
A FAIR Case for a Live Computational Commons
Cyrus Omar

University of Michigan

Michigan, USA

comar@umich.edu

Michael Coblenz

University of California at San Diego

San Diego, USA

mcoblenz@ucsd.edu

Anil Madhavapeddy

University of Cambridge

Cambridge, United Kingdom

avsm2@cam.ac.uk

Abstract
Scientists increasingly write software as part of large-scale

collaborative workflows, but current tools make it difficult

to follow FAIR principles (findability, accessibility, interop-

erability, reusability) and ensure reproducibility by default.

This paper proposes Fairground, a computational com-

mons designed as a collaborative notebook system where

thousands of scientific artifacts are authored, collected, and

maintained together in executable form in a manner that

is FAIR, reproducible, and live by default. Unlike existing

platforms, Fairground notebooks can reference each other

as libraries, forming a single planetary-scale live program

executed by a distributed scheduler.

We describe the design of Fair Python, a purely functional

subset of Python, and a foreign function interface for in-

teroperating with existing code. Through three interleaved

research tracks focusing on language design, interoperability,

and distributed execution, we aim to create a next-generation

collaborative scientific workflow system that makes best

practices the path of least resistance.

CCS Concepts: • Human-centered computing → Sci-
entific visualization; Collaborative interaction; Open
source software; • Software and its engineering → Col-
laboration in software development; Interoperability;
Functional languages.

Keywords: python, reproducible, scientific computing, func-

tional, visualization, fair, reusability

ACM Reference Format:
Cyrus Omar, Michael Coblenz, and Anil Madhavapeddy. 2025. A

FAIR Case for a Live Computational Commons. In Proceedings of
the 2nd ACM SIGPLAN International Workshop on Programming for
the Planet (PROPL ’25), October 12–18, 2025, Singapore, Singapore.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3759536.
3763802

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

PROPL ’25, Singapore, Singapore
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2161-8/25/10

https://doi.org/10.1145/3759536.3763802

1 Introduction
Scientists increasingly write software as contributors to

large-scale collaborative workflows. For example, data scien-

tists write software to standardize and analyze data [17, 33,

41, 44] collected by field and experimental scientists. These

analyses flow into software written by computational sci-

entists to model natural phenomena, e.g. fish population

dynamics [20, 50]. These models may then flow into integra-

tive models, like those developed to predict the impact of

ecological interventions and climate policies [13, 15].

Scientists engage in these collaborative computational

workflows using a patchwork of:

• programming environments (e.g. spreadsheets, compu-

tational notebooks like Jupyter, and IDEs) for various

programming languages (e.g. Python, R, Scala, Bash,

C++, and Fortran) and libraries (e.g. pandas, tidyverse),

• code and data management systems (e.g. shared stor-

age, databases, version control systems),

• hardware and cloud management systems (e.g. cluster

job systems, cloud environments like AWS and Google

Earth Engine),

• authoring tools (e.g. LATEX, Word),

• communication tools (e.g. email, Slack),

• domain-specific graphical applications (e.g. GIS tools,

illustration tools, and custom applications).

When using these tools, scientists must put in consid-

erable extra effort to follow identified best practices for

data and software in the context of large-scale collabora-

tive workflows, including the FAIR criteria for data and

software [6, 53] (findability, accessibility, interoperabil-
ity, reusability) and reproducibility. By default, artifacts

are not FAIR (causing scientists to waste time reinventing

the wheel) and not reproducible [23, 32, 46].

1.1 The importance of reproducible open science
Reproducibility is a keystone of scientific discovery but un-

fortunately, many scientific disciplines are undergoing a

replication crisis, including psychology [51], economics [7],

and extending to the physical sciences: 70% of researchers re-

ported that they failed to reproduce others’ experiments [4].

In systems biology, 49% of published models were not re-

producible [48]. A 2023 workshop at the National Center

for Atmospheric Research explored the challenges of repro-

ducibility in science that relies on computation, with presen-

ters arguing that new techniques are needed to ensure that

software-dependent results can be reproduced [32].

8

https://orcid.org/0000-0003-4502-7971
https://orcid.org/0000-0002-9369-4069
https://orcid.org/0000-0001-8954-2428
https://doi.org/10.1145/3759536.3763802
https://doi.org/10.1145/3759536.3763802
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3759536.3763802
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3759536.3763802&domain=pdf&date_stamp=2025-10-12


PROPL ’25, October 12–18, 2025, Singapore, Singapore Cyrus Omar, Michael Coblenz, and Anil Madhavapeddy

Open science, in which data and analytic methods are made

publicly available, is a key technique for improving repro-

ducibility. When scientific work is conducted openly, other

scientists and members of the public can study the work,

check the analysis for errors, and re-analyze the data us-

ing their own methods [53]. Scientists in many domains,

including in biology [3], ecology [23], and at NASA [46]

have argued that open science is a key technique for im-

proving reproducibility of scientific work and addressing the

reproducibility crisis.

1.2 Towards live collaborations
Many fields of science, such as ecology and astronomy, are

also live collaborations: scientists continuously collect new

data and refine modeling and analysis approaches. However,

scientific models and analyses as reported in publications

and scientific artifact repositories are frozen in time. Con-

siderable extra effort and computational expertise possessed

by few working scientists is needed to maintain liveness of
analyses and models as new data are generated by sensors

and experiments, and as upstream models and libraries im-

prove. This leaves scientists and other stakeholders with a

fragmented and outdated view of the state of the art [38]. We

argue that liveness, in which the impact of program changes

is visible immediately, promotes reuse because it enables

programmers to more easily understand existing code and

adapt it to their needs.

We envision an ambitious but practicable transition to a

collaborative scientific workflow where thousands of scien-

tists and other stakeholders, assisted in the future by safely

sandboxed AI agents [39], work together within a compu-
tational commons—which we call Fairground—where thou-

sands of scientific artifacts are authored, collected, and main-

tained together in executable form in a manner that is FAIR,

reproducible, and live by default. This vision goes beyond

prior efforts focused on simple archival of data and code

to emphasize live code execution and the development of

interoperable software components, and echoes other recent

calls for integrative scientific workflow systems.

Fairground will take the form of a collaborative computa-

tional notebook system that is as easy to use as competing

platforms like JupyterLab or Google Earth Engine. It will

consist of a collection of computational notebooks and data
sources (including uploaded datasets and references to exter-

nal datasets and streams) grouped into repositories managed

by participating individuals and organizations, much like on

GitHub or GitLab (and we may indeed use a combination of

these as our underlying version control platform).

Unlike competing platforms, Fairground notebooks will

be able to reference one another as libraries, collectively

forming a single planetary-scale live program being collab-

oratively edited in real-time or with optional lightweight

version control, and executing live (i.e. as it is being edited

and whenever upstream data or models change) by Fair-

ground’s distributed parallelizing scheduler [31], which we

call the planetary compute engine. Computations will lever-

age distributed hardware resources semi-automatically, with

only the heaviest computations needing manual configura-

tion. Computational resources, including CPUs, GPUs, and

storage, will be contributed by participants and sponsors for

use according to lightweight access policies (e.g. reserving a

scientist’s own individual and institutional hardware for the

computations they author).

Design research emphasizes the value of reasonable de-

faults in shaping user behavior [22]. The central design goal

that distinguishes Fairground from competing systems is that

we aim for artifacts authored in or imported into Fairground

to be FAIR, reproducible, and live by default. Fairground is

targeted toward the needs of a graduate student without sub-

stantial formal training in computing whose primary goal is

to finish their next paper, rather than on one willing to invest

substantial extra labor into achieving these criteria, which is

rarely incentivized or rewarded. Let us give an overview of

how the proposed design will achieve this critical goal.

2 Design Considerations for Fairground
Our vision is inspired by the success of other collaborative

commons [42], particularly Wikipedia [52], GitHub [28], and

Google Earth Engine [19].

2.1 Findability and Accessibility
Onmost existing platforms, notebooks are private by default,

and substantial extra effort is needed to make them publicly

findable and accessible by others who may benefit from their

findings, functions, or pre-computed data (e.g. cleaned up

versions of datasets). In Fairground, repositories will be pub-

lic by default, closely following the example of GitHub, with

opt-in access control to allow scientists to work with sensi-

tive data. Each repository will receive a unique and persistent

digital object identifier (DOI) [11] and be associated with its

authors’ ORCID identifiers [40] by default.

Current repositories, such as those for oceanography [49],

often include only data, not code, leaving scientists to re-

implement analyses. Even when code is available in a repos-

itory such as Zenodo [12], it can be difficult to find and

integrate into new contexts (e.g. due to outdated dependen-

cies [43]).

In Fairground, the entire system forms a single live pro-

gram, enabling Fairground to offer semantic search affor-

dances such as find-all-uses (e.g. of a dataset, so that a scien-

tist can find others who have already cleaned up that dataset,

or of a statistical function, so that a scientist can find ex-

amples of similar analyses) and find-all-implementations

of a particular interface (e.g. a data schema or a statistical

function signature).

9



A FAIR Case for a Live Computational Commons PROPL ’25, October 12–18, 2025, Singapore, Singapore

In addition to being able to access Fairground resources

through a web browser, Fairground will offer an API so exter-

nal applications can also access computational results. This

will be particularly useful because Fairground is a live sys-

tem: many results on Fairground will update continuously

as new data are collected. Live data and visualizations main-

tained on Fairground might feed into external, public-facing

projects, e.g. news articles or websites for public interest

organizations; these feeds have been found to promote inno-

vation in news media [2]. Users of these systems will be able

to follow these embedded results back to their sources on

Fairground, potentially increasing public trust in the results

by inviting public scrutiny [36].

2.2 Interoperability, Reusability, and Reproducibility
Computational notebooks typically operate as scripts; they

cannot be understood as libraries that can be accessed from

other notebooks (without wastefully re-executing them in

their entirety in the new context). It requires enormous extra

effort for a scientist to create reusable libraries and contribute

them to public library repositories like pip [47] or CRAN [1].

Consequently, it is common for scientists to re-implement

behavior when they need an analysis that is not already

in public package repositories. Reimplementing complex

techniques can be error-prone, especially for non-experts

who may not appreciate subtleties related to numerical ac-

curacy [18] or leave statistical assumptions unchecked [16].

It is common to then copy-and-paste this functionality into

each subsequent notebook where it might be useful, lead-

ing to messy and difficult-to-maintain code: 70% of all code

snippets in Jupyter notebooks on GitHub are copies of other

snippets [25].

On Fairground, every notebook is by default a library that

exports its top-level definitions, including data and func-

tions. Because the entire system operates as a single live

program, importing one library into another does not re-

quire re-execution. This eliminates the process of packaging

functionality into explicit libraries and submitting them to

repositories—everything is immediately available for reuse

across Fairground.

To enable this sort of open reuse, Fairground cannot per-

mit the importing notebook to modify the state of the im-

ported notebook’s analyses. Consequently, a central feature

of Fairground is the development of Fair Python, a pure (i.e.

immutable, functional) dataflow subset of Python that will

serve as the native language of Fairground. Pure dataflow is

fundamentally the same model used by spreadsheets: pro-

grams consist of elements that compute results, potentially

on the basis of results produced by other parts of the pro-

gram. Spreadsheets require that these elements be in a grid

and restrict the kinds of computations that can be done;

Fair Python will relax these constraints, allowing general-

purpose computation. Pure dataflow programming is already

in wide use in scientific code beyond spreadsheets, e.g. it is

the computational model underlying libraries like pandas
for Python [34], and most pandas code will be expressible
in Fair Python without modification. By avoiding ephemeral

state, we ensure that Fair Python programs have reproducible

outputs.

Of course, we do not expect scientists to (re)write all code

in a restricted subset of Python—in reality, scientific code is

written in a wide variety of languages, including scripting

languages like Python, R, and Julia and native languages like

C, C++ and Fortran. While we will design Fair Python to be

a highly usable language for new scientific developments,

we do not expect scientists working in Fairground to port ex-

isting code en masse to Fair Python. Instead, we will develop
a pure foreign function interface (FFI) for Fair Python that

adds foreign nodes to the dataflow, which support executing

code written in any language. To maintain liveness and in-

teroperability, foreign nodes are restricted only in that they

execute within a sandboxed environment and their inputs

and outputs must be pure data. For example, a node might

pass data and parameters from elsewhere on Fairground into

an existing optimized numerical simulation package written

in Fortran, then specify that the dataset generated when the

simulation ends (e.g. saved to a file in the sandboxed file

system) is an output value. Each sandboxed environment is

configured using the Nix package manager, which produces

reproducible execution environments. This solves the com-

mon problem scientists face of interoperating with code that

requires old or conflicting versions of packages.

To simplify common use cases, Fairground will be able

to import existing Jupyter notebooks directly without modi-

fication, allowing them to be edited using the Jupyter web

interface and automatically provisioning the necessary for-

eign node internally. Top-level definitions will be exported

as outputs, and to maintain reproducibility, Fairground will

persistently store the ephemeral state of each notebook. For

native packages (those compiled for specific configurations

from languages such as C++ or Fortran), we will require Nix

configurations, which are written in a simple syntax that

is widely documented. These configurations will be part of

Fairground, so they can be reused by other scientists.

2.3 Liveness
In traditional Python code, lines of code must be executed in

order. This makes it difficult to leverage multicore hardware,

which is ubiquitous even on laptops. Fairground eliminates

these unnecessary sequential dependencies and automati-

cally distributes computations, and live recomputations, for

parallel execution across users’ individual cores as well as

computational resources contributed by participants. We call

this system the Fairground planetary compute engine [15].
The commons will centralize thousands of data and code

artifacts, which will have permanent identifiers that can be

referenced from papers and other permanent artifacts, and

10



PROPL ’25, October 12–18, 2025, Singapore, Singapore Cyrus Omar, Michael Coblenz, and Anil Madhavapeddy

can be searched to find relevant code and data. It will be open-

source, enabling long-term maintenance and transparency

of policies and behavior. It will support a distributed storage

model, enabling both centralized, persistent storage and local

replicas for high performance and customized access when

needed. It will interoperate with other sources of data, such

as NASA’s PO.DAAC [24] and support computation in a

variety of different languages.

Because Fairground programs will be live, it will seam-

lessly support reusability; any computation can be run, mod-

ified, and re-used in new contexts, even by users who have

very different local computational infrastructure.

2.4 Next Steps Towards Live Programming
In summary, we propose three interleaved tracks of research

that, together, will result in an operational prototype of a

next-generation collaborative scientific workflow system.

The proposed research will, in the process, lead to signifi-

cant advances in the field of human-centered programming

language design and implementation. In the first track, we

will focus on the design and implementation of Fair Python.

In the second, we will focus on interoperability with exter-

nal data sources and code written in existing languages. In

the third, we will advance the underlying planetary com-

pute engine so that Fairground can scale to planetary-size

datasets and analyses. We have already developed an op-

erational prototype of the web-based user interface in the

Hazel research programming environment [37] and plan, as

a plenary approach, to integrate the research advances from

all three tracks into this prototype, evolving it directly into

Fairground.

To ensure that Fairground is as usable as possible for scien-

tists, all three tracks will follow a participatory design process,
following best practices for language design in which we

iteratively make and evaluate design choices [9] with the

specific goal of improving real-world scientific workflows

being performed by scientists.

We will leverage our existing connections to involve sci-

entists from several disciplines, with an initial focus on

oceanography. In particular, we plan to develop case studies

from the work of collaborators in the fields of oceanography

and biology, and co-author Anil Madhavapeddy at the Uni-

versity of Cambridge. We will start with laptop-scale case

studies from domain-specific data science courses with mini-

mal external dependencies and then continue with full-scale

case studies drawn from scientific research papers, ongoing

projects, and graduate courses.

3 Discussion and Related Work
Encouragingly, our research direction into FAIR and live

planetary computing is complemented by several ongoing

efforts across the world, which we will discuss next.

3.1 Future Directions
We are currently working on a working prototype of Fair-

ground, validated through a series of increasingly complex

case studies and user studies. We anticipate that Fairground

will first be ready for use by early adopters in the scientific

community. At this point, we hope to continue develop-

ment of Fairground by pursuing funding to develop a non-

profit governance organization, guided by the TRUST prin-

ciples [26], that will support both further technical develop-

ment and, most importantly, develop the community around

Fairground. While our initial focus will be on oceanogra-

phy [21], biodiversity [5, 14] and forest protection [45] re-

lated case studies, we will broaden the scope of the project

to other scientific communities at this time (and potentially

earlier if opportunities arise). Our goal is for Fairground to be

the most usable platform for doing day-to-day open science.

We anticipate that AI systems will be capable of assist-

ing in the large-scale ingestion of existing computational

notebooks and datasets into the Fairground system toward

the end of the funding period, which we believe will help us

bootstrap it to the point that it is quickly useful to working

scientists rather than just early adopters. We believe that

the time is right for scientific workflows to move to a next-

generation platform designed with both usability and the

FAIR criteria in mind from the start.

3.2 Related Planetary Computing Infrastructure
Our approach is motivated by multidisciplinary calls to de-

velop tools that make it easier to follow FAIR practices for

large-scale collaborative science and handle planetary-scale

data and computation. Co-author Anil Madhavapeddy and

colleagues in conservation made a case for “planetary com-
puting — infrastructure to handle the ingestion, transfor-

mation, analysis, and publication of global data products

for furthering environmental science and enabling better

informed policy-making” [15]. This article explains that sci-

entists need access to large petabyte-scale input datasets

consisting of:

• primary observation data from satellites that is petabyte-

scale or direct ground measurements;

• derived sources from algorithmic transformation or

AI-based inference;

• previous results derived by third parties or from earlier

runs

Programmers then define computation over these datasets

that: (i) is either algorithmic or machine learning-based, us-

ing a mix of CPUs and GPUs; (ii) needs to autoscale to permit

local development followed by global analysis; and (iii) can

be expressed by a non-CS expert, ideally with a visual inter-

face.

The Global Biodiversity Information Facility observed:

“There has been an explosion of data and information, and

a concomitant paradigm shift to data-driven research and

11



A FAIR Case for a Live Computational Commons PROPL ’25, October 12–18, 2025, Singapore, Singapore

specifically biodiversity research and its myriad applications.

[...] Redesigned scientific data organizations [...] are devel-

oping approaches designed specifically to take advantage

of the unprecedented data opportunities in a cooperative

framework” [10].

Participants at NCAR’s Workshop on Correctness and Re-

producibility for Climate and Weather Software [32] sought

solutions for reproducibility problems. Running analyses

on multiple systems results in discrepancies; our approach

enables scientists to reuse common computations and re-

sults. At the 1st Programming for the Planet workshop [27],

Cimadevilla argued [8] that acquisition and processing of

data from heterogeneous data sources, followed by reuse of

model outputs, is a key component of many scientific tasks.

Large enterprises have also recognized the need for com-

monly available computational infrastructure for earth sci-

ence. In particular, Google offers the Google Earth Engine

product [19] and Microsoft offers the Microsoft Planetary

Computer [29] product upon request to environmental scien-

tists. These tools allow scientists to develop computational

notebooks and execute them using cloud hardware that has

access to a common repository of data sets and software

packages, much like our proposed system. However, as ex-

plained above, notebooks in these tools are not FAIR, not
reproducible, and not live. The research described heremay

help these organizations address these problems for their

proprietary planetary compute engines. We will instead lay

the intellectual groundwork for a fully open complement to

these platforms. Encouragingly, we can build upon emerging

open and federated standards being established by initiatives

such as OpenEO [30], which defines APIs independent of

any single cloud provider or organization for the processing

of earth observation data.

The most closely related effort to build a computational

commons for scientists is the Observable community [35],

which hosts a computational commons with support for live
evaluation within individual notebooks (though not across

notebooks). Notebooks can refer to explicitly exported val-

ues in other notebooks, which must be pure. The analyses

must be written in JavaScript and run in the user’s browser.

While there is some support for controlling side effects, these

are opt-in, so the system lacks reproducibility and auto-

matic scalability. Although Observable does not meet our

criteria, it demonstrates that it is possible to attract commu-

nities of users to a well-designed and curated computational

commons.

References
[1] Institute for Statistics and Mathematics. The comprehensive r

archive network. https://cran.r-project.org, 2025.
[2] Aitamurto, T., and Lewis, S. C. Open innovation in digital journalism:

Examining the impact of open apis at four news organizations. New
media & society 15, 2 (2013), 314–331.

[3] Allen, C., and Mehler, D. M. Open science challenges, benefits and

tips in early career and beyond. PLoS biology 17, 5 (2019), e3000246.

[4] Baker, M. 1,500 scientists lift the lid on reproducibility. Nature 533,
7604 (2016).

[5] Ball, T., Dales, M., Eyres, A., Green, J., Madhavapeddy, A.,

Williams, D., and Balmford, A. Quantifying the impact of the food

we eat on species extinctions, feb 2025.

[6] Barker, M., Chue Hong, N. P., Katz, D. S., Lamprecht, A.-L.,

Martinez-Ortiz, C., Psomopoulos, F., Harrow, J., Castro, L. J.,

Gruenpeter, M., Martinez, P. A., and Honeyman, T. Introducing

the FAIR Principles for research software. Scientific Data 9, 1 (2022),
622.

[7] Camerer, C. F., Dreber, A., Forsell, E., Ho, T.-H., Huber, J., Johan-

nesson, M., Kirchler, M., Almenberg, J., Altmejd, A., Chan, T.,

Heikensten, E., Holzmeister, F., Imai, T., Isaksson, S., Nave, G.,

Pfeiffer, T., Razen, M., and Wu, H. Evaluating replicability of labo-

ratory experiments in economics. Science 351, 6280 (2016), 1433–1436.
[8] Cimadevilla, E. The programming challenges of climate data analysis.

In Programming for the Planet (2024).
[9] Coblenz, M., Kambhatla, G., Koronkevich, P., Wise, J. L., Barnaby,

C., Sunshine, J., Aldrich, J., and Myers, B. A. PLIERS: A process that

integrates user-centered methods into programming language design.

ACM Trans. Comput.-Hum. Interact. 28, 4 (jul 2021).
[10] CODATA, t. C. o. D. o. t. I. S. C., Pfeiffenberger, H., Uhlir, P., and

Hodson, S. Twenty-Year Review of GBIF, May 2020.

[11] DOI Foundation. What is a DOI. https://www.doi.org/the-identifier/
what-is-a-doi/, 2022.

[12] European Organization For Nuclear Research, and OpenAIRE.

Zenodo, 2013.

[13] Eyres, A., Ball, T., Dales, M., Swinfield, T., Arnell, A., Baisero, D.,

Durán, A. P., Green, J., Green, R. E., and Madhavapeddy, A. LIFE:

A metric for quantitively mapping the impact of land-cover change

on global extinctions. Cambridge Open Engage (2024).
[14] Eyres, A., Ball, T. S., Dales, M., Swinfield, T., Arnell, A., Baisero,

D., DurÃ¡n, A. P., Green, J. M. H., Green, R., Madhavapeddy, A., and

Balmford, A. LIFE: A metric for mapping the impact of land-cover

change on global extinctions. Philosophical Transactions of the Royal
Society B: Biological Sciences 380, 1917 (jan 2025), 1–13.

[15] Ferris, P., Dales, M., Jaffer, S., Holcomb, A., Scott, E. T., Swin-

field, T., Eyres, A., Balmford, A., Coomes, D., Keshav, S., and Mad-

havapeddy, A. Planetary computing for data-driven environmental

policy-making, 2024.

[16] Gardenier, J., and and, D. R. The misuse of statistics: Concepts, tools,

and a research agenda. Accountability in Research 9, 2 (2002), 65–74.
[17] Goble, C. Better software, better research. IEEE Internet Computing

18, 5 (2014), 4–8.
[18] Goldberg, D. What every computer scientist should know about

floating-point arithmetic. ACM computing surveys (CSUR) 23, 1 (1991),
5–48.

[19] Google. Google earth engine, 2024.

[20] Guibourd de Luzinais, V., du Pontavice, H., Reygondeau, G., Bar-

rier, N., Blanchard, J. L., Bornarel, V., Büchner, M., Cheung, W.

W. L., Eddy, T. D., Everett, J. D., Guiet, J., Harrison, C. S., Maury,

O., Novaglio, C., Petrik, C. M., Steenbeek, J., Tittensor, D. P., and

Gascuel, D. Trophic amplification: A model intercomparison of cli-

mate driven changes in marine food webs. PLOS ONE 18, 8 (08 2023),
1–23.

[21] Haine, T. W. N., Gelderloos, R., Jimenez-Urias, M. A., Siddiqi,

A. H., Lemson, G., Medvedev, D., Szalay, A., Abernathey, R. P.,

Almansi, M., and Hill, C. N. Is computational oceanography coming

of age? Bulletin of the American Meteorological Society 102, 8 (Aug.

2021), E1481–E1493.

[22] Jachimowicz, J. M., Duncan, S., Weber, E. U., and Johnson, E. J.

When and why defaults influence decisions: A meta-analysis of default

effects. Behavioural Public Policy 3, 2 (2019), 159–186.
[23] Jenkins, G. B., Beckerman, A. P., Bellard, C., Benítez-López, A.,

12

https://cran.r-project.org
https://www.doi.org/the-identifier/what-is-a-doi/
https://www.doi.org/the-identifier/what-is-a-doi/


PROPL ’25, October 12–18, 2025, Singapore, Singapore Cyrus Omar, Michael Coblenz, and Anil Madhavapeddy

Ellison, A. M., Foote, C. G., Hufton, A. L., Lashley, M. A., Lortie,

C. J., Ma, Z., Moore, A. J., Narum, S. R., Nilsson, J., O’Boyle, B.,

Provete, D. B., Razgour, O., Rieseberg, L., Riginos, C., Santini,

L., Sibbett, B., and Peres-Neto, P. R. Reproducibility in ecology

and evolution: Minimum standards for data and code. Ecology and
Evolution 13, 5 (2023), e9961.

[24] Jet Propulsion Laboratory. Physical oceanography distributed

active archive center, 2025.

[25] Källén, M., and Wrigstad, T. Jupyter notebooks on GitHub: Charac-

teristics and code clones. The Art, Science, and Engineering of Program-
ming 5 (2021).

[26] Lin, D., Crabtree, J., Dillo, I., Downs, R. R., Edmunds, R., Giaretta,

D., De Giusti, M., L’Hours, H., Hugo,W., and Jenkyns, R. The TRUST

principles for digital repositories. Scientific Data 7, 1 (2020), 1–5.
[27] Madhavapeddy, A., and Orchard, D. Programming for the planet,

2024.

[28] Microsoft. GitHub, 2024.

[29] Microsoft. Microsoft planetary computer, 2024.

[30] Mohr, M., Pebesma, E., Dries, J., Lippens, S., Janssen, B., Thiex, D.,

Milcinski, G., Schumacher, B., Briese, C., Claus, M., et al. Federated

and reusable processing of earth observation data. Scientific Data 12, 1
(2025), 194.

[31] Murray, D. G., Schwarzkopf, M., Smowton, C., Smith, S., Mad-

havapeddy, A., and Hand, S. CIEL: A universal execution engine

for distributed data-flow computing. In 8th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 11) (mar 2011).

[32] National Center for Atmospheric Research. Workshop on cor-

rectness and reproducibility for climate and weather software, 2023.

[33] Nguyen-Hoan, L., Flint, S., and Sankaranarayana, R. A survey

of scientific software development. In Proceedings of the 2010 ACM-
IEEE International Symposium on Empirical Software Engineering and
Measurement (New York, NY, USA, 2010), ESEM ’10, Association for

Computing Machinery.

[34] NumFOCUS, Inc. pandas. https://pandas.pydata.org, 2025.
[35] Observable. Observable. https://www.observablehq.com.

[36] O’Hara, K. Transparency, open data and trust in government: shaping

the infosphere. In Proceedings of the 4th Annual ACM Web Science
Conference (New York, NY, USA, 2012), WebSci ’12, Association for

Computing Machinery, p. 223–232.

[37] Omar, C. Hazel. https://hazel.org, 2025.
[38] Omar, C., Aldrich, J., and Gerkin, R. C. Collaborative infrastructure

for test-driven scientific model validation. In Companion proceedings
of the 36th international conference on software engineering (2014),

pp. 524–527.

[39] Omar, C., Ferris, P., and Madhavapeddy, A. Modularizing reasoning

about AI capabilities via abstract dijkstra monads. In the 12th ACM
SIGPLAN Workshop on Higher-Order Programming with Effects (HOPE)
(sep 2024).

[40] Open Researcher and Contributor ID. ORCID. https://orcid.org,
2025.

[41] Prabhu, P., Jablin, T. B., Raman, A., Zhang, Y., Huang, J., Kim, H.,

Johnson, N. P., Liu, F., Ghosh, S., Beard, S., Oh, T., Zoufaly, M.,

Walker, D., and August, D. I. A survey of the practice of compu-

tational science. In State of the Practice Reports (New York, NY, USA,

2011), SC ’11, Association for Computing Machinery.

[42] Rifkin, J. The zero marginal cost society: The internet of things, the
collaborative commons, and the eclipse of capitalism. St. Martin’s Press,

2014.

[43] Sauro, H. M. The practice of ensuring repeatable and reproducible

computational models, 2021.

[44] Storer, T. Bridging the chasm: A survey of software engineering

practice in scientific programming. ACM Comput. Surv. 50, 4 (aug

2017).

[45] Swinfield, T., Shrikanth, S., Bull, J., Madhavapeddy, A., and zu Er-

mgassen, S. Nature-based credit markets at a crossroads. Nature
Sustainability (aug 2024), 1–4.

[46] The National Aeronautics and Space Administration. Open

science at NASA, 2024.

[47] The Python Packaging Authority. pip 25.0.1. https://pypi.org/
project/pip/, 2025.

[48] Tiwari, K., Kananathan, S., Roberts, M. G., Meyer, J. P.,

Sharif Shohan, M. U., Xavier, A., Maire, M., Zyoud, A., Men, J., Ng,

S., Nguyen, T. V. N., Glont, M., Hermjakob, H., and Malik-Sheriff,

R. S. Reproducibility in systems biology modelling. Molecular systems
biology 17, 2 (2021), e9982.

[49] U.S. National Science Foundation. OCE data and sample reposito-

ries. https://www.nsf.gov/geo/oce/data-sample-repositories, 2025.
[50] van Denderen, D., Maureaud, A. A., Andersen, K. H., Gaichas, S.,

Lindegren, M., Petrik, C. M., Stock, C. A., and Collie, J. Demersal

fish biomass declines with temperature across productive shelf seas.

Global Ecology and Biogeography 32, 10 (2023), 1846–1857.
[51] Wiggins, B. J., and Christopherson, C. D. The replication crisis in

psychology: An overview for theoretical and philosophical psychology.

Journal of Theoretical and Philosophical Psychology 39 (2019), 202–217.
[52] Wikipedia Contributors. Wikipedia, 2024.

[53] Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G.,

Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos,

L. B., and Bourne, P. E. The FAIR guiding principles for scientific

data management and stewardship. Scientific data 3, 1 (2016), 1–9.

Received 2025-07-08; accepted 2025-08-11

13

https://pandas.pydata.org
https://www.observablehq.com
https://hazel.org
https://orcid.org
https://pypi.org/project/pip/
https://pypi.org/project/pip/
https://www.nsf.gov/geo/oce/data-sample-repositories

	Abstract
	1 Introduction
	1.1 The importance of reproducible open science
	1.2 Towards live collaborations

	2 Design Considerations for Fairground
	2.1 Findability and Accessibility
	2.2 Interoperability, Reusability, and Reproducibility
	2.3 Liveness
	2.4 Next Steps Towards Live Programming

	3 Discussion and Related Work
	3.1 Future Directions
	3.2 Related Planetary Computing Infrastructure

	References

