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Living evidence databases offer a robust and dynamic alternative to static systematic reviews 

but require a resilient technical infrastructure for continuous evidence processing. This working 

paper describes the architecture and implementation of a complete, end-to-end pipeline for 

this purpose, developed initially for the conservation science domain. Designed to operate on 

local infrastructure using self-hosted models, the system ingests and normalizes documents 

from academic publishers, screens them for relevance using a multi-stage process, and 

extracts structured data according to a predefined schema. Key features include a hybrid 

retrieval model; a human-AI collaborative process for refining inclusion criteria from complex 

protocols, and the integration of an established, statistically-principled stopping rule to ensure 

efficiency. In a baseline evaluation against a prior large-scale manual review, the fully 

automated pipeline achieved 97% recall and identified a significant number of relevant studies 

not included in the original review, demonstrating its viability as a foundational tool for 

maintaining living evidence databases. 

 
This is a living document: version 0.0.1 last updated 3rd October 2025. 

1. Introduction 

The established paradigm of conducting discrete, static systematic reviews has been key to 

the development of evidence-based policy and practice in fields such as medicine, education, 

international development and environmental management [1]. However, such reviews are 

costly and time-consuming to conduct, difficult to reproduce, and quickly go out of date as new 

studies are published and existing ones retracted. These lengthy timelines often produce 

answers outside the narrow windows required for policy decisions [2], [3]. Furthermore, the 

narrow scope of systematic reviews renders their findings effectively “single-use”: the focal 

question is answered comprehensively, yet answering even highly related questions requires 

starting from scratch and re-searching the entire literature [4]. These challenges may lead to 

decision makers resorting to Artificial Intelligence (AI) models that deliver almost instant 

answers. However, these lack transparency about their evidence base and potential biases. 

Artificial Intelligence (AI) can be used to provide incremental improvements in the efficiency of 

the systematic review process, but the inflexible structural limitations of the final review remain.  

Current advances in AI-enabled evidence synthesis are often presented as a false dichotomy 

between opaque, blind automation and marginal productivity gains. Instead, we argue that 
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advances in AI have brought us to an inflection point, where a fundamentally different 

approach becomes viable: subject-wide, living evidence databases, powered by human-in-

the-loop AI. These databases will continuously collate, index and catalogue evidence across 

a domain to enable delivery of rapid answers to a variety of related research and policy 

questions. Crucially, these systems should be transparent and traceable, allowing a ‘human-

in-the-loop’ to scrutinise model decisions and associated reasoning at all stages. 

The main barrier to the vision of living evidence databases is the lack of practical, end-to-end 

technical infrastructure designed for this purpose, especially under real-world operational 

constraints (i.e. integrating with academic publishers). While systems exist that could be used 

to implement AI into elements of the evidence synthesis process, such as screening or data 

extraction, the lack of an end-to-end system means there is no clear traceability or ability to 

propagate confidence through the system from ingestion to output. 

1.1 From static to living reviews 

While evidence reviews have proven crucial in fields like medicine for practitioners to keep up 

with evidence, they face a number of challenges. Research suggests that they go out of date 

quickly [5] with half of the medical reviews examined needing material updates within 5.5 

years. The comprehensiveness of evidence reviews is threatened by a rapidly growing 

literature base - the number of articles indexed by Scopus and Web of Science grew 47% 

between 2016 and 2022 [6] - a trend likely to accelerate with the aid of AI [7]. Furthermore, 

redundancy and duplication of efforts in the process of conducting reviews affects cost-

efficiency and timeliness; with each review searching, categorising and synthesising the same 

literature. For some topics, the number of evidence syntheses even exceeds the number of 

primary studies [8]. 

 

To address reviews becoming rapidly out of date, Living Systematic Reviews (LSRs) have 

been proposed as a solution [9]. These are online databases that are continuously updated 

and re-reviewed by the original authors when new relevant studies are identified. Their uptake 

has been gradual but has increased rapidly since 2019 [10]. However, they do not address 

the duplication of efforts between reviews that cover much of the same literature and do not 

overcome the issue of being able to directly apply extracted information to highly relevant 

alternative questions.  

 

Subject-wide evidence synthesis [11], [12] is a method of evidence synthesis that is well 

designed for the production of Living Evidence Databases (LEDs). Subject-wide evidence 

synthesis is a systematic method for finding, summarising, and assessing all relevant research 

evidence on a broad topic to inform decisions and practices. Similarly, LEDs are based on 

broad subject areas and feature many different interventions and outcomes. A populated LED 

would allow reviews to be conducted extremely quickly, by simply filtering for the evidence 

relevant to your question. Crucially the work of searching, data extraction and critical appraisal 

is shared amongst all produced reviews - rather than repeated for each one, as in systematic 

reviews. 

1.2 The need for automation 

With the deluge of publications [13] and the dramatic improvements in AI capabilities in recent 

years, proponents of Systematic Reviews and Living Evidence Databases have proposed 
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accelerating one or more steps in the evidence review process with AI. Existing research has 

focused on different stages in a typical systematic review process. For example, research 

protocol and search strategy1, search string generation [14], [15], screening [16], [17], [18], 

[19] and data extraction [20], [21], [22], [23]. However, tooling is fragmented and necessitates 

using different software packages together in order to conduct a review. This poses a 

challenge for living reviews as there is limited traceability between stages, which prevents the 

propagation of confidence measures and limits auditability. It is also dependent on the ongoing 

support for a range of software packages. Solving these issues is crucial for long-running 

maintenance of LEDs and reliable evidence synthesis. 

1.3 Our Contribution 

We present a complete, end-to-end AI-enabled evidence synthesis pipeline designed as a 

practical solution to the challenges facing evidence synthesis. Our contributions are as follows: 

1. A system that can operate fully self-hosted, with built in traceability at all stages. 

2. We propose a novel human-in-the-loop process for criteria refinement that uses 

synthetic data and enables domain experts to rapidly and precisely refine complex 

inclusion criteria. 

3. We demonstrate real-world feasibility through integrating the pipeline with multiple 

academic publishers, moving beyond the limitations of typical academic projects that 

are restricted to open-access corpora only. 

4. Finally, we rigorously evaluate the pipeline against the large-scale, manually curated 

Conservation Evidence database2, demonstrating 97% recall against the prior human 

manual review and showing that our system enhances the review's 

comprehensiveness by identifying hundreds of relevant studies the original process 

overlooked. 

2. A Pipeline for Living Evidence 

2.1 System Overview 

The system is designed to execute configurable data processing pipelines. A pipeline is a 

directed graph of nodes, where each node performs a specific function. The primary node 

types are: criteria nodes, which test articles against a natural language inclusion criteria; 

filter nodes, which apply a conditional filter using a user-provided code snippet; extract 

nodes, which extract structured data; and output nodes, which aggregate results. This 

modular structure allows for the creation of complex, multi-stage workflows for processing 

scholarly documents.  

2.2 Data Ingestion and Normalization 

A principle difference between conventional systematic review methodology automation, and 

our subject-wide evidence synthesis based evidence pipeline is the lack of keyword-based 

filtering in our approach. The process begins by identifying a target set of documents using 

 
1 https://mesh.med.yale.edu/, https://picoportal.org/ 
2 https://conservationevidence.com/ 
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their Digital Object Identifiers (DOIs) [24]. Article DOIs can be sourced from data sources such 

as the OpenAlex dataset [25] or Semantic Scholar [26].  In collaboration with the university 

library, agreements have been established with the following academic publishers to permit 

access to both open and closed access full-text articles, either via API or by scraping their 

websites: Public Library of Sciences (PLOS), Oxford University Press, Elsevier, Springer, 

Frontiers, The Royal Society, Wiley, Taylor & Francis, Sage, CSIRO and BioOne. 

The acquired documents, arriving in heterogeneous formats, are then normalized. PDFs are 

processed using Grobid [27] to generate XML (eXtensible Markup Language) TEI (Text 

Encoding Initiative). The XML format creates files that encode data in a format that is both 

human and machine readable and following the TEI guidelines ensures that the text is 

encoded in a consistent, semantic way, focusing on meaning rather than just presentation. 

Source files already in XML format were converted to XML TEI using pub2TEI [28]. The 

evaluation described in this paper did not include articles for which only a JSON format was 

available. Figures were not included in the TEI conversion. 

2.3 Relevance Screening 

Relevance screening is an iterative process designed to efficiently identify relevant articles 

from the large initial corpus. It employs a Continuous Active Learning process using a Large 

Language Model, human or hybrid as the oracle.  

First, a feature vector is constructed for every article in the dataset using the concatenation of 

its title and abstract. This is a one-time process. The vector is a concatenation of sparse and 

dense features. The sparse component is generated through uni- and bi-gram tokenization 

into a fixed-size (2^18) vector using feature hashing. The dense component is a 256-

dimension Matryoshka embedding [29] from the nomic-ai/modernbert-embed-base [30] 

model. 

For the Large Language Model, we selected Deepseek-R1-Llama-3.3-70B as, at the time 

of evaluation (January 2025), this was the highest performing reasoning model which could 

be self-hosted on a single NVIDIA H100 [31]. 

The screening process then proceeds in batches: 

● Initial Batch: On the first iteration, a random sample of 50 articles is selected and 

passed to the inclusion testing workflow. 

● Subsequent Batches: For all subsequent iterations, a logistic regression classifier is 

trained to guide article selection. Thirty synthetic articles that meet the inclusion criteria 

are generated by an LLM. These synthetic positives, along with the confirmed 

negatives from the previous batch, form the training set. A logistic regression model is 

trained on these examples. This model then ranks all un-processed articles in the 

corpus, and the top 50 are selected for the current batch. 

Articles selected for a batch undergo a two-phase inclusion test. First, an LLM assesses the 

title and abstract against the inclusion criteria; this is done five times for each article leveraging 

model self-consistency [32] through a majority vote of the five outputs. Articles that pass this 

initial check proceed to a full-text verification stage, which is structured as a boolean data 

extraction node. 
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To mitigate the prohibitive cost of processing the entire corpus with the expensive full-text LLM 

stages, we implemented a statistically principled stopping rule. This approach is based on 

modelling the discovery of relevant documents as an inhomogeneous Poisson process, 

drawing heavily from prior work in technology-assisted reviews [33], [34]. That is, we assume 

the rate of discovery of relevant documents follows a poisson distribution where the rate varies 

over time through a rate function. As the review progresses, the system collects data on which 

articles pass the full-text relevance check, pairing a binary relevance score (1 for relevant, 0 

for not) with the article's rank. We use the hyperbolic rate function: 

𝜆(𝑥)  =  
𝑎

(1 + 𝑏𝑐𝑥)
1
𝑏

 

Where x is ranking index and a, b and c are parameters controlling the shape of the function 

with 0 ≤ b ≤ 1. This is fitted, with scipy.optimize.curve_fit, to the observed relevance 

probabilities (smoothed using a sliding window of 100 ranks). The integral of this function is 

used to estimate the total number of relevant articles in the corpus. The screening process is 

then stopped when the number of relevant documents found so far reaches a predefined 

percentage of this estimated total, with a confidence interval calculated using a Poisson 

distribution. We set our recall target to 95%, as is common in automated screening for 

systematic reviews [35], [36]. This allows for a more robust stopping decision, such as 

terminating the review only when the lower bound of the 95% confidence interval on recall 

exceeds the target threshold. 

2.4 Data Extraction 

The extraction process is designed to focus the LLM on the most relevant parts of a document. 

For a given extraction node (e.g., 'Habitat type'), the article is first broken down into chunks of 

approximately twenty sentences. A short description of the data to be extracted is used to 

identify potentially relevant sections within these chunks. These relevant sections are then 

reassembled in their original document order to form a condensed text. 

The LLM is then prompted to extract the structured data from this condensed text, using the 

full, detailed prompt for that extraction task. For all criteria and extract nodes, 

constrained decoding is employed to ensure the output is valid JSON conforming to the 

predefined schema. The JSON output includes structured reasoning: for criteria nodes, a 

concise reasoning field intended for end-users is generated, while extract nodes are 

prompted to provide one or more supporting statements, each linked back to the specific text 

sections from which the information was derived. 

3. Human-AI Criteria Refinement 

Translating a high-level research protocol into a precise, machine-operable inclusion criteria 

is a critical bottleneck. To address this, we use a human-in-the-loop process to collaboratively 

refine the criteria with domain experts. The generic process is as follows: 

● Initial Draft: Source documents for the review (e.g., existing protocols, project aims) 

are collated. An LLM (for this work, Anthropic's Claude 3.5 Sonnet was used) 

processes these documents to generate an initial candidate inclusion criteria. 
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● Iterative Refinement: A group of domain experts is convened for an iterative feedback 

session. The LLM is prompted to generate synthetic but plausible titles and abstracts 

that are designed to be ambiguous under the current version of the inclusion criteria. 

The domain experts review these ambiguous examples, deciding whether each should 

be included or excluded and providing a brief justification for their decision. The LLM 

is then provided with the experts' classifications and justifications, and instructed to 

improve the inclusion criteria to better resolve the identified ambiguities. This cycle is 

repeated until the experts agree that the generated examples are no longer revealing 

significant ambiguities and the criteria is sufficiently precise. For the butterfly and moth 

synopsis review, we generated three synthetic examples per iteration over five 

iterations. 

4. Evaluation 

We evaluated the performance of the Pipeline by attempting to reproduce the Conservation 

Evidence (CE) series synopsis for global butterfly and moth conservation [37]. CE uses 

subject-wide evidence synthesis [12] to collate the global evidence for the effectiveness of 

conservation actions [38]. Authors manually screen titles and abstracts of all articles from 

conservation relevant journals, and those that evaluate the impacts of any conservation action 

for any wild taxon (e.g. birds, reptiles, mammals) or habitat (e.g. forests, grasslands, wetlands) 

are retained for full text screening. Article full texts are then screened, and those that meet 

inclusion criteria are grouped based on the action they test and a ~200 word summary is 

written detailing the main results and other key information, including study design and the 

location and habitat where the action was carried out. The butterfly and moth synopsis collated 

evidence published up to and including 2018, and while the synopsis covered nearly 300 

English-language journals, over 300 non-English journals and 16 report series (Bladon et al., 

2022), for the purposes of this exercise, we restricted our evaluation to English-language 

journals only. 

We attempted to download all articles from all journals, and years, searched and assessed for 

the manually curated butterfly and moth synopsis (Appendix 1-3 from Bladon et al. 2022). Due 

to certain restrictions, such as the number of scientific publishers with whom we have text-

mining agreements, accidental black-listing or rate-limiting of our scraping software, and the 

non-standard formatting of some journals meaning we were unable to convert them into the 

required XML TEI format, we could only download 151,727 articles. Within these 151,727 

articles, 167 articles included in the butterfly and moth synopsis were covered. These 151,727 

articles were used as the basis for the evaluation. The specific pipeline configuration used for 

the evaluated Conservation Evidence Butterfly and Moth synopsis [39] is detailed in Table 1. 
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Table 1. The configuration of the living evidence database pipeline. 

Pipeline 
stage 

(node) 

Model Sampler Temp- 
erature 

Prompts Input data Output data 

Ranking 

(criteria) 

nomic-
ai/modern

bert-
embed-

base 
logistic 

regression 

- - - Title and 
abstracts 

Probability of 
relevance 

Synthetic 
ranking 
papers 

(criteria) 

Deepseek-
R1-Llama-

3.3-70B 

Topk = 40 
TopP = 0.9 
MinP = 0.1 

 

2.0 See 
Table S4 

Inclusion 
criteria 

Synthetic 
titles and 

abstracts of 
relevant 
papers 

Inclusion 

(criteria) 

Deepseek-
R1-Llama-

3.3-70B 

Topk = 40 
TopP = 0.9 
MinP = 0.1 

 

0.7 See 
Table S5 

Title and 
abstract 

Include/Exclu
de (with 

reasoning) 

Full-text 

(criteria) 

Deepseek-
R1-Llama-

3.3-70B 

Topk = 40 
TopP = 0.9 
MinP = 0.1 

 

0.7 See 
Table S6 

Full paper 
text 

Include/Exclu
de (with 

reasoning) 

Study 
design 

(extract) 

Deepseek-
R1-Llama-

3.3-70B 

Topk = 40 
TopP = 0.9 
MinP = 0.1 

 

0.7 See 
Table S7 

Full paper 
text and 
schema 
for data 

Data 
matching 
schema 

Geography 

(extract) 

Deepseek-
R1-Llama-

3.3-70B 

Topk = 40 
TopP = 0.9 
MinP = 0.1 

 

0.7 See 
Table S8 

Full paper 
text and 
schema 
for data 

Data 
matching 
schema 

Habitat 

(extract) 

Deepseek-
R1-Llama-

3.3-70B 

Topk = 40 
TopP = 0.9 
MinP = 0.1 

 

0.7 See 
Table S9 

Full paper 
text and 
schema 
for data 

Data 
matching 
schema 

To develop our inclusion criteria, we started with the existing Conservation Evidence criteria 

(Table S1) and undertook the process of Human-AI Collaborative Refinement (Section 3) to 

develop a final pipeline-specific inclusion criteria (Table S2). Six members of the Conservation 

Evidence team and a technical facilitator took part in a workshop to carry out this refinement 

process. 
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4.1 Article screening and inclusion 

We evaluated article screening (title and abstract) and inclusion (full text) stages by comparing 

outputs with the existing synopsis of Butterfly and Moth Conservation. Specifically we 

assessed the ability to correctly include articles that appeared in the synopsis (recall) and 

exclude those that did not (precision), where: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)
 

In addition to this, we manually assessed the full texts of a random subset of false positives 

(i.e. articles included by the pipeline that do not appear in the synopsis) to check whether any 

of these articles did in fact meet our inclusion criteria. This manual checking was carried out 

by six members of the Conservation Evidence team, who all have experience in screening 

articles for inclusion in the database and authoring Conservation Evidence synopses. We 

calculated the proportion of the false positives that could actually have been included in the 

synopsis under their existing inclusion criteria (so called “pseudo false positives”) and used 

this to make an updated estimate of pipeline precision. 

Finally, we assessed how repeated article screening (at title and abstract) and inclusion (at 

full text) by LLMs multiple times affected the rate of false positives. We fitted logistic regression 

models where false positive (Y or N) was a binary response variable and the number of 

inclusions was included as a categorical explanatory variable. We assessed differences 

between levels of the categorical variable by comparing the estimated marginal means and 

carrying out post-hoc pairwise comparisons (using Tukey-adjusted p values for multiple 

comparisons) using the emmeans R package [40]. We fitted separate models for screening at 

title and abstract stage and inclusion at full text stage, and all models were fitted with a 

binomial error distribution and logit link function. 

4.2 Data extraction 

We evaluated the ability of the pipeline to extract data on experimental design, geographical 

location and habitat type from all included articles that appear in the current synopsis. 

4.2.1 Experimental design 

Article summaries in the Conservation Evidence database contain a standard set of study 

design terms that denote whether they include replication, randomisation, pre-impact 

sampling, comparisons with control sites/individuals or pairing of impact and control sites 

(Table S3). To compare pipeline classifications with real study designs, we first extracted the 

true study design terms from each summary paragraph. As the study design is described in 

the first sentence of the summary paragraph, we retained only those cases where the term 

appeared within the first 150 characters. For cases where there were multiple summary 

paragraphs for a single article, we combined all study design terms.  
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For individual study design terms, we calculated pipeline recall and precision based on the 

ability of the pipeline to correctly classify each term. For the full study design, we calculated 

the accuracy of pipeline predictions, where: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

As the pipeline was required to classify the study design for all included articles, total 

predictions was simply the total number of articles assessed. 

4.2.2 Geographical location and habitat 

The Conservation Evidence database stores data on the geographical location and habitat 

type in which actions took place. Habitats are classified using a system that is closely aligned 

to the IUCN habitats classification system Version 3.1 [41]. We assessed the ability of the 

pipeline to extract the correct country and “level 1” habitat type from all included articles. As 

the pipeline could predict multiple countries or habitat types per article, we calculated recall 

and precision using both micro- and macro-averaging: 

𝑀𝑖𝑐𝑟𝑜 𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑁𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

𝑁𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 

 

𝑀𝑎𝑐𝑟𝑜 𝑟𝑒𝑐𝑎𝑙𝑙 =
∑

𝑁𝑠𝑡𝑢𝑑𝑖𝑒𝑠
1 𝑟𝑒𝑐𝑎𝑙𝑙

𝑁𝑠𝑡𝑢𝑑𝑖𝑒𝑠
   (mean per study recall) 

 

𝑀𝑖𝑐𝑟𝑜 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑁𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

𝑁𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠
 

 

𝑀𝑎𝑐𝑟𝑜 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑

𝑁𝑠𝑡𝑢𝑑𝑖𝑒𝑠
1 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑁𝑠𝑡𝑢𝑑𝑖𝑒𝑠
    (mean per study precision) 

 

4.3 Evaluation results 

We were able to access and download 151,727 article full texts, of which 167 appear in the 

current synopsis of Butterfly and Moth Conservation. 

4.3.1 Article screening and inclusion 

Using our stopping rule (when the number of relevant documents found reached 95% of the 

estimated total number of relevant documents), we took forward 18,238 articles to be screened 

at title and abstract stage. Of these, 16,106 were rejected and 2,132 were taken forward and 

screened at the full-text stage. 148 articles were removed due to errors in the pipeline 
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accessing full-texts. Of the remaining 1,984 articles, 699 were rejected at full-text stage and 

1433 were included as relevant articles. A comparison of the relative inclusion rates at different 

stages are shown in Table 2. The pipeline rejected a substantially lower proportion of articles 

than in the original synopsis at title and abstract screening stage (88.31% versus 99.96%) and 

was also relatively more lenient at full-text stage (72.23% versus 82.09%; Table 2). 

Table 2. Comparison of the number of articles included and excluded at each stage of the 

review process for the original manual synopsis review and the pipeline. *148 full texts could 

not be accessed due to errors. #12 articles were removed as full texts could not be accessed, 

and one article was a meta-analysis. 

 Original synopsis Pipeline 

All articles All articles Articles from original 
synopsis 

Screening 
stage 

Number Percentag
e included/ 
excluded 

Number Percentage 
included/ 
excluded 

Number Percentage 
included/ 
excluded 

Total 
articles 

for 
screening 

1,186,661 - 151,727 - 167 - 

Total 
articles 

removed 
after 

ranking 

NA - 133,489 87.98 0 0.00 

TA total 
screened 

1,186,661 - 18,238 12.02 155# 100.00 

TA 
rejected 

1,186,192 99.96 16,106 88.31 0 0.00 

 
TA 

included 

469 0.04 2132 11.69 155 100.00 

FT total 
screened 

469 - 1,984* - 155 - 

FT 
rejected 

84 17.91 551 22.77 5 0.00 

FT 
included 

385 82.09 1,433 72.23 150 96.77 
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Within the 151,727 articles screened by the pipeline (a subset of the total corpus), a total of 

167 articles (of the 385 articles; Table 2) included in the butterfly and moth synopsis were 

present and therefore represented the maximum possible recall. All 167 of the articles that 

appear in the synopsis made it through the initial ranking stage of the pipeline. After removing 

cases where full text examination returned an error and one meta-analysis (which was 

excluded under our criteria), 155 articles that appear in the synopsis were screened and 

assessed for inclusion (title and abstract and full text), and 150 were included, equating to a 

recall of 96.8% (Table 2). 

The pipeline included an additional 1,283 false positives (i.e. articles that were not included in 

the existing synopsis), equating to an initial precision estimate of 10.5%. Randomised manual 

checking of 140 full texts revealed that 20% (28) of articles were pseudo false positives, 

meaning they did in fact meet the inclusion criteria. Assuming this pseudo false positive rate 

of 20%, our updated estimate of precision was 28.4%. 

Articles that were included during all five repetitions of the pipeline were less likely to be false 

positives than those included only three (Title & abstract: Z ratio = 4.83, p < 0.0001; Full text: 

Z ratio = 3.02, p = 0.007) or four times (Title & abstract: Z ratio = 5.35, p < 0.0001; Full text: Z 

ratio = 2.77, p = 0.015). Articles included in three or four repetitions had a similar chance of 

being false positives (Title & abstract: Z ratio 0.87, p = 0.657; Full text: Z ratio = 0.72, p = 

0.753; Figure 1). 

 

Figure 1. The probability of included articles being false positives at both the title and abstract 

screening stage and the full text inclusion stage depending on the number of times they were 

classified (out of 5 runs of the pipeline). 
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4.3.2 Data extraction 

Both recall and precision were lowest for articles defined as “studies”, which contained no 

formal study design terms (Table 3). For all other study design terms, recall ranged from 0.35 

for paired designs to 1.0 for before and after designs, and precision ranged from 0.21 for 

before and after designs to 0.89 for replicated designs (Table 3). For classification of the full 

study design (i.e. combining all components, of which there are 128 different unique 

combinations), accuracy was 0.12. 

Table 3. Recall and precision for classification of each individual study design component. 

Study Design Recall Precision 

Before and after 1.00 0.21 

Controlled 0.95 0.56 

Paired 0.35 0.68 

Randomized 0.88 0.43 

Replicated 0.71 0.89 

Site comparison 0.71 0.74 

Study 0.25 0.14 

When classifying the country in which actions took place, recall  was >0.99 (for both micro- 

and macro-averaging), and of 142 countries present in the dataset, 141 were correctly 

classified. Precision for country classification and both recall and precision for habitat 

classification suggest moderate to good performance (Table 4). 
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Table 4. Recall and precision for classification of country and habitat data, calculated by 

both micro- and macro-averaging. 

Variable Recall Precision 

 Micro Macro Micro Macro 

Country 0.99 1.00 0.78 0.90 

Habitat 0.77 0.85 0.76 0.83 

 

5. Discussion 

Successful development and evaluation of a Living Evidence Database pipeline 

Our evaluation demonstrates that our end-to-end, self-hosted AI pipeline with humans-in-the-

loop can screen articles for inclusion in a Living Evidence Database on a par with human 

experts, but for a fraction of the cost in terms of time and effort. Our evaluation results also 

point to better than human expert-level screening performance, given that 20% of false 

positives were likely to be pseudo false positives - articles that were missed by human experts 

but found by the AI pipeline. These pseudo false positives were likely found because the AI 

pipeline is not susceptible to human error (e.g., caused by fatigue from reviewing large 

numbers of articles) and the ability of the pipeline to screen a larger number of articles at the 

full text stage (1,984 articles versus 469; Table 2) by using a more liberal threshold at the title 

and abstract screening stage than human experts (12% lower rejection rate; inclusion rate 

was 12% of articles screened versus just 0.04% for the original reviewers; Table 2).  

The ability of the pipeline to extract data had more mixed results, but these were encouraging 

given the future improvements and iterations that can be made. For example, the pipeline 

performed exceptionally well for more concrete data types such as geographical location and 

habitat classification. However, performance on nuanced, multi-component data types such 

as study design was more variable and requires further refinement. 

We also successfully piloted a novel component for improving evidence synthesis that is 

applicable to existing evidence synthesis approaches: Human-AI Criteria Refinement. This 

was able to translate an evidence synthesis protocol, suitable for human experts, into precise, 

machine-operable inclusion criteria, which would arguably improve agreement between 

human reviewers if used in existing review methods.  

Our pipeline also implements an automated statistically principled stopping rule through a 

combination of LLM synthetic data generation, active learning and statistical process 

modelling. This is in contrast with approaches typically used in evidence synthesis which 
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necessitate initially screening a random set of articles [42], [43], relying on heuristics [44], [45] 

or budget-based approaches. 

Implications for evidence synthesis at scale to build Living Evidence Databases 

Our work provides a proof-of-concept for the technical feasibility of shifting from static, 

resource-intensive systematic reviews to building dynamic, subject-wide Living Evidence 

Databases (LEDs) with an AI-human hybrid system. By putting a human-AI collaborative 

framework at the heart of our pipeline, we avoid creating a ‘black box’ system that replaces 

human experts. By shifting the effort of screening vast amounts of literature to AI models, 

researchers’ time can be better harnessed by focusing on higher-level tasks such as verifying 

edge cases, as well as interpreting and communicating the outputs of LEDs for decision-

makers. Our finding that using model self-consistency (multiple runs of parts of the pipeline) 

can significantly improve precision has key practical implications, offering a tunable 

mechanism to manage the trade-off between automation and human verification workloads. 

Synthesis teams could decide on a confidence threshold (e.g., whether to only review articles 

included in more than 4 or 5 runs) to prioritise effort. Our work also shows that an end-to-end 

AI pipeline for evidence synthesis can be traceable and reproducible, whilst being self-hosted 

means that issues of data sovereignty and privacy can be managed more easily. Such 

considerations are extremely important to the future of large-scale synthesis that leverages AI 

models as these issues can often be barriers to adoption in different research and policy 

environments. 

Our work also highlights the critical importance of effective integrations with publishers, without 

which this pipeline could not feasibly function. By providing automated access to the full-text 

of articles via APIs or bulk download facilities, the system can prioritise recall at the abstract 

screening stage. This enhances the system’s comprehensiveness, as it results in significantly 

more full-text screening than would be feasible in a manual review. Crucially, this process 

uncovers articles that would have been erroneously excluded based on their abstract in a 

conventional review. 

Future directions 

Our proof-of-concept pipeline may have achieved impressive levels of performance, 

particularly at the screening stages, but still requires further refinement. Currently, the primary 

limitation is that there is typically low initial precision, which would require significant human 

verification efforts to screen (despite reducing the size of the corpus needing to be screened 

substantially, in this case by 97%). More sophisticated, multi-stage filtering models and 

classifiers could help to reduce this problem.  

The pipeline also struggled at complex data extraction, for example for study design 

classification. Future work could explore how to fine-tune smaller, specialised models to deal 

with these specific tasks, whilst more advanced prompting techniques and extraction schema 

might also improve pipeline performance.  

We must also acknowledge that our current evaluation was based only on a single synopsis 

of conservation intervention studies and so the results are potentially not generalisable to other 

subject areas. Further research is needed to assess this generalisability across diverse topic 

areas, although the design of the pipeline is deliberately interoperable to enable such work.  
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Future work will also aim to expand on the pipeline’s capabilities by integrating automated 

critical appraisal and risk-of-bias assessments, as well as processing non-English language 

studies and grey literature. 

6. Conclusion 

This paper details the architecture and successful evaluation of a self-hosted, end-to-end AI 

pipeline designed to power LEDs. Our results demonstrate that this approach can achieve 

very high recall in terms of finding relevant papers - even finding additional relevant papers 

due to being able to screen a larger number of papers at full-text stage. While challenges in 

precision and complex data extraction remain, we show that practical solutions, such as 

leveraging model self-consistency and human-AI collaborative workflows, can mitigate these 

issues. Whilst further refinements are needed, our work provides a viable technical foundation 

for the transition from static, single-use reviews to dynamic, sustainable, and transparent living 

evidence ecosystems, fundamentally changing how evidence is synthesized and used to 

inform policy and practice in conservation. 
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