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Abstract

Urban green infrastructure is essential for climate resilience, public health, and
environmental justice. Yet, the absence of standardised methods to quantify
urban nature hinders the development of equitable greening policies. In this study,
we present the first national, building-level assessment of the 3-30-300 urban
greening rule, a policy framework proposing that every citizen should see three
trees from their home, live in a neighbourhood with 30% canopy cover, and reside
within 300 m of a public green space. Using high-resolution LiDAR (Vegetation
Object Model), Sentinel 2 imagery, and open geospatial datasets for over 28 mil-
lion buildings across England, we integrate raster, vector, and socioeconomic data
within a scalable computational framework. Tree segmentation was performed
using adaptive local-maximum filtering, canopy cover estimated at 1 m resolution,
and park accessibility derived from network-based walking distances. Inequality
in access to nature was quantified via Gini coefficients and modelled with spatial
error regressions against socioeconomic deprivation. Our results reveal that while
most urban areas meet the 3-tree proximity rule, fewer than 3% achieve 30%
canopy cover, and only a minority satisfy all three components simultaneously.
Crucially, ambient greenness (trees and canopy) is concentrated in affluent areas,
whereas proximity to parks is greatest in dense, often deprived urban centres,
exposing a multidimensional nature gap. This framework establishes a repro-
ducible, open, and computationally efficient blueprint for evaluating urban nature
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equity at scale, supporting the integration of environmental justice metrics into
national urban planning agendas.

Keywords: urban green infrastructure, deprivation, 3-30-300, green equity,
environmental deprivation

1 Introduction

Urban green infrastructure is crucial for urban resilience and public health, providing
a vital nature-based solution to the pressures posed by climate change and urbani-
sation. This becomes a crucial factor in ever-growing cities, since approximately 70%
of the global population is projected to live in urban areas [1]. Multiple studies have
highlighted the role of urban greenery in mitigating air pollution, reducing urban heat
island effects (higher temperatures in urban areas due absorption of heat by built-up
surfaces), and fostering social cohesion [2]. Moreover, accessible green spaces are linked
to improved physical and mental well-being, positioning them as a pillar of sustainable
urban planning with human health as a focus [3].

Effective urban greening policies depend on reliable and consistent measurement,
yet no standard process exists. Methodologies, spatial scales, and time frames for
analysis differ widely between studies, making it impossible to compare cities accu-
rately or establish global benchmarks. This inconsistency is particularly damaging
for research that connects green infrastructure to social and health outcomes, as the
lack of a standard metric for “greenness” undermines the findings. A standardised
method is therefore crucial for building effective, evidence-based greening policies
worldwide [4-6].

Existing efforts to quantify urban green infrastructure are typically conducted at
two distinct scales: granular analyses within individual cities [7-10] or broad continen-
tal comparisons. The latter have revealed large-scale patterns, such as a North-South
divide in green space accessibility across Europe, where northern cities are generally
greener [11]. Zooming into the British context, research has confirmed a strong link
between urban form and inequality, finding that populous, deprived urban centres tend
to have less canopy cover [12]. What remains absent, however, is a consistent, high-
resolution analysis at the national scale capable of moving beyond city-specific findings
or regional averages to systematically map the nuanced geography of environmental
inequality.

In response to this need for simplified and actionable metrics, the “3-30-300 rule”
has recently been proposed and is gaining significant traction in urban policy cir-
cles around Europe and North America [13]. This "rule of thumb” offers an intuitive
framework for what a sufficiently green city should look like: every citizen should see
at least 3 trees from their home, school, and workplace; every neighbourhood should
have at least 30% canopy cover; and every resident should live within 300 metres of a
quality public green space. Together, these components aim to quantify the visibility,
availability, and accessibility of urban nature, respectively [14].



Despite its growing adoption in cities such as Singapore, Amsterdam (Netherlands),
Buenos Aires (Argentina), Sydney, Melbourne (Australia), New York, Seattle, Denver
(USA)[15, 16] and in the entire Italian territory[17], the 3-30-300 rule currently lacks
a standardised methodological foundation for assessment at scale. Current approaches
are fragmented, ranging from satellite-derived vegetation indices, such as NDVI, to
labour-intensive street-level photograph analysis [4, 14], and even survey-based meth-
ods. This methodological void prevents a systematic and comparable evaluation and
makes it difficult to ascertain whether the rule truly captures the nuances of nature
exposure and accessibility.

In response to the lack of a standard methodology, we develop and apply a novel
computational framework to conduct the first national-scale, building-level assessment
of the 3-30-300 rule, using England as our case study. The methodology presented
applies high-performance computing on publicly available LIDAR and geospatial data
to overcome previous limitations of scale and resolution. Specifically, we: 1) develop
and validate novel, high-resolution proxies for the rule. For the ’3 visible trees’ com-
ponent, we move beyond simple tree counts to a regression-based metric that captures
the density of the surrounding tree canopy from each building’s perspective. For the
’300m to a park’ component, we use a detailed national road network to model realistic
walking distances, a significant improvement over simpler distance-based estimations;
2) directly quantify environmental inequality by calculating Gini coefficients [18] from
this building-level data on residential units, revealing disparities within local areas and
regions; and 3) critically evaluate how these human-centric 3-30-300 metrics correlate
and integrate with traditional remote-sensing-derived indices.

By providing a methodological framework, this research facilitates the standardised
application of the 3-30-300 rule in other countries with comparable data. Ultimately,
we aim to determine if this increasingly influential rule, when combined with remote
sensing data, provides a robust framework for guiding evidence-based urban planning
and promoting equitable access to urban nature in other countries. Finally, our results
highlight that most citizens live in areas where the 30 and 300 components thresholds
are not met, while the 3-component is largely fulfilled by most areas. Specifically, our
inequality analysis further signals a nature deprivation difference by regions, reveal-
ing that disparities in nature access align with and potentially exacerbate existing
regional socio-economic inequalities, indicating that nature accessibility is a new layer
of inequality to be considered.

2 Results

2.1 Data Synthesis and Scale of Analysis

To conduct the first national-scale assessment of the 3-30-300 rule, we gathered
multiple high-resolution geospatial datasets. This process created a comprehensive
building-level record of potential nature exposure for the entirety of England, repre-
senting an analysis of unprecedented scale and granularity. The core components of this
synthesised dataset are summarised in Table 1, quantifying the millions of individual
features processed to derive our findings.



Table 1: Data Synthesis and Scale of the National 3-30-300 Assessment. This table
outlines the primary datasets, unit of analysis, and overall scale for each analytical
component quantified across England.

Analytical Com- Core Datasets Used Initial Unit of Scale of Analysis (No.

ponent Measurement of Features)
3 (Tree Proximity) VOM, Buildings Individual 7190 million trees;
Building 28,944,175 buildings

30 (Availability) VOM, LSOA Bound- 1m?2 Raster Grid 33,755 LSOAs
aries Cell

300 (Accessibility) OS Roads, Green Individual 3,919,444 road segments;
Spaces, Verisk Build- Building 157,274 green spaces
ings 28,944,175 buildings

Socio-Economic Deprivation Score LSOA Polygon 32,742 LSOAs

Context

Spectral Indices NDVI, NDWI, NDBI 100m? Raster  Full coverage of England
Grid Cell

2.2 How many trees are there in English cities?

Our national LiIDAR segmentation identified approximately 190 million trees across
England. A key finding is the stark urban-rural divide: only 26.9% of these trees are
located within urban areas as defined by the ONS. For the subsequent analysis of
the “3-30-300” rule, we used a filtered dataset of 156 million significant trees (those
with a height >3 m and crown area >10 m?; see Methods). This entire analysis was
performed across 32,742 Lower Layer Super Output Areas (LSOAs), which represent
the geographies for which consistent 2019 Index of Multiple Deprivation (IMD) data
were available, explaining minor discrepancies with the total number of official 2021
LSOAs. A map of all the areas covered by the segmentation algorithm is shown in
Figure Al

2.3 Tree Distribution: Per Capita vs. Absolute Density

Our analysis of tree distribution across England reveals a fundamental dichotomy: the
greenest parts of the country can be identified as either its most rural expanses or its
most densely populated urban regions, depending entirely on the metric used. This
finding (Figure 1) presents a critical measurement contradiction for urban planners
and policymakers, as the choice of metric can lead to dramatically different conclusions
about where greening interventions are most needed (Figure 1).

When viewed through a per capita lens—a measure of how many trees are available
per person—resources appear most plentiful in rural, sparsely populated regions. Local
Authority Districts (LADs) in the North of England (e.g., Northumberland, Cumbria)
and the South West exhibit the highest values, often exceeding 40 trees per person
(Figure 1A). From this perspective, a clear urban-rural divide emerges, suggesting
that residents of major metropolitan areas like London and Manchester have the least
access to tree resources.



However, this narrative is completely inverted when considering absolute density
(trees per km?), which measures the concentration of trees in a given area (Figure
1B). Here, the highest concentrations are found not in the countryside, but in the
densely populated and affluent South East. The commuter belt surrounding Greater
London, along with parts of London itself, shows the highest densities, with many
areas containing over 3,000 trees per km2. This finding challenges the simplistic view
of cities as concrete jungles, revealing that many urban and suburban areas contain an
exceptionally high overall stock of trees, even if they are shared among more people.
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Fig. 1: Contrasting spatial distributions of per capita and absolute tree density in
England. Choropleth maps illustrate two metrics of tree distribution at the Local
Authority District level. (A) Trees per person, a measure of per capita tree availability.
(B) Trees per km?, a measure of absolute tree density. Map insets depict the Greater
London area.

2.4 Quantification and Attainment of the 3-30-300

When accounting for the areas with high access to trees and other forms of green
infrastructure, we only considered those in LSOAs classified as urban by the ONS,
which further reduced the number of areas, as seen in Table A1. Most areas complied
with having an average of more than 3 visible trees with no significant differences
between regions, while canopy cover presented the lowest percentage of high cover,
with the South West considerably outclassing the other regions. Moreover, access to
parks was significantly higher in London than in other regions, with the Eastern regions
presenting higher average values in walking distances. In total, only 0.1% of the urban



LSOAs fulfilled the three rules, with the North East having the highest number of
regions that passed the rule.

Our national assessment reveals a profound disparity in the attainment rates for
the three distinct components of the 3-30-300 rule across all regions of England (Figure
2).

The “3-tree proximity” rule is the most widely achieved guideline. In London, for
example, almost 40% of the region’s 8.2 million residents are estimated to live within
25 m of at least 3 trees from their homes, with no clear difference between inner and
outer parts of the city. This pattern of high attainment holds true across the country,
from the North West, where most of its 6.5 million people meet the standard, to the
South West, indicating widespread success in integrating individual trees within highly
urbanised areas. Nonetheless, approximately only one quarter of the inhabitants of
Yorkshire and the Humber and the North East accomplish the goal.

The most significant national deficit is for the “30%-canopy cover” rule, which
is met by the smallest number of people. In every region, only a minority of the
population lives in a neighbourhood with an adequate tree coverage, with the South
East showing the largest proportion of urban inhabitants, followed by the North East,
East of England, South West and Outer London.

The “300-metre park accessibility” rule demonstrates the second-highest level of
attainment. While a substantial number of people meet this standard, the total is
considerably less than for the 3-tree rule. London again has the largest number of
residents where a public park is within walking distance, particularly in the central
boroughs, whereas the East Midlands, East of England and South East show the
largest number of inhabitants with low accessibility to green spaces.
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Fig. 2: Population meeting each component of the 3-30-300 rule across the regions of
England. The chart displays the proportion of the population in each region that fulfil
each one of the rules (dark colours) and how close they are to achieving them (light
colours): proximity to at least 3 trees in a 25 m-radius from a residence (3, blue),
living in a neighbourhood with at least 30% tree canopy cover (30, green), and living
within 300 metres of a public park (300, orange).

2.5 Systemic Environmental Inequality Gradients in Green
Infrastructure

To dissect the relationship between socioeconomic status and green infrastructure,
we analysed the distribution of each 3-30-300 component across Index of Multiple
Deprivation (IMD) deciles for every region in England (Figure 3). The analysis reveals
a clear, systematic, and contrasting pattern of environmental inequality for different
types of green space.

For vegetation-based metrics, we observe a consistent green gap: canopy cover and
tree proximity are strongly positively correlated with socioeconomic advantage. Within
every single region, from the North West to London, LSOAs in the least deprived
deciles have more trees in proximity (Figure 3A) and higher canopy cover (Figure
3B) than those in the most deprived deciles. For the London case, there is no clear
difference in canopy cover, but there is more variability in proximity to trees.

In contrast, park accessibility exhibits a reverse green gap (Figure 3C). The most
deprived LSOAs are, on average, located closer to a public park than the least deprived
LSOAs. This trend is visible across most regions and suggests that the dense urban
environments typically associated with higher deprivation have better proximity to
public parks than more affluent suburban areas. Interestingly, inner boroughs in Lon-
don have better access to parks. These findings expose a fundamental divergence in the



distribution of urban green infrastructure: while formal public parks are highly acces-
sible in dense, often deprived areas, ambient greenness like street trees and garden
canopy is systematically skewed towards wealthier communities.

In addition to the 3-30-300, water was also contrasted regionally (Figure 3D).
Although it didn’t show a strong correlation with deprivation, in some regions, such
as the North West and the East Midlands, residents of affluent areas live closer to
water sources, while in the rest of the regions, access to water is more uniform.
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Fig. 3: Environmental inequality in access to green infrastructure across England.
The distribution of the three 3-30-300 rule components at the Lower Layer Super
Output Area (LSOA) level is shown, grouped by region. (A) Tree Count at 25 m
radius. (B) Canopy cover percentage. (C) Walking distance to the nearest park. (D)
Distance to the nearest water source. Dashed horizontal lines indicate the respective
guideline thresholds for the 3-30-300. Each boxplot summarises the distribution for
LSOAs within a given Index of Multiple Deprivation (IMD) decile, coloured from most
deprived (Decile 1, red) to least deprived (Decile 10, blue); y-axes are log-scaled.



2.6 The Geography of Greenness versus Inequality

To understand the relationship between the quantity of green infrastructure and the
equity of its distribution, we mapped both average canopy cover and the intra-regional
inequality in access to nature across England (Figure 4). The analysis of average
canopy cover confirms that the South East of England is the nation’s greenest region
in absolute terms (Figure 4A). Local Authorities in and around the London commuter
belt, such as Surrey, consistently show the highest percentages of canopy cover, often
approaching the 30% guideline, while many districts in the Midlands and the North
have lower average cover.

However, this picture of a green South East is fundamentally challenged by the
geography of inequality (Figure 4B). The bivariate analysis of Gini coefficients reveals
that the most severe inequalities in green infrastructure access are often concen-
trated within these same leafy regions. Major urban centres—especially Inner London
(see inset), Birmingham, and Manchester—emerge as dark hotspots, indicating high
inequality in the distribution of both nearby trees (blue tones) and walking distance
to parks (red tones) among their respective residents.
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Fig. 4: Spatial Distribution of Canopy Cover and Environmental Inequality in Eng-
land. (A) Average percentage of tree canopy cover at the Local Authority District
(LAD) level. Darker green indicates higher canopy cover, with the highest values con-
centrated in the South East of England. The inset displays the significant variation
across London’s boroughs. (B) Bivariate map showing two measures of environmental
inequality, calculated as a Gini coefficient at the LAD level. The colour scale indicates
the degree of inequality in the distribution of nearby trees among buildings (blue y-
axis) and inequality in walking distance to a park (red x-axis). Darker, mixed colours
(e.g., purple) signify high inequality in both metrics.
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2.7 Socioeconomic Stratification of Urban Environmental
Metrics

To understand how the relationships between different environmental metrics are
shaped by socioeconomic status, we visualised their pairwise correlations, with each
Lower Layer Super Output Area (LSOA) coloured by its Index of Multiple Depriva-
tion (IMD) decile (Figure 5). The analysis reveals a powerful, intertwined relationship
between vegetation, built-up density, and deprivation. We observe a strong positive
correlation between our vegetation-based rule components (’3’ and ’30”) and satellite-
derived Normalized Difference Built-up Index (NDVI) (Figure A2). Critically, these
plots show a clear socioeconomic stratification: LSOAs with high NDVI and high
canopy cover are almost exclusively the least deprived, while those with low vegeta-
tion and high Normalized Difference Built-up Index (NDBI) (Figure A3) scores are
predominantly the most deprived.

The thresholds of the 3-30-300 rule further illustrate these disparities. A large
number of the most deprived LSOAs fall below the 30% canopy cover guideline, while a
majority of the least deprived LSOAs meet or exceed it, confirming that failure to meet
the vegetation-based components of the rule is systematically linked to socioeconomic
deprivation, as demonstrated in the previous sections. This pattern is inverted when
considering park accessibility. The plot of park distance (’300’) versus NDBI shows that
the most deprived LSOAs, which have the highest built-up density, are also clustered
at shorter distances to parks. This corroborates the finding from the distributional
analysis that park provision is often better in dense urban areas, even as ambient
greenness is lower. Overall, the matrix demonstrates that environmental variables are
not independent but form a nexus where deprivation is co-located with low ambient
vegetation and high built-up density, despite often having good proximity to formal
parks.

The analysis further reveals that proximity to blue space, as measured by water
distance, represents a distinct dimension of environmental character with a low cor-
relation to the green infrastructure metrics assessed. This suggests that the spatial
distribution of blue infrastructure is driven by different factors than that of parks and
tree canopy, and its relationship with deprivation is less direct. In contrast, the Nor-
malized Difference Water Index (NDWI) (Figure A4) exhibited a positive correlation
with NDVI, underscoring the frequent co-location of blue and green spaces within fea-
tures like vegetated riparian zones. Finally, NDBI showed a strong negative correlation
with both the '3’ and '30’ components. This powerful inverse relationship highlights
how dense, grey urban infrastructure fundamentally constrains the available space for
trees and canopy, quantitatively linking the most heavily built-up LSOAs with the
lowest levels of ambient greenness.

11



30 (%)

Water Distance (m) 300 (m)

NDVI

NDWI

NDBI

3(‘)0 ZIK SIK 2(I)K ZIO 1(‘)0 5[‘)0 2IK (I) OIZS 015 0‘75 -0 5-0‘25 (IJ OIZS OIS
300 (m) Water Distance (m) NDVI NDWI

IMD Decile @ 1 O 2 3 4 5 6 7 8 O 9 @O 10

Fig. 5: Socioeconomic stratification of correlations between environmental metrics.
The scatter plot matrix shows the pairwise relationships between the 3-30-300 rule
components (3: Tree Count Index, 30: Canopy Cover, 300: Park Distance), distance
to water, and satellite-derived spectral indices (NDVI, NDWI, NDBI). Each point is a
Lower Layer Super Output Area (LSOA) in England, coloured by its Index of Multiple
Deprivation (IMD) decile, from most deprived (Decile 1, red) to least deprived (Decile
10, blue). Dashed lines indicate the guideline thresholds for the 3-30-300 rule. Note
that the axes for Park Distance and Water Distance are on a logarithmic scale.

In order to evaluate the relationship between remote sensing indices and the 3-30-
300 variables, as well as water access, we fitted three spatial error models to identify
the drivers of inequity for tree count, park distance, and water distance at the LSOA
level. The significance of the spatial error term ()\) in all models (p < 2.210716)
confirmed strong spatial clustering (Table A2).

We found that more deprived areas, as measured by IMD suffer from greater
inequity in tree distribution (8 = 0.0004,p = 0.003). However, this effect is mainly
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a rural phenomenon. In urban areas, the relationship between deprivation and tree
inequity is significantly weaker (p = 0.009 for the interaction term). Inequity is also
worse in highly built-up areas (NDBI) and places with less overall greenness (NDVI),
while it’s surprisingly lower in more densely populated LSOAs.

For park access, the trend reverses: higher IMD scores are linked to lower inequity
(8 = —0.0005,p = 0.010). This suggests a pattern of uniformly poor access in more
deprived areas rather than selective access. Urban areas generally have more equi-
table park access than rural ones. The strongest predictors were environmental, with
inequity rising with population density and falling in greener areas (NDVI). The rela-
tionship was especially pronounced in London, where high deprivation was linked to
even more equitable access.

The link between deprivation and access to water depends entirely on location. A
powerful interaction (p = 1.310?) shows two opposing trends: In rural areas, more
deprivation is linked to lower inequity, while in urban areas, the relationship flips, and
more deprivation is strongly associated with higher inequity. Overall, urban LSOAs
have much higher baseline inequity in water access. This inequity is worsened by
high population density and built-up land, and reduced by the presence of vegetation
(NDVI) and water bodies (NDWI). Our findings highlight a critical urban-rural divide
in environmental justice concerning blue spaces (Figure A5).

3 Discussion

In this study, we developed and implemented the first standardised national assessment
of the 3-30-300 urban greening rule for England. Our findings reveal a profound dis-
connect between different forms of nature access, challenging traditional narratives of
environmental provision. Although England is highly successful in meeting the '3’ vis-
ible trees guideline, understood as proximity to trees, it systematically fails to provide
adequate neighbourhood canopy cover (30) and a walkable park (300) for the majority
of its population. More critically, we uncovered a stark socioeconomic gradient to this
disparity: ambient greenness, such as tree canopy, is a feature of affluence, whereas
proximity to public parks is often greatest in denser, more deprived urban centres.
This work provides not just a novel dataset, but a scalable methodological blueprint
for other nations to diagnose their own geographies of environmental inequality for
further comparison between territories.

Our analysis reveals a profound heterogeneity in the distribution of environmental
amenities across England, defined by three intersecting gradients: North-South, urban-
rural, and socioeconomic. A pronounced North-South divide is evident in absolute
green infrastructure, with southern regions, particularly the South East, possessing sig-
nificantly greater tree density and canopy cover. This geographical disparity, however,
is moderated by a stark urban-rural split in per-capita provision, where low popula-
tion densities in both northern and southern rural areas result in a greater number of
trees per person. This highlights that simple geographical comparisons of greenness
are insufficient, as the experience of environmental provision is fundamentally shaped
by the demographic context of the landscape.
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Beyond these broad geographical patterns, a steep socioeconomic gradient gov-
erns the equitable distribution of these amenities, especially within urbanised areas
where the majority of the population resides. For arboreal green space, increased pro-
vision in affluent urban areas correlates with more equitable distribution, suggesting
that investment in greening may yield a co-benefit of reduced inequality. In stark con-
trast, access to blue space constitutes a clear environmental justice issue. We find
a consistent and strong positive correlation between socioeconomic deprivation and
both the distance to and inequality of access to water. This pattern, which persists
across all urban regions, demonstrates a systemic environmental disamenity, where
the most deprived communities are disproportionately disconnected from blue-space
resources. These findings underscore the necessity for policy interventions that not only
address the North-South deficit in green infrastructure but also tackle the pervasive
intra-urban inequities that are sharply stratified by wealth.

Our findings demonstrate that the primary value of the 3-30-300 rule is not as a
simple pass/fail checklist, but as a multi-dimensional diagnostic tool. By disaggregat-
ing proximity, availability, and accessibility, the rule allows policymakers to identify
specific deficits that would be obscured by a single metric like NDVI or total park
area. We argue that a city -or neighbourhood- failing the 30% canopy rule but passing
the 300 m park rule has a fundamentally different challenge than a city in the opposite
situation. Therefore, rather than focusing on universal attainment of all three num-
bers—which may be unrealistic in diverse local contexts—the power lies in using the
quantification of each component, in combination with socioeconomic indicators like
the IMD, to create tailored, evidence-based greening strategies. This multidimensional
approach is essential for addressing SDG 11 and ensuring urban policies are designed
for the equitable betterment of all citizens.

The primary challenge in urban planning has been establishing a standard-
ised methodology for comparative studies. Our work demonstrates the feasibility
of a national-scale, building-level analysis by integrating open LiDAR data with a
high-performance computational framework using Apache Sedona and Google Earth
Engine. While requiring geospatial expertise, this approach creates a scalable and
replicable blueprint.

To validate our findings and understand their place within the UK’s green infras-
tructure data landscape, we compared our results to the authoritative Trees Outside
Woodland (TOW) dataset from Forest Research. Our segmentation method identifies
a significantly higher number of individual tree features across all regions than the
TOW dataset (Table A3). This is a methodological difference, as the TOW approach
clusters nearby trees into single features of several sizes, whereas our algorithm aimed
to delineate individual crowns, but our approach detects larger areas as trees in total,
albeit, Forest Research excludes non-TOW from their data release, since those records
are part of the National Forest Inventory (NFI) dataset.

Despite this higher feature count, our national tree tally likely represents a conser-
vative estimate of the true number of trees. For instance, while London is estimated to
be home to over eight million trees[19], our method identified just over three million.
This underestimation is an inherent trade-off of any top-down aerial-based approach.
Key challenges include the occlusion of smaller, understory trees by taller canopies
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and the difficulty in distinguishing large shrubs from small trees, which can lead to
both omissions and misclassifications. While alternative methods combining aerial
imagery with street-view photographs can improve precision[20], they are constrained
by the spatial bias of road networks and cannot effectively capture trees within parks
or private gardens. Therefore, our methodology represents a robust and scalable com-
promise, providing a consistent, albeit conservative, assessment of tree distribution
suitable for national-level comparative analysis.

This study is a stepping stone. Future work must build upon this framework by
incorporating more nuanced variables. For instance, our proxy for first component of
the rule could be enhanced with true 3D view-shed analysis using street-level imagery,
to correctly evaluate visibility. Furthermore, metrics of green space quality—such as
biodiversity, safety, and maintenance levels—must be integrated to understand the
true value of these resources.

4 Methods

Our study employs a multi-stage methodology to quantify the 3-30-300 rule at a
national scale, assess its relationship with socioeconomic deprivation, and compare
its components to traditional remote sensing indices. The workflow encompasses
data acquisition, high-resolution geospatial processing, and statistical analysis of
environmental inequality.

4.1 Definition of Study Area

Most geographic statistics released by public agencies, particularly for census-related
studies in Great Britain, are done using the Lower Layer Super Output Areas (LSOAs)
as a measurement unit, which is what we used in our study. However, only those
that were in England according to the official December 2021 release by the Office for
National Statistics (ONS) were considered.

4.2 Socio-Economic and Demographic Indicators

The Index of Multiple Deprivation (IMD) is a metric last produced in 2019 by the
Ministry of Housing, Communities and Local Government for every LSOA in Eng-
land. The index summarises seven main domains of inequality: Income, Employment,
Education, Health, Crime, Housing and Environment. The scores for each component
were downloaded from the Consumer Data Research Centre (CDRC) online platform.

In addition, the mid-2022 edition of population estimates by the ONS, including age
groups and gender counts, are included in the analysis. These variables are available
at the LSOA level as well.

4.3 3-30-300 Metrics

Most country-wide datasets for tree cover or individual tree locations are propri-
etary; therefore, our approach to measuring the ’3-30-300’ rule was based on using the
publicly available 1-m-resolution Vegetation Object Model (VOM), gathered by the
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Environment Agency and published by Department for Environment, Food & Rural
Affairs (Defra) as part of their Light Detection and Ranging (LiDAR) programme.

4.3.1 Tree Segmentation

We first segmented individual trees on the VOM using the lidR package in R [21].
To segment the crown shape, the height was used with the Dalponte and & Coomes
algorithm [22] and a customised formula for the Local Maximum Filter (LMF), as seen
in Equation 1, where z is the height in metres for a given pixel, and the result is the
window size to check for minimum and maximum values to model the crown shape.
This approach is more adaptive than a fixed-size filter, as it enables the algorithm
to search for smaller crowns in areas with dense, young trees and larger crowns in
mature, isolated trees, thereby better reflecting the real-world forest structure. While
methods with higher geometric fidelity exist for single-tree analysis, our approach is
optimised for large-scale quantification. Its use of a simplified crown model, combined
with the dataset’s broad spatial range, offers a consistent methodology for quantifying
trees without introducing systematic bias to the overall findings.

min_size, if s < min_size
LMF(z) = < s, if min_size < s < max_size (1)

max_size, if s > max_size

PRY
5= {6 418 -exp <—(Z202“))J
With:

- z = canopy height at a given location

- p =18 (mean of the Gaussian function)

- 0 =7 (spread of the Gaussian function)

- min_size = 7 (minimum search window size)

- max_size = 0.7 X Py5(z) (maximum search window based on the 95th percentile)

Where:

The resulting trees were vectorised as points and grouped together into the 50x50-
km tiles, following the definition in the British National Grid released by the Ordnance
Survey (OS), which were then saved as geoparquet files.

4.3.2 3 Component

We define the first component of the rule (3) as tree proximity. We created buffers of
different sizes (10, 25, 50, 75 and 100 m) around each feature in the Verisk buildings
dataset and counted the number of trees inside that area. This dataset includes features
such as height, number of floors and distance to water, which this study uses to
quantify water access. Due to the number of polygons in the buildings layer, this step
was performed using Apache Sedona RDD API in Python alongside a vectorised and
point-based version of the VOM-derived tree product. This spatial join operation was
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performed using QuadTree spatial indexing and KDBTree partitioning to optimise
computation times.

4.3.3 30 Component

Canopy cover or green space availability (30) was obtained by creating a binary layer
of the VOM raster where pixels between 3 and 60 m were considered 1. Then, using
the LSOA boundaries, we calculated the tree coverage at 1 m resolution.

4.3.4 300 Component

Finally, for park accessibility (300), we filtered the OS Green Space Layer to include
only public parks and calculated the walking distance (network-based) from each
building to the closest green space access point. To accomplish this, a road network
was built from the OS Roads dataset, and Dijkstra’s algorithm was used to measure
the shortest path along the graph between each building and its corresponding park.
Moreover, the ”crow flies” distance (Euclidean-based) was measured for each building
and their closest park boundary as well.

Due to the size of the datasets, particularly of the buildings and VOM-derived trees,
the results of the three components were calculated using Local Authority District
(LAD) geometries, where the datasets were clipped using the LAD to reduce the
number of iterations. Finally, the 3 and 300 components, measured at the building
level, were aggregated at the LSAQ level to match the IMD spatial unit of measurement
as that of the 30-component. In addition to this, a total count of trees was done at
the same geographic level.

4.4 Spectral Indices

Three main (normalised) spectral indices were considered in this study. These indica-
tors were calculated using Sentinel 2 scenes from 2024 with values under 10% cloud
coverage through the Google Earth Engine Python API [23]. These were estimated
as the maximum for the entire year for the study region. To aggregate the values at
the LSOA level, we used the median value for all pixels falling into the polygon.

Index  Name Formula Reference
NDBI  Normalized Difference Built-Up Index 25755 [24, 25]
NDVI  Normalized Difference Vegetation Index gg;gj [26, 27]
NDWI  Normalized Difference Water Index gg;gg [25, 28]

4.5 Inequality Measurement

The 3 and 300 components measured in the study, as well as the distance to water
variable in the Verisk buildings dataset, were used to calculate the Gini Index at the
LSOA level. To do so, the unaggregated measurements for each building categorised as
a residential unit were considered in the analysis. The Gini coefficient was calculated
using the DescTools package in R using the unbiased parameter, which corrects for
differences in sample size, as shown in 2. This correction makes the coefficient to have
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a range between 0 and 4/ "7_17 unlike regular Gini metrics that can only be between 0

and 1.
e (TmXimleim sl n (2)
unbiased m 22;1 ; n_1

With:
- n = number of buildings in a given LSOA
- z; and z; = environmental metric for two buildings

To create a single, robust metric for the ’3 visible trees’ component, we moved
beyond a simple count at a single distance. For each building, we counted the VOM-
derived trees within five concentric buffers (10, 25, 50, 75, 100 m). We then fitted an
exponential regression to these counts against the buffer radius (Figure A6). The slope
of this regression was used as our final metric. This approach offers a more nuanced
measure of tree availability than a simple count; a steeper slope indicates not just the
presence of trees, but a rapid increase in their number as one’s view expands outwards,
proxying for a richer, denser tree-dominated area.

4.6 Statistical Modelling

To analyse the socio-demographic drivers of environmental inequality, we addressed
the inherent spatial autocorrelation in our LSOA-level data using a Spatial Error
Model (SEM), which models spatial dependence in the error term, to account for
unobserved, spatially structured covariates. Separate models were fitted for each of our
three inequality outcome variables: the Gini coefficients for tree distribution (slope of
the exponential regression), park access (walking distance to closest park), and blue
space access (straight-line distance to closest water source).

The predictor variables for each model included population density, urban-rural
classification, region, the Index of Multiple Deprivation (IMD) score, and mean spec-
tral indices (NDVI, NDWI, NDBI). To investigate how the relationship between
deprivation and green/blue space inequality varies across different contexts, we incor-
porated interaction terms between the IMD score and both urban-rural classification
and region. The generalised model is formalised in Equation 3.

G unbiased ~ PopDensity + NDVI + NDWI + NDBI+
IMD % UrbanRural + IMD % Region

4.7 Limitations

While our methodology is capable of measuring each individual component of the 3-
30-300 for all the buildings, it does so using a general assumption of tree shapes from
the VOM, which creates square-shaped polygons that don’t represent the real shape of
trees. Moreover, this is calculated from a mosaic of LIDAR reads collected from 2018
to 2023; hence, changes in urban canopy due to tree removal might not be accounted
for.
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Measurement of tree visibility requires view-shed modelling, which involves a 3D
representation of each building and its surroundings. This method is unfeasible for the
number of buildings and trees used, thus why we defined the 3 metric as tree proximity
instead of visibility.

Canopy cover was estimated using the VOM, which represented the highest-
resolution and openly available vegetation product at the national level at the time
of this study. However, it is worth noting that privately owned datasets of trees
that include crown area and height exist, which could be used as a more accurate
representation of urban trees.

In addition, some tiles from the original source were corrupted or missing, which
limited the calculation for certain areas, affecting both 3- and 30-component models
that relied on the VOM product (Figure Al).

In a similar fashion, the 300 calculation was impacted by the spatial extent of the
processing, meaning that for a given LAD with no public green spaces, the estimate
for all buildings would be null, or if there is no direct path from a building to a park
in the road network, the aggregated value would not be determined. Vehicle roads
were used to measure the distance to the closest access point to an open public park;
however, walking paths might differ in length from those used by vehicles.

Finally, although the Verisk dataset we used is proprietary, an open version with
the same building polygons is available through the EDINA platform, which academic
institution members can access fully for research purposes.

A graphical summary of the methodology is presented in Figure 6
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Fig. 6: Overview of the data integration and processing workflow. The methodology
synthesises multiple national datasets (right), including the Vegetation Object Model
(VOM) and Ordnance Survey (OS) layers for roads, buildings, and green spaces. These
inputs are used to calculate the three components of the 3-30-300 rule (left): park
accessibility (300m) via network analysis, canopy cover availability (30%) from the
binarised VOM, and visible tree counts (3) from LiDAR-based tree segmentation.

5 Code and Data Availability

The Python and R code used to measure the 3-30-300 rule and extract data from
Sentinel 2 images is available in the GitHub repository https://github.com/ancazugo/
3-30-300-analysis. The aggregated data at LSOA and LAD levels are available in
the Zenodo repository (https://doi.org/10.5281/zenodo.16911970). Tree segmentation
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tiles are available upon request. Two visualisation applications are available on the
website for the code repository: the first one with the aggregated data at the LSOA
level and the second one with the location of all trees in England.

Appendix A Supplementary Material

Data Coverage . Data Available (Rural & Suburban) . Urban

Fig. A1l: Coverage of the tree segmentation process in all of England, including rural
and urban areas. Blank patches represent areas where data was missing or corrupted.

21



Table Al: Summary of the number of urban Lower Layer Super Output Areas
(LSOASs) per region that fulfil each component of the 3-30-300 rule and all of them
combined. The values for the components (3, 30, 300) are percentages of the total
urban LSOAs in that region, while the 3-30-300 column represents the percentage
of LSOAs fulfilling all criteria simultaneously.

Region No. Urban LSOAs 3 (%) 30 (%) 300 (%) 3-30-300 (%)
North West 4135 41.0 0.7 7.4 0.0
North East 1393 21.4 1.7 10.1 0.1
Yorkshire and The Humber 2802 27.5 1.4 6.7 0.0
West Midlands 3062 45.7 1.3 7.1 0.1
East Midlands 2122 39.6 0.8 4.3 0.0
East of England 2740 51.5 2.1 4.4 0.0
South West 2411 35.8 2.0 6.4 0.2
South East 4542 53.9 7.4 5.4 0.1
London 4994 43.3 1.3 12.7 0.0
England 28201 42.2 2.3 7.4 0.1

Fig. A2: NDVI for each LSOA in England



NDBI

Fig. A3: NDBI for each LSOA in England
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Fig. A4: NDWI for each LSOA in England
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Table A2: Spatial error model results for inequality (Gini coefficients) in tree count, park distance, and water
distance at the LSOA level in England. Standard errors in parentheses. Significance: * p < 0.05, ** p < 0.01,
*okok

p < 0.001.

Tree Count Gini Park Distance Gini Water Distance Gini
Variable Estimate SE Estimate SE Estimate SE
(Intercept) 0.13293***  (0.00464)  0.84046***  (0.00622)  0.72883***  (0.00607)
IMDScore 0.00041** (0.00014) -0.00052* (0.00020)  -0.00053** (0.00019)
UrbanUrban -0.00168 (0.00245)  -0.01647***  (0.00350)  0.04937***  (0.00333)
RegionNorth East -0.00389  (0.00604)  -0.02246**  (0.00717)  0.03714***  (0.00739)
RegionYorkshire and The Humber -0.00694 (0.00483) 0.00046 (0.00576) 0.01955** (0.00594)
RegionWest Midlands -0.03296***  (0.00478) 0.01479%* (0.00570) 0.00527 (0.00588)
RegionEast Midlands -0.02556***  (0.00500) 0.01338* (0.00601) 0.00995 (0.00617)
RegionEast of England -0.04834***  (0.00478) 0.00405 (0.00577) 0.01542%* (0.00591)
RegionSouth West -0.00706 (0.00486) 0.00918 (0.00577) -0.00241 (0.00596)
RegionSouth East -0.04572***  (0.00425) 0.00627 (0.00505) 0.01465** (0.00521)
RegionLondon -0.04834***  (0.00475) 0.00471 (0.00581)  0.02851***  (0.00592)
population_density -0.00000** (0.00000)  0.00000*%**  (0.00000)  0.00001***  (0.00000)
NDVI -0.03152***  (0.00450)  -0.06172***  (0.00642) -0.06950***  (0.00612)
NDWI 0.02578***%  (0.00577) -0.01505 (0.00794)  -0.06503***  (0.00771)
NDBI 0.14228***%  (0.01086) 0.00453 (0.01504)  0.05381***  (0.01458)
IMDScore:UrbanUrban -0.00032**  (0.00012)  0.00023  (0.00018)  0.00103***  (0.00017)
IMDScore:RegionNorth East 0.00011 (0.00013) 0.00029 (0.00018) 0.00002 (0.00017)
IMDScore:RegionYorkshire and The Humber -0.00010 (0.00011) -0.00010 (0.00015) 0.00010 (0.00015)
IMDScore:RegionWest Midlands -0.00035** (0.00011) -0.00035* (0.00016) -0.00029 (0.00015)
IMDScore:RegionEast Midlands -0.00025 (0.00013) 0.00026 (0.00018) 0.00011 (0.00017)
IMDScore:RegionEast of England -0.00000 (0.00013) 0.00013 (0.00019) -0.00034 (0.00018)
IMDScore:RegionSouth West -0.00030* (0.00013) -0.00021 (0.00019) -0.00029 (0.00018)
IMDScore:RegionSouth East 0.00002 (0.00012) -0.00005 (0.00017) -0.00035* (0.00017)
IMDScore:RegionLondon 0.00011 (0.00014)  -0.00079***  (0.00019) -0.00089***  (0.00018)
Model diagnostics
A 0.64497 0.45495 0.55726
Asymptotic SE (\) 0.00515 0.00652 0.00583
Wald statistic (\) 15701.00 4863.30 9120.60
Log likelihood 42760.54 29928.67 32469.97
ML residual variance 0.00343 0.00827 0.00683

AIC -85469.00 -59805.00 -64888.00
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Fig. Ab5: Scatter plot between the three Gini coefficients and their corresponding
environmental metric for each region in England. Size depicts population density, while
colours point to IMD classification. A: Tree count slope, B: Walking distance to closest
park, and C: Distance to closest water source.
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Table A3: Comparison of tree geometry counts and total area between the Forest
Research Trees Outside Woodland (TOW) dataset and this study’s segmentation
approach, by region.

. TOW Dataset This Study

Region

Count Total Area (m?) Count Total Area (m?)
North West 4,155,143 613,505,095 8,205,613 1,005,555,299
North East 1,571,966 229,361,711 2,263,592 699,848,693
Yorkshire and the Humber 3,444,172 534,527,559 6,425,401 1,040,430,826
West Midlands 4,252,559 833,297,949 5,164,030 1,223,817,794
East Midlands 3,778,562 653,799,830 4,897,732 1,060,999,126
East of England 4,941,670 959,028,854 6,166,459 1,718,896,157
South West 6,583,686 1,474,924,354 4,911,044 2,512,667,899
South East 6,157,704 1,370,145,617 9,419,679 2,718,374,849
London 1,418,131 167,073,513 3,689,884 128,330,021
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Fig. A6: Calculation of the tree index using the buffered count. A depicts a residential
unit with a low slope in the regression, while B represents a house with a high slope.
C shows the regression for both buildings.
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