 
et al., 2022). Finally, the new PANGEA initiative is committed to col
lecting tropical forest plot data and making it openly available (Ordway 
et al., 2025). Therefore, compilations of calibration and validation data 
is gaining traction, but should not just be led by the scientific commu
nity. Whilst integration of field data into accessible databases is chal
lenging, requires funding and an organisation driving action forward, 
there are strong arguments to encourage its development for the overall 
good of the VCM.

7.3. Additionality

4) Use causal inference statistics not expert-led approaches. For 
project level monitoring, a shift away from narrative-based deter
mination of project baselines, which are open to exploitation (Seyller 
et al., 2016), towards more statistically robust approaches is 
required. We recommend that VCM methodologies remove loopholes 
that allow for projects to select favourable baselines and specify that 
projects must select reference areas using statistically rigorous 
methods. Causal inference approaches are one option for more sta
tistical selection of baselines and quantification of project addition
ality, but as highlighted in Section 4.2 also have potential application 
in assessing activity-shifting leakage. Positive steps are being made 
by standards to adopt such techniques. Both the Verra VM0047 
methodology, through its “performance benchmark” (VCS, 2023b), 
and the Isometric Reforestation protocol (Isometric, 2024) incorpo
rate counterfactual baseline setting, promoting the use of matching 
approaches in ARR project, which represents a significant advance
ment on previous methodologies,

However, most research into causal inference approaches, in relation 
to the VCM, has focused on REDD+ projects (West et al., 2020; Guizar- 
Coutiño et al., 2022; West et al., 2023; Swinfield et al., 2025), with little 
research into their application in ARR projects. The adoption of such 
approaches for ARR aims to address the issue of projects historically 
attributing all carbon gains directly to a project, without accounting for 
underlying recovery happening across the landscape, which risks over
estimating additionality if spontaneous natural regeneration occurs in 
the surrounding areas. However, there are challenges in implementing 
causal inference approaches in ARR projects relates to data required to 
identify counterfactuals. For example, land tenure data is important in 
determining the eligibility of land for reforestation but rarely covers 
entire jurisdictions and isn’t frequently updated (Sparovek et al., 2019). 
The location of other ARR activities is also needed to remove them as 
potential counterfactual sites, however, comprehensive ARR project 
polygon databases are non-exhaustive as data is not always open source. 
The existing databases of NCS projects (e.g. Karnik et al., 2024) are a 
good starting place, but continual updating is required to ensure they 
don’t become obsolete. This requires more standardised publication of 
project polygons on standards registries alongside project documenta
tion so all relevant data is available. Additionally the research com
munity could support the industry by deepening understanding of causal 
inference approaches in the context of ARR.

Whilst we advocate for the use of causal inference approaches for 
ARR project monitoring, we also caution against the potential perverse 
disincentives for adoption in areas with high rates of natural regenera
tion. Natural regeneration is one of the most effective carbon removal 
approaches, in terms of available area (Williams et al., 2024), carbon 
sequestration (Lewis et al., 2019) and cost effectiveness (Busch et al., 
2024). Yet, these “easy wins” are often overlooked in the VCM due to 
misalignment with methodologies (Brancalion et al., 2024). For 
example, regions like Brazil’s Atlantic Forest have abundant naturally 
regenerating forests, presenting significant opportunities for recovery 
(Siminski et al., 2021). Unfortunately, landowners often clear young 
regenerating forests to maintain payments from agri-environment 

schemes and avoid land reclassification as conservation areas. Howev
er, current carbon project requirements mandate that land must be 
deforestation-free for ten years to qualify as ARR projects (e.g. VCS, 
2023b), excluding these regenerating forests, providing no financial 
alternative to land holders. Further work is needed to better facilitate 
the inclusion of such landscapes into ARR project areas. 

5) Advance understanding of the interaction between project level 
and jurisdictional REDDþ baselines: REDD+ methodologies are 
increasingly shifting towards jurisdictional approaches instead of 
project-level monitoring. This shift removes the responsibility of 
selecting baseline reference areas from individual projects, reducing 
the risk of manipulation that could inflate project impacts (Rifai 
et al., 2015). Additionally, it ensures that REDD+ activities within 
the VCM comply with Article 6 of the Paris Agreement 
(UNFCCC/CDM, 2015), allowing parties to engage in decarbon
isation efforts while maintaining consistency among projects and 
preventing double counting (Seymour, 2020).

Significant progress has been made in the implementation of juris
dictional REDD+ frameworks. Initiatives like Verra’s REDD methodol
ogy VM0048, assigns baselines by calculating forest loss rates and 
generating deforestation risk maps. Despite this progress the integration 
of project-level REDD+ initiatives with dynamic baselines into these 
jurisdictional REDD+ frameworks presents fundamental methodolog
ical challenges, as jurisdictional baselines—constrained by the practical 
impossibility of constructing credible counterfactuals for large admin
istrative units—necessarily remain static, while sub-jurisdictional pro
jects may employ adaptive baseline methodologies. This asymmetry 
creates a complex reconciliation problem because dynamic project 
baselines must ultimately aggregate and align with fixed jurisdictional 
reference levels (Alvarez Campo and Stokeld, 2025). Whilst there has 
been some comparison between estimated deforestation rates using 
jurisdictional baselines and causal inference approaches (Tosteson et al., 
2024) it is far from comprehensive, therefore further research efforts are 
needed to understand the correspondence between approaches. The 
nested architecture of project to jurisdictional level accounting requires 
novel mechanisms to balance the flexibility needed for effective project- 
level incentives against the accountability demands of jurisdictional 
commitments.

7.4. Leakage

6) Designed projects to mitigate leakage and develop science to 
estimate leakage deductions where needed. Recognising that 
leakage impacts are currently underestimated (Streck, 2021; Filewod 
and McCarney, 2023), we recommend that VCM methodologies 
make leakage mitigation actions compulsory rather than advisory, 
providing a clear pathway to reduce emissions displacement instead 
of merely quantifying leakage impacts. Building leakage mitigation 
into project design, requires projects to firstly, assume an upper 
bound of estimated leakage risks, which in practice may be 100 % 
(Filewod and McCarney, 2023). Secondly, quantify the current level 
of production, within a project and undertake actions to compensate 
fully for that foregone production, which would address both 
activity-shifting and market leakage concerns. However, such ac
tions may be more effective in areas dominated by subsistence ac
tivities, where yield gaps can be addressed (Belachew et al., 2022) or 
through agroforestry practices that enhance sustainability and 
farmer income whilst maintain production (Thorlakson and Neu
feldt, 2012). Finally, where full mitigation of foregone production is 
not possible, such as where commercial production (e.g. timber) is 
being reduced, improved analytical tools are needed to assess 
leakage impacts. For activity shifting leakage, this is where the use of 
remote sensing is most applicable in combination with higher- 
quality remote sensing and quasi-experimental approaches (e.g. 
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Guizar Coutiño, 2023), to identify where shifts in landcover have 
occurred. However for market leakage, modelling approaches, which 
account for how shifts in supply will affect market demand are likely 
the way forward (Daigneault et al., 2025). In theory modelling ap
proaches could capture all forms of leakage making the division 
between activity shifting and market leakage redundant. However, 
further research development is needed in this space to address the 
complex interactions between commodity economics and land use 
change, in response to needs from the industry.

7.5. Non-durability

7) Factor in non-durability upfront using data driven modelling 
approaches. The current buffer pool approach used across the VCM 
appears insufficient to address the risks associated with F-NCS pro
jects. The widely used 20 % deduction of credits is also not associated 
with actual durability risks in projects, such as those with high fire 
risk (Badgley et al., 2022a). Rather the buffer pool is used as an in
surance policy against any unanticipated reversal. This approach is 
widely endorsed across the sector including in the IC-VCM’s Core 
Carbon Principles (CCP) which promote high-quality carbon pro
jects, with many standards moving to comply with their CCP 
(ICVCM, 2024). The CCP emphasizes that GHG emission reductions 
or removals must be permanent, with any reversals compensated. 
However, this is only valid within a 40-year monitoring window, and 
therefore even for projects adhering to the highest integrity stan
dards, the long-term durability of carbon benefits is not guaranteed. 
This approach undervalues the benefits of non-durable carbon 
credits and assumes there are no methods available to account for 
project non-durability, which is not the case. Using a combination of 
historic RS data on land cover change and economic discounting 
techniques, it is possible to quantify the equivalent permanence of a 
F-NCS carbon credit (Section 5.2) and provide a metric to determine 
how many credits should be purchased to fully offset emissions 
(Balmford et al., 2023b). F-NCS carbon credits face inherent risks 
from reversals due to anthropogenic and environmental factors. To 
enhance confidence in F-NCS credits and achieve higher prices, the 
VCM needs to shift its approach to durability away from the current 
buffer pool model. A more detailed understanding of potential future 
forest losses through modelling is essential (Rau et al., 2024), how
ever, such analysis approaches could be integrated into project 
validation and verification. If projects were to adopt such approaches 
and quantify potential future releases, based on data-driven predic
tive models, it may result in fewer total credits being generated but 
the resulting credits would be of far high quality as they account for 
potential non-durability upfront. This is quite a step-change in 
thinking, moving from the idea of ‘permanent’ carbon removals to 
accounting for durability and building it into quantification of car
bon credits.

8. Conclusion

Overall, we find that advances in REDD+ and ARR monitoring 
techniques have been made in recent years, and whilst implementing 
these is still at the early stages, things appear to be moving in the right 
direction. However, gaps remain in the quantification of carbon stocks 
in F-NCS projects and moving forward, better integration of remote 
sensing bases approaches will likely improve monitoring. Many of the 
lessons learnt and methodological developments made around REDD+
can also be applied to ARR project monitoring, but emissions removal 
activities also have a unique set of challenges that need careful consid
eration. This is in part due to the wider range of activities covered by 
ARR but a bigger challenge is the monitoring of carbon stock changes in 
regenerating forests using remote sensing. To scale up ARR, remote 
sensing is necessary but current methods for quantifying subtle increases 
in carbon stocks are still developing and not yet being widely adopted by 

ARR projects. However, with the advent of new technology, such as TLS, 
and understanding of what constitutes best practice, integration of 
remote sensing of carbon stock changes is possible. Rapid shifts in the 
VCM are likely over the next few years, and therefore this stocktake of 
the limitations of current methodologies and assessment of promising 
new methodological advancements can help guide future direction and 
ensure that vitally needed tropical forest conservation efforts can 
continue to be implemented.
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