Check for
Updates

A FAIR Case for a Live Computational Commons

Cyrus Omar
University of Michigan
Michigan, USA
comar@umich.edu

Abstract

Scientists increasingly write software as part of large-scale
collaborative workflows, but current tools make it difficult
to follow FAIR principles (findability, accessibility, interop-
erability, reusability) and ensure reproducibility by default.

This paper proposes Fairground, a computational com-
mons designed as a collaborative notebook system where
thousands of scientific artifacts are authored, collected, and
maintained together in executable form in a manner that
is FAIR, reproducible, and live by default. Unlike existing
platforms, Fairground notebooks can reference each other
as libraries, forming a single planetary-scale live program
executed by a distributed scheduler.

We describe the design of Fair Python, a purely functional
subset of Python, and a foreign function interface for in-
teroperating with existing code. Through three interleaved
research tracks focusing on language design, interoperability,
and distributed execution, we aim to create a next-generation
collaborative scientific workflow system that makes best
practices the path of least resistance.

CCS Concepts: « Human-centered computing — Sci-
entific visualization; Collaborative interaction; Open
source software; « Software and its engineering — Col-
laboration in software development; Interoperability;
Functional languages.

Keywords: python, reproducible, scientific computing, func-
tional, visualization, fair, reusability

ACM Reference Format:

Cyrus Omar, Michael Coblenz, and Anil Madhavapeddy. 2025. A
FAIR Case for a Live Computational Commons. In Proceedings of
the 2nd ACM SIGPLAN International Workshop on Programming for
the Planet (PROPL °25), October 12-18, 2025, Singapore, Singapore.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3759536.
3763802

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

PROPL 25, Singapore, Singapore

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2161-8/25/10
https://doi.org/10.1145/3759536.3763802

Michael Coblenz
University of California at San Diego
San Diego, USA
mcoblenz@ucsd.edu

Anil Madhavapeddy
University of Cambridge
Cambridge, United Kingdom
avsm2@cam.ac.uk

1 Introduction

Scientists increasingly write software as contributors to
large-scale collaborative workflows. For example, data scien-
tists write software to standardize and analyze data [17, 33,
41, 44] collected by field and experimental scientists. These
analyses flow into software written by computational sci-
entists to model natural phenomena, e.g. fish population
dynamics [20, 50]. These models may then flow into integra-
tive models, like those developed to predict the impact of
ecological interventions and climate policies [13, 15].

Scientists engage in these collaborative computational
workflows using a patchwork of:

e programming environments (e.g. spreadsheets, compu-
tational notebooks like Jupyter, and IDEs) for various
programming languages (e.g. Python, R, Scala, Bash,
C++, and Fortran) and libraries (e.g. pandas, tidyverse),

e code and data management systems (e.g. shared stor-
age, databases, version control systems),

e hardware and cloud management systems (e.g. cluster
job systems, cloud environments like AWS and Google
Earth Engine),

e authoring tools (e.g. KIEX, Word),

e communication tools (e.g. email, Slack),

e domain-specific graphical applications (e.g. GIS tools,
illustration tools, and custom applications).

When using these tools, scientists must put in consid-
erable extra effort to follow identified best practices for
data and software in the context of large-scale collabora-
tive workflows, including the FAIR criteria for data and
software [6, 53] (findability, accessibility, interoperabil-
ity, reusability) and reproducibility. By default, artifacts
are not FAIR (causing scientists to waste time reinventing
the wheel) and not reproducible [23, 32, 46].

1.1 The importance of reproducible open science

Reproducibility is a keystone of scientific discovery but un-
fortunately, many scientific disciplines are undergoing a
replication crisis, including psychology [51], economics [7],
and extending to the physical sciences: 70% of researchers re-
ported that they failed to reproduce others’ experiments [4].
In systems biology, 49% of published models were not re-
producible [48]. A 2023 workshop at the National Center
for Atmospheric Research explored the challenges of repro-
ducibility in science that relies on computation, with presen-
ters arguing that new techniques are needed to ensure that
software-dependent results can be reproduced [32].


https://orcid.org/0000-0003-4502-7971
https://orcid.org/0000-0002-9369-4069
https://orcid.org/0000-0001-8954-2428
https://doi.org/10.1145/3759536.3763802
https://doi.org/10.1145/3759536.3763802
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3759536.3763802
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3759536.3763802&domain=pdf&date_stamp=2025-10-12

PROPL ’25, October 12-18, 2025, Singapore, Singapore

Open science, in which data and analytic methods are made
publicly available, is a key technique for improving repro-
ducibility. When scientific work is conducted openly, other
scientists and members of the public can study the work,
check the analysis for errors, and re-analyze the data us-
ing their own methods [53]. Scientists in many domains,
including in biology [3], ecology [23], and at NASA [46]
have argued that open science is a key technique for im-
proving reproducibility of scientific work and addressing the
reproducibility crisis.

1.2 Towards live collaborations

Many fields of science, such as ecology and astronomy, are
also live collaborations: scientists continuously collect new
data and refine modeling and analysis approaches. However,
scientific models and analyses as reported in publications
and scientific artifact repositories are frozen in time. Con-
siderable extra effort and computational expertise possessed
by few working scientists is needed to maintain liveness of
analyses and models as new data are generated by sensors
and experiments, and as upstream models and libraries im-
prove. This leaves scientists and other stakeholders with a
fragmented and outdated view of the state of the art [38]. We
argue that liveness, in which the impact of program changes
is visible immediately, promotes reuse because it enables
programmers to more easily understand existing code and
adapt it to their needs.

We envision an ambitious but practicable transition to a
collaborative scientific workflow where thousands of scien-
tists and other stakeholders, assisted in the future by safely
sandboxed Al agents [39], work together within a compu-
tational commons—which we call Fairground—where thou-
sands of scientific artifacts are authored, collected, and main-
tained together in executable form in a manner that is FAIR,
reproducible, and live by default. This vision goes beyond
prior efforts focused on simple archival of data and code
to emphasize live code execution and the development of
interoperable software components, and echoes other recent
calls for integrative scientific workflow systems.

Fairground will take the form of a collaborative computa-
tional notebook system that is as easy to use as competing
platforms like JupyterLab or Google Earth Engine. It will
consist of a collection of computational notebooks and data
sources (including uploaded datasets and references to exter-
nal datasets and streams) grouped into repositories managed
by participating individuals and organizations, much like on
GitHub or GitLab (and we may indeed use a combination of
these as our underlying version control platform).

Unlike competing platforms, Fairground notebooks will
be able to reference one another as libraries, collectively
forming a single planetary-scale live program being collab-
oratively edited in real-time or with optional lightweight
version control, and executing live (i.e. as it is being edited

Cyrus Omar, Michael Coblenz, and Anil Madhavapeddy

and whenever upstream data or models change) by Fair-
ground’s distributed parallelizing scheduler [31], which we
call the planetary compute engine. Computations will lever-
age distributed hardware resources semi-automatically, with
only the heaviest computations needing manual configura-
tion. Computational resources, including CPUs, GPUs, and
storage, will be contributed by participants and sponsors for
use according to lightweight access policies (e.g. reserving a
scientist’s own individual and institutional hardware for the
computations they author).

Design research emphasizes the value of reasonable de-
faults in shaping user behavior [22]. The central design goal
that distinguishes Fairground from competing systems is that
we aim for artifacts authored in or imported into Fairground
to be FAIR, reproducible, and live by default. Fairground is
targeted toward the needs of a graduate student without sub-
stantial formal training in computing whose primary goal is
to finish their next paper, rather than on one willing to invest
substantial extra labor into achieving these criteria, which is
rarely incentivized or rewarded. Let us give an overview of
how the proposed design will achieve this critical goal.

2 Design Considerations for Fairground

Our vision is inspired by the success of other collaborative
commons [42], particularly Wikipedia [52], GitHub [28], and
Google Earth Engine [19].

2.1 Findability and Accessibility

On most existing platforms, notebooks are private by default,
and substantial extra effort is needed to make them publicly
findable and accessible by others who may benefit from their
findings, functions, or pre-computed data (e.g. cleaned up
versions of datasets). In Fairground, repositories will be pub-
lic by default, closely following the example of GitHub, with
opt-in access control to allow scientists to work with sensi-
tive data. Each repository will receive a unique and persistent
digital object identifier (DOI) [11] and be associated with its
authors’ ORCID identifiers [40] by default.

Current repositories, such as those for oceanography [49],
often include only data, not code, leaving scientists to re-
implement analyses. Even when code is available in a repos-
itory such as Zenodo [12], it can be difficult to find and
integrate into new contexts (e.g. due to outdated dependen-
cies [43]).

In Fairground, the entire system forms a single live pro-
gram, enabling Fairground to offer semantic search affor-
dances such as find-all-uses (e.g. of a dataset, so that a scien-
tist can find others who have already cleaned up that dataset,
or of a statistical function, so that a scientist can find ex-
amples of similar analyses) and find-all-implementations
of a particular interface (e.g. a data schema or a statistical
function signature).



A FAIR Case for a Live Computational Commons

In addition to being able to access Fairground resources
through a web browser, Fairground will offer an API so exter-
nal applications can also access computational results. This
will be particularly useful because Fairground is a live sys-
tem: many results on Fairground will update continuously
as new data are collected. Live data and visualizations main-
tained on Fairground might feed into external, public-facing
projects, e.g. news articles or websites for public interest
organizations; these feeds have been found to promote inno-
vation in news media [2]. Users of these systems will be able
to follow these embedded results back to their sources on
Fairground, potentially increasing public trust in the results
by inviting public scrutiny [36].

2.2 Interoperability, Reusability, and Reproducibility

Computational notebooks typically operate as scripts; they
cannot be understood as libraries that can be accessed from
other notebooks (without wastefully re-executing them in
their entirety in the new context). It requires enormous extra
effort for a scientist to create reusable libraries and contribute
them to public library repositories like pip [47] or CRAN [1].
Consequently, it is common for scientists to re-implement
behavior when they need an analysis that is not already
in public package repositories. Reimplementing complex
techniques can be error-prone, especially for non-experts
who may not appreciate subtleties related to numerical ac-
curacy [18] or leave statistical assumptions unchecked [16].
It is common to then copy-and-paste this functionality into
each subsequent notebook where it might be useful, lead-
ing to messy and difficult-to-maintain code: 70% of all code
snippets in Jupyter notebooks on GitHub are copies of other
snippets [25].

On Fairground, every notebook is by default a library that
exports its top-level definitions, including data and func-
tions. Because the entire system operates as a single live
program, importing one library into another does not re-
quire re-execution. This eliminates the process of packaging
functionality into explicit libraries and submitting them to
repositories—everything is immediately available for reuse
across Fairground.

To enable this sort of open reuse, Fairground cannot per-
mit the importing notebook to modify the state of the im-
ported notebook’s analyses. Consequently, a central feature
of Fairground is the development of Fair Python, a pure (i.e.
immutable, functional) dataflow subset of Python that will
serve as the native language of Fairground. Pure dataflow is
fundamentally the same model used by spreadsheets: pro-
grams consist of elements that compute results, potentially
on the basis of results produced by other parts of the pro-
gram. Spreadsheets require that these elements be in a grid
and restrict the kinds of computations that can be done;
Fair Python will relax these constraints, allowing general-
purpose computation. Pure dataflow programming is already
in wide use in scientific code beyond spreadsheets, e.g. it is

10

PROPL °25, October 12-18, 2025, Singapore, Singapore

the computational model underlying libraries like pandas
for Python [34], and most pandas code will be expressible
in Fair Python without modification. By avoiding ephemeral
state, we ensure that Fair Python programs have reproducible
outputs.

Of course, we do not expect scientists to (re)write all code
in a restricted subset of Python—in reality, scientific code is
written in a wide variety of languages, including scripting
languages like Python, R, and Julia and native languages like
C, C++ and Fortran. While we will design Fair Python to be
a highly usable language for new scientific developments,
we do not expect scientists working in Fairground to port ex-
isting code en masse to Fair Python. Instead, we will develop
a pure foreign function interface (FFI) for Fair Python that
adds foreign nodes to the dataflow, which support executing
code written in any language. To maintain liveness and in-
teroperability, foreign nodes are restricted only in that they
execute within a sandboxed environment and their inputs
and outputs must be pure data. For example, a node might
pass data and parameters from elsewhere on Fairground into
an existing optimized numerical simulation package written
in Fortran, then specify that the dataset generated when the
simulation ends (e.g. saved to a file in the sandboxed file
system) is an output value. Each sandboxed environment is
configured using the Nix package manager, which produces
reproducible execution environments. This solves the com-
mon problem scientists face of interoperating with code that
requires old or conflicting versions of packages.

To simplify common use cases, Fairground will be able
to import existing Jupyter notebooks directly without modi-
fication, allowing them to be edited using the Jupyter web
interface and automatically provisioning the necessary for-
eign node internally. Top-level definitions will be exported
as outputs, and to maintain reproducibility, Fairground will
persistently store the ephemeral state of each notebook. For
native packages (those compiled for specific configurations
from languages such as C++ or Fortran), we will require Nix
configurations, which are written in a simple syntax that
is widely documented. These configurations will be part of
Fairground, so they can be reused by other scientists.

2.3 Liveness

In traditional Python code, lines of code must be executed in
order. This makes it difficult to leverage multicore hardware,
which is ubiquitous even on laptops. Fairground eliminates
these unnecessary sequential dependencies and automati-
cally distributes computations, and live recomputations, for
parallel execution across users’ individual cores as well as
computational resources contributed by participants. We call
this system the Fairground planetary compute engine [15].
The commons will centralize thousands of data and code
artifacts, which will have permanent identifiers that can be
referenced from papers and other permanent artifacts, and



PROPL ’25, October 12-18, 2025, Singapore, Singapore

can be searched to find relevant code and data. It will be open-
source, enabling long-term maintenance and transparency
of policies and behavior. It will support a distributed storage
model, enabling both centralized, persistent storage and local
replicas for high performance and customized access when
needed. It will interoperate with other sources of data, such
as NASA’s PO.DAAC [24] and support computation in a
variety of different languages.

Because Fairground programs will be live, it will seam-
lessly support reusability; any computation can be run, mod-
ified, and re-used in new contexts, even by users who have
very different local computational infrastructure.

2.4 Next Steps Towards Live Programming

In summary, we propose three interleaved tracks of research
that, together, will result in an operational prototype of a
next-generation collaborative scientific workflow system.
The proposed research will, in the process, lead to signifi-
cant advances in the field of human-centered programming
language design and implementation. In the first track, we
will focus on the design and implementation of Fair Python.
In the second, we will focus on interoperability with exter-
nal data sources and code written in existing languages. In
the third, we will advance the underlying planetary com-
pute engine so that Fairground can scale to planetary-size
datasets and analyses. We have already developed an op-
erational prototype of the web-based user interface in the
Hazel research programming environment [37] and plan, as
a plenary approach, to integrate the research advances from
all three tracks into this prototype, evolving it directly into
Fairground.

To ensure that Fairground is as usable as possible for scien-
tists, all three tracks will follow a participatory design process,
following best practices for language design in which we
iteratively make and evaluate design choices [9] with the
specific goal of improving real-world scientific workflows
being performed by scientists.

We will leverage our existing connections to involve sci-
entists from several disciplines, with an initial focus on
oceanography. In particular, we plan to develop case studies
from the work of collaborators in the fields of oceanography
and biology, and co-author Anil Madhavapeddy at the Uni-
versity of Cambridge. We will start with laptop-scale case
studies from domain-specific data science courses with mini-
mal external dependencies and then continue with full-scale
case studies drawn from scientific research papers, ongoing
projects, and graduate courses.

3 Discussion and Related Work

Encouragingly, our research direction into FAIR and live
planetary computing is complemented by several ongoing
efforts across the world, which we will discuss next.

11

Cyrus Omar, Michael Coblenz, and Anil Madhavapeddy

3.1 Future Directions

We are currently working on a working prototype of Fair-
ground, validated through a series of increasingly complex
case studies and user studies. We anticipate that Fairground
will first be ready for use by early adopters in the scientific
community. At this point, we hope to continue develop-
ment of Fairground by pursuing funding to develop a non-
profit governance organization, guided by the TRUST prin-
ciples [26], that will support both further technical develop-
ment and, most importantly, develop the community around
Fairground. While our initial focus will be on oceanogra-
phy [21], biodiversity [5, 14] and forest protection [45] re-
lated case studies, we will broaden the scope of the project
to other scientific communities at this time (and potentially
earlier if opportunities arise). Our goal is for Fairground to be
the most usable platform for doing day-to-day open science.

We anticipate that Al systems will be capable of assist-
ing in the large-scale ingestion of existing computational
notebooks and datasets into the Fairground system toward
the end of the funding period, which we believe will help us
bootstrap it to the point that it is quickly useful to working
scientists rather than just early adopters. We believe that
the time is right for scientific workflows to move to a next-
generation platform designed with both usability and the
FAIR criteria in mind from the start.

3.2 Related Planetary Computing Infrastructure

Our approach is motivated by multidisciplinary calls to de-
velop tools that make it easier to follow FAIR practices for
large-scale collaborative science and handle planetary-scale
data and computation. Co-author Anil Madhavapeddy and
colleagues in conservation made a case for “planetary com-
puting — infrastructure to handle the ingestion, transfor-
mation, analysis, and publication of global data products
for furthering environmental science and enabling better
informed policy-making” [15]. This article explains that sci-
entists need access to large petabyte-scale input datasets
consisting of:

e primary observation data from satellites that is petabyte-
scale or direct ground measurements;

e derived sources from algorithmic transformation or
Al-based inference;

e previous results derived by third parties or from earlier
runs

Programmers then define computation over these datasets
that: (i) is either algorithmic or machine learning-based, us-
ing a mix of CPUs and GPUs; (ii) needs to autoscale to permit
local development followed by global analysis; and (iii) can
be expressed by a non-CS expert, ideally with a visual inter-
face.

The Global Biodiversity Information Facility observed:
“There has been an explosion of data and information, and
a concomitant paradigm shift to data-driven research and



A FAIR Case for a Live Computational Commons

specifically biodiversity research and its myriad applications.
[...] Redesigned scientific data organizations [...] are devel-
oping approaches designed specifically to take advantage
of the unprecedented data opportunities in a cooperative
framework” [10].

Participants at NCAR’s Workshop on Correctness and Re-
producibility for Climate and Weather Software [32] sought
solutions for reproducibility problems. Running analyses
on multiple systems results in discrepancies; our approach
enables scientists to reuse common computations and re-
sults. At the 1st Programming for the Planet workshop [27],
Cimadevilla argued [8] that acquisition and processing of
data from heterogeneous data sources, followed by reuse of
model outputs, is a key component of many scientific tasks.

Large enterprises have also recognized the need for com-
monly available computational infrastructure for earth sci-
ence. In particular, Google offers the Google Earth Engine
product [19] and Microsoft offers the Microsoft Planetary
Computer [29] product upon request to environmental scien-
tists. These tools allow scientists to develop computational
notebooks and execute them using cloud hardware that has
access to a common repository of data sets and software
packages, much like our proposed system. However, as ex-
plained above, notebooks in these tools are not FAIR, not
reproducible, and not live. The research described here may
help these organizations address these problems for their
proprietary planetary compute engines. We will instead lay
the intellectual groundwork for a fully open complement to
these platforms. Encouragingly, we can build upon emerging
open and federated standards being established by initiatives
such as OpenEO [30], which defines APIs independent of
any single cloud provider or organization for the processing
of earth observation data.

The most closely related effort to build a computational
commons for scientists is the Observable community [35],
which hosts a computational commons with support for live
evaluation within individual notebooks (though not across
notebooks). Notebooks can refer to explicitly exported val-
ues in other notebooks, which must be pure. The analyses
must be written in JavaScript and run in the user’s browser.
While there is some support for controlling side effects, these
are opt-in, so the system lacks reproducibility and auto-
matic scalability. Although Observable does not meet our
criteria, it demonstrates that it is possible to attract commu-
nities of users to a well-designed and curated computational
commons.

References

[1] INSTITUTE FOR STATISTICS AND MATHEMATICS. The comprehensive r
archive network. https://cran.r-project.org, 2025.

[2] Artamurro, T., AND LEWIs, S. C. Open innovation in digital journalism:
Examining the impact of open apis at four news organizations. New
media & society 15, 2 (2013), 314-331.

[3] ALLEN, C., AND MEHLER, D. M. Open science challenges, benefits and
tips in early career and beyond. PLoS biology 17, 5 (2019), €3000246.

12

PROPL °25, October 12-18, 2025, Singapore, Singapore

[4] BAKER, M. 1,500 scientists lift the lid on reproducibility. Nature 533,
7604 (2016).

Barr, T., DaLes, M., EYrREs, A., GREEN, J., MADHAVAPEDDY, A.,
WiLLiAaMs, D., AND BALMFORD, A. Quantifying the impact of the food
we eat on species extinctions, feb 2025.

BARKER, M., Cuue Hong, N. P., Karz, D. S., LAMPRECHT, A.-L.,
MARTINEZ-ORTIZ, C., PsomoprouLos, F., HARrROw, ]J., CASTRO, L. J,,
GRUENPETER, M., MARTINEZ, P. A., AND HONEYMAN, T. Introducing
the FAIR Principles for research software. Scientific Data 9, 1 (2022),
622.

CAMERER, C. F., DREBER, A., FOorskgLL, E., Ho, T.-H., HUBER, J., JOHAN-
NESSON, M., KIRCHLER, M., ALMENBERG, J., ALTMEJD, A., CHAN, T,
HEIKENSTEN, E., HOLZMEISTER, F., ImAI1, T., ISAKSSON, S., NAVE, G.,
PrEIFFER, T., RAZEN, M., AND Wu, H. Evaluating replicability of labo-
ratory experiments in economics. Science 351, 6280 (2016), 1433-1436.
CIMADEVILLA, E. The programming challenges of climate data analysis.
In Programming for the Planet (2024).

COBLENZ, M., KAMBHATLA, G., KORONKEVICH, P., WISE, J. L., BARNABY,
C., SUNSHINE, J., ALDRICH, J., AND MYERS, B. A. PLIERS: A process that
integrates user-centered methods into programming language design.
ACM Trans. Comput.-Hum. Interact. 28, 4 (jul 2021).

CODATA, 1. C. 0. D. o. T. L. S. C., PFEIFFENBERGER, H., UHLIR, P., AND
Hopbson, S. Twenty-Year Review of GBIF, May 2020.

DOI Founpation. What is a DOL https://www.doi.org/the-identifier/
what-is-a-doi/, 2022.

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH, AND OPENAIRE.
Zenodo, 2013.

EYres, A., Bart, T., DALES, M., SWINFIELD, T., ARNELL, A., BAISERO, D.,
DURAN, A. P, GREEN, J., GREEN, R. E., AND MADHAVAPEDDY, A. LIFE:
A metric for quantitively mapping the impact of land-cover change
on global extinctions. Cambridge Open Engage (2024).

Evres, A, Bairr, T. S, DALES, M., SWINFIELD, T., ARNELL, A., BAISERO,
D, DURA;N, A. P, GREEN, J. M. H,, GREEN, R., MADHAVAPEDDY, A., AND
BALMFORD, A. LIFE: A metric for mapping the impact of land-cover
change on global extinctions. Philosophical Transactions of the Royal
Society B: Biological Sciences 380, 1917 (jan 2025), 1-13.

FERRIs, P., DALES, M., JAFFER, S., HoLcomB, A., ScorT, E. T., SWIN-
FIELD, T., EYRES, A., BALMFORD, A., COOMES, D., KESHAV, S., AND MAD-
HAVAPEDDY, A. Planetary computing for data-driven environmental
policy-making, 2024.

GARDENIER, J., AND AND, D. R. The misuse of statistics: Concepts, tools,
and a research agenda. Accountability in Research 9, 2 (2002), 65-74.
GoBLE, C. Better software, better research. IEEE Internet Computing
18,5 (2014), 4-8.

GOLDBERG, D. What every computer scientist should know about
floating-point arithmetic. ACM computing surveys (CSUR) 23, 1 (1991),
5-48.

GooGLE. Google earth engine, 2024.

GUIBOURD DE LUzINAIs, V., bu PONTAVICE, H., REYGONDEAU, G., BAR-
RIER, N., BLANCHARD, ]J. L., BORNAREL, V., BUCHNER, M., CHEUNG, W.
W. L., Eppy, T. D., EVERETT, J. D., GUIET, ]J., HARRISON, C. S., MAURY,
0., NovagtLio, C., PETRIK, C. M., STEENBEEK, J., TITTENSOR, D. P., AND
GascUEL, D. Trophic amplification: A model intercomparison of cli-
mate driven changes in marine food webs. PLOS ONE 18, 8 (08 2023),
1-23.

Haing, T. W. N., GELDERLOOS, R., JIMENEZ-UR1AS, M. A., SIDDIQUI,
A. H., LEMsoN, G., MEDVEDEV, D., SzaLAY, A., ABERNATHEY, R. P.,
ALMANSI, M., AND HirL, C. N. Is computational oceanography coming
of age? Bulletin of the American Meteorological Society 102, 8 (Aug.
2021), E1481-E1493.

Jacauimowicz, J. M., DuNcAN, S., WEBER, E. U., AND JoHNSON, E. J.
When and why defaults influence decisions: A meta-analysis of default
effects. Behavioural Public Policy 3, 2 (2019), 159-186.

[23] JENKINS, G. B., BECKERMAN, A. P., BELLARD, C., BENiTEZ-LOPEZ, A.,

(5]

[6

—

[7

—

[8

—

[9

—

[10]
[11]
[12]
[13]

[14]

[15]

[16]
[17]

(18]

[19]
[20]

[21]

[22]


https://cran.r-project.org
https://www.doi.org/the-identifier/what-is-a-doi/
https://www.doi.org/the-identifier/what-is-a-doi/

PROPL ’25, October 12-18, 2025, Singapore, Singapore

[24]

[25]

[26]

(27]

— —_—
W N DN
S O 0
[t N R '

(31]

(32]

(33]

— —
w W
[N
0

(39]

ELLIsSON, A. M., Foottg, C. G, HUFTON, A. L., LASHLEY, M. A., LORTIE,
C.J., Ma, Z., MOORE, A. J., NARUM, S. R., N1LsSsON, J., O’'BoYLE, B.,
PrOVETE, D. B., RAZGOUR, O., RIESEBERG, L., RiGINOs, C., SANTINI,
L., SIBBETT, B., AND PERES-NETO, P. R. Reproducibility in ecology
and evolution: Minimum standards for data and code. Ecology and
Evolution 13, 5 (2023), €9961.

JET PROPULSION LABORATORY. Physical oceanography distributed
active archive center, 2025.

KALLEN, M., AND WRIGSTAD, T. Jupyter notebooks on GitHub: Charac-
teristics and code clones. The Art, Science, and Engineering of Program-
ming 5 (2021).

LiN, D., CRABTREE, J., DiLLo, I, Downs, R. R., EDMUNDs, R., GIARETTA,
D., DE Grusti, M., L'Hours, H., HuGco, W., AND JENKYNS, R. The TRUST
principles for digital repositories. Scientific Data 7, 1 (2020), 1-5.
MADHAVAPEDDY, A., AND ORCHARD, D. Programming for the planet,
2024.

MicrosorT. GitHub, 2024.

MicrosoFT. Microsoft planetary computer, 2024.

MoHR, M., PEBESMA, E., DRIES, J., LIPPENS, S., JANSSEN, B., THIEX, D,
MILCINSKI, G., SCHUMACHER, B., BRIESE, C., CLAUS, M., ET AL. Federated
and reusable processing of earth observation data. Scientific Data 12, 1
(2025), 194.

MURRAY, D. G., SCHWARZKOPF, M., SMOwTON, C., SMITH, S., MAD-
HAVAPEDDY, A., AND HAND, S. CIEL: A universal execution engine
for distributed data-flow computing. In 8th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 11) (mar 2011).
NATIONAL CENTER FOR ATMOSPHERIC RESEARCH. Workshop on cor-
rectness and reproducibility for climate and weather software, 2023.
NGUYEN-HOAN, L., FLINT, S., AND SANKARANARAYANA, R. A survey
of scientific software development. In Proceedings of the 2010 ACM-
IEEE International Symposium on Empirical Software Engineering and
Measurement (New York, NY, USA, 2010), ESEM ’10, Association for
Computing Machinery.

NuMFOCUS, Inc. pandas. https://pandas.pydata.org, 2025.
OBSERVABLE. Observable. https://www.observablehq.com.

O’HARa, K. Transparency, open data and trust in government: shaping
the infosphere. In Proceedings of the 4th Annual ACM Web Science
Conference (New York, NY, USA, 2012), WebSci ’12, Association for
Computing Machinery, p. 223-232.

OMAR, C. Hazel. https://hazel.org, 2025.

OMAR, C., ALDRICH, ]., AND GERKIN, R. C. Collaborative infrastructure
for test-driven scientific model validation. In Companion proceedings
of the 36th international conference on software engineering (2014),
pp. 524-527.

OMAR, C., FERRIS, P., AND MADHAVAPEDDY, A. Modularizing reasoning

13

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]

[48]

[49]

[50]

[51]

[52]
[53]

Cyrus Omar, Michael Coblenz, and Anil Madhavapeddy

about Al capabilities via abstract dijkstra monads. In the 12th ACM
SIGPLAN Workshop on Higher-Order Programming with Effects (HOPE)
(sep 2024).

OPEN RESEARCHER AND CONTRIBUTOR ID. ORCID. https://orcid.org,
2025.

PraBHU, P., JaBLIN, T. B, RAMAN, A., ZHANG, Y., HuANG, J., Kim, H.,
Jonnson, N. P., Liu, F., GHoOsH, S., BEARD, S., OH, T., ZOUFALY, M.,
WALKER, D., AND AuGusT, D. I. A survey of the practice of compu-
tational science. In State of the Practice Reports (New York, NY, USA,
2011), SC ’11, Association for Computing Machinery.

RIFKIN, J. The zero marginal cost society: The internet of things, the
collaborative commons, and the eclipse of capitalism. St. Martin’s Press,
2014.

Sauro, H. M. The practice of ensuring repeatable and reproducible
computational models, 2021.

STORER, T. Bridging the chasm: A survey of software engineering
practice in scientific programming. ACM Comput. Surv. 50, 4 (aug
2017).

SWII\?FIELD, T., SHRIKANTH, S., BULL, J., MADHAVAPEDDY, A., AND ZU ER-

MGASSEN, S. Nature-based credit markets at a crossroads. Nature
Sustainability (aug 2024), 1-4.

THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION. Open
science at NASA, 2024.

THE PYTHON PACKAGING AUTHORITY. pip 25.0.1. https://pypi.org/
project/pip/, 2025.

Tiwari, K., KANANATHAN, S., ROBERTS, M. G., MEYER, J. P,
SHARIF SHOHAN, M. U., XAVIER, A., MAIRE, M., ZyouD, A., MEN, J., NG,
S., NGuyeN, T. V. N,, GLoNT, M., HERMJAKOB, H., AND MALIK-SHERIFF,
R. S. Reproducibility in systems biology modelling. Molecular systems
biology 17, 2 (2021), €9982.

U.S. Nar1oNAL SciENCE FOUuNDATION. OCE data and sample reposito-
ries. https://www.nsf.gov/geo/oce/data-sample-repositories, 2025.
VAN DENDEREN, D., MAUREAUD, A. A., ANDERSEN, K. H., GaIcHAs, S.,
LINDEGREN, M., PETRIK, C. M., STOCK, C. A., AND COLLIE, J. Demersal
fish biomass declines with temperature across productive shelf seas.
Global Ecology and Biogeography 32, 10 (2023), 1846-1857.

WIGGINS, B. J., AND CHRISTOPHERSON, C. D. The replication crisis in
psychology: An overview for theoretical and philosophical psychology.
Journal of Theoretical and Philosophical Psychology 39 (2019), 202-217.
WIkIPEDIA CONTRIBUTORS. Wikipedia, 2024.

WILKINSON, M. D., DUMONTIER, M., AALBERSBERG, L. J., APPLETON, G.,
AXTON, M., BaAKk, A., BLOMBERG, N., BOITEN, J.-W.,, DA S1LvA SANTOS,
L. B., AND BOURNE, P. E. The FAIR guiding principles for scientific
data management and stewardship. Scientific data 3, 1 (2016), 1-9.

Received 2025-07-08; accepted 2025-08-11


https://pandas.pydata.org
https://www.observablehq.com
https://hazel.org
https://orcid.org
https://pypi.org/project/pip/
https://pypi.org/project/pip/
https://www.nsf.gov/geo/oce/data-sample-repositories

	Abstract
	1 Introduction
	1.1 The importance of reproducible open science
	1.2 Towards live collaborations

	2 Design Considerations for Fairground
	2.1 Findability and Accessibility
	2.2 Interoperability, Reusability, and Reproducibility
	2.3 Liveness
	2.4 Next Steps Towards Live Programming

	3 Discussion and Related Work
	3.1 Future Directions
	3.2 Related Planetary Computing Infrastructure

	References

