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Computer science is a powerful tool for enabling data-driven

advances in global ecology and conservation. However the

amplification cuts two ways, as mechanisation can also com-

pound problems inherent with just how uncertain [13] any-

thing to do with natural ecosystems are! Species habitat

datasets are uncertain, local observations are uncertain, the

resulting inferences about species distributions are uncertain,

side-effects from interventions are uncertain; conservation

action has evolved to take this into account [17]. Computer

science when applied without consideration of these factors

can amplify the uncertainty by running ever-larger datasets

through increasingly complex data pipelines and algorithms,

all built upon wobbly foundations. What exact version of

the dataset is being used? What exact version of the dataset

did you use? What assumptions went into generating that

dataset? What libraries, system dependencies and environ-

ment variables were used to calculate the results?

In this talk, we first segment sources of uncertainty across

ecological data sources (§1) and computation over them (§2),

and then reflect how these uncertainties impact ecological

research and how we might cleanly bound the uncertainty

for future conservation research (§3).

1 UNCERTAINTY IN DATA
As early as 2013, ecologists have been calling on their col-

leagues “...to treat data as an enduring product of research,

not just a precursor to publication” [12]. This narrative has

played out in computer science with version control systems

(VCS) for software management, or for machine learning

withWeights and Biases for AI experiment tracking and Hug-
gingFace for AI model versioning [2, 3]. However, pivotal

datasets within ecology are versioned ambiguously, leading

to differing end results from seemingly identical inputs.

One example is the Tropical Moist Forest (TMF) dataset

by the European Commission’s Joint Research Centre [18],

which calculates forest cover worldwide from satellite obser-

vations. TMF historic data is upgraded as new algorithms

and analysis become available (which is good practise), but

the means by which the data is published does not make

these updates to historically available data obvious. Once

updated, earlier versions on which other calculations were

made are no longer easily available, hugely impacting re-

search reproducibility [7]. Table 1 shows some differences

partially caused by “Improvements and corrections of errors

in the Annual Change collection in the sequence of values for

deforestation of old regrowth forest...” [4]. Whilst they seem

Land Use Class Proportions (%) in 2020
JRC 2021 JRC 2022 Difference

Undisturbed 74.83 74.71 -0.12

Degraded 5.07 5.16 0.09

Deforested 7.49 7.39 -0.10

Regrowth 0.83 1.74 0.91

Water 2.11 1.93 -0.18

Other 9.67 9.07 -0.60

Table 1: The proportions of difference LandUse Classes
(LUC) in the Amazon basin as calculated from two JRC
datasets for the same year.

small, these proportions represent some 6.7 million squared

kilometres area of the Amazon rainforest basin
1
! Without

access to the original 2021 JRC release, these differences

propagate silently through further downstream research.

2 UNCERTAINTY IN CODE
Once ingested into a data pipeline, the data’s provenance is

usually lost, as untracked inputs are combined into derived

datasets whose origins only the operator may remember, as

operating systems do no automatically track such things.

Ecological data are often transformed using programming

languages like Python and R, but the ecological community

has yet to adopt a robust culture of openly publishing their

code alongside their methodologies. One reason for this,

that Mislan et al. recognise, is that ecologists “...may not be

aware of the steps needed to archive code...” [16]. The tools

for versioning and archiving code are not easily accessible

for ecologists, and whilst the number of ecological journals

requiring or encouraging code to be shared has increased,

most authors still do not adhere to these requirements [8].

Even when care is taken, without reproducible artefacts

(e.g., using a system like Nix [9]), the sheer multiplicity of fac-

tors that can change the final results is unmanageable within

conventional operating systems. For example, consider the

popular geospatial data manipulation library GDAL [1]. The

image in figure 1 is the difference between data derived with

the same command-line but with GDAL 3.2 and GDAL 3.3.

The low availability of source code only exacerbates the

reproducibility story when combined with the data version-

ing issues (§1). Whilst some computer science research has

offered accessible versioning of large datasets, like DataHub,
it is not habitually used within ecological research [6].

1
Source code: https://github.com/carboncredits/jrc-diff

https://github.com/carboncredits/jrc-diff


Figure 1: A map showing the difference in terrain
ruggedness index (TRI) as calculated by the gdaldem
tri command between GDAL versions 3.2 and 3.3. The
difference would ideally be zero (all black) but includes
pixels as different as 372 metres.

One platform has cornered the remote sensing, ecological

research market and that is Google Earth Engine (GEE) [11].

GEE has enabled many ecologists to produce useful anal-

ysis and datasets that may have been difficult to achieve

otherwise. For example, the global map of travel time to

healthcare facilities which can be used as a proxy for “re-

moteness” in ecological analysis [19]. However, the longevity

and endurance of the platform is tied to the whims of a large

corporation that has a record of closing down non-core prod-

ucts [10]. Also, many datasets in GEE have been processed

to make them easier to consume, but the methodology by

which they’ve been processed is not published, preventing

easy migration away from GEE once datasets are adapted.

3 UNCERTAINTY IN ECOLOGY
The lack of software engineering skills and tools impacts

the rigour and quality of ecological research. The analysis

can explode in both space and time: even a relatively simple

species area of habitat analysis requires hundreds of giga-

bytes of raster data to be analysed per species, with typically

many thousands of species being processed [14], potentially

requiring days of compute on high-end hardware.

Unoptimised code limits the analysis that can be per-

formed due to the time or resources it would require. This

is important for sensitivity analysis for methodologies with

a large number of inputs and possible configurations. In

the context of Merton’s notion of “specified ignorance” (the

knowledge that is not yet known but ought to be) these is-

sues due to computer science should be flagged as sources

of ignorance and therefore fruitful research directions for
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Figure 2: Shifting unknown code and data certainties
in order to allow computation ecological research to
be meaningfully peer-reviewed and reproduced.

others [15]. This idea is explored in terms of known and un-

known certainties in Figure 2. Code and data are bounded via

versioning, provenance and lineage tracking and shifting to

digital methodologies. This is not dissimilar to the use of con-
tinuous integration systems for managing production-level

code. Only once code and data are bounded can we hope

to return to applying the peer review process to reproduce

results and have known, certain ecological research.

The computer science aspects must be dealt with first.

In recent years, we have seen the rise of the Research Soft-
ware Engineer [20]; the primary role of the research software

engineer is to provide software skills to another discipline.

Computer science and software can be thought of as a new

instrument for experimental scientists. In their paper on the

research software engineer, Baxter et al. argue a key differ-

ence between more traditional scientific methods and the

newer computational ones are that “...no-one with the same

casual attitude to experimental instrumentation as many re-

searchers have to code would be allowed anywhere near a

lab” [5]. They later cite one reason for the short supply of

research-focused software engineers is the lack of “institu-

tional homes and career progression paths for their work”

which could explain why software is treated differently to

more traditional instruments used in experiments.

The scientific method in the computational age has be-

come vastly more complicated. Computer science has thus

far failed to deliver the tools to scientists to easily bound this

complexity and reduce uncertainty in their analysis. Uncer-

tainty within methodologies is difficult to correct. However,

ensuring that the computing foundations upon which ecolo-

gists build their work minimises and tracks uncertainty is

achievable, and this must be a priority for our field.
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