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Abstract
In-situ sensing devices need to be deployed in remote environments

for long periods of time; minimizing their power consumption is

vital for maximising both their operational lifetime and coverage.

We introduce Terracorder – a versatile multi-sensor device – and

showcase its exceptionally low power consumption using an on-

device reinforcement learning scheduler. We prototype a unique

device setup for biodiversity monitoring and compare its battery

life using our scheduler against a number of fixed schedules; the

scheduler captures more than 80% of events at less than 50% of

the number of activations of the best-performing fixed schedule.

We then explore how a collaborative scheduler can maximise the

useful operation of a network of devices, improving overall network

power consumption and robustness.

1 INTRODUCTION
The low-power operation of battery-powered or energy-harvesting

sensor networks is vital for long-term deployments. This includes

networks deployed in urban areas; it is often prohibitive to ensure

continuous power availability in a deployment with many sensor

nodes in diverse locations [13]. We focus on event-driven sens-

ing, maximizing network lifetime alongside its useful active time.

Traditional learning-based approaches for event-driven scheduling

require federated/centralized coordination, ongoing data exchange

between networked devices, or one always-on device in a proxim-

ity group [10]. We instead explore the potential of an on-device

reinforcement learning scheduler for event-driven networks, using

low-power collaboration between neighboring devices to minimize

redundancy. We present a first step towards this in the form of an

on-device scheduler for isolated devices, whose implementation

provides the basis for a large-scale networked approach.

High-quality biodiversity monitoring relies on rich data from

power-hungry sensors (i.e. cameras and microphones), yet devices

are unlikely to have a continuous power supply (without sacrificing

flexibility of deployment) and need to optimize for power consump-

tion. This domain also presents a unique opportunity; learning the

schedules of events of interest (bird vocalizations, feeding activity,

etc.) is necessary for optimizing network lifetime but also simulta-

neously generates large-scale information useful to biologists and

conservationists.

The concept of a low-power yet multi-sensor device for biodi-

versity monitoring is frequently discussed, yet remains unrealized

[2, 16]. The ideal device is standalone, while also able to collaborate

with nearby devices, providing robust and maintainable coverage

without redundancy [12].

1.1 Low-power Hardware
Terracorder’s advantage lies in its low base power usage, while still

being capable of interfacing with multiple power-hungry sensors.

The prototype builds on PowerFeather, an ESP32s3-based mod-

ule featuring ultra-low deep-sleep consumption of ∼19𝜇A (with

3.7V supply). This is significantly lower than other development

boards of similar capacity, including other ESP32 variants, and

an order of magnitude lower than the Raspberry Pi, on which a

vast number of multi-sensor devices are built. Terracorder includes

built-in power management features, such as a LiPo/Li-Ion battery

charger IC and fuel gauge, supporting battery health monitoring

and time-to-empty/full battery estimation along with a DC input to

source reliable renewable power. The ESP32s3 itself is based on a

XTensa LX7 SoC, with 2MB of quad-SPI PSRAM, 512KB of internal

SRAM, and 16KB RTC SRAM for retaining state over deep-sleep.

The SoC also includes a RISC-V/FSM ultra-low-power coprocessor

for interfacing with external I2C sensors while the main processor

remains in deep-sleep. Terracorder provides access to 23 of the

ESP32s3’s GPIO for interfacing with external modules, of which 12

are RTC-capable and can be used in deep-sleep for low-power I/O.

1.2 Adaptive Scheduling
Terracorder uses adaptive scheduling to manage its low-power

modes; user-defined schedules are sufficient for regular event pat-

terns, but lack adaptivity once deployed. There are numerous algo-

rithmic approaches for adaptive scheduling, including exponential

backoff, context rule-based and genetic algorithms, and random

sampling-based methods that estimate a probability distribution of

event occurrences. However, learning-based schedulers allow for

versatile scheduling in the absence of an event model, and become

particularly important if deploying many sensors for long dura-

tions, as event patterns vary spatiotemporally and performance

can degrade if scheduling isn’t regularly fine-tuned. We present an

on-device reinforcement learning scheduler that optimizes sensor

activation rate via cost-balancing of positive and negative acti-

vations. This aims at maximizing event detections at minimized

operation cost, or under a power constraint, and is the first step

towards a collaborative scheduling approach for networked sensors.

Q-learning is a model-free reinforcement learning algorithm

that builds a Q-table 𝑄 (𝑠, 𝑎) of discrete state-action values, and

is useful for learning optimal coverage-maximising schedules on

energy harvesting devices [1, 4, 11]. Q-values are the estimated

total discounted reward from taking action 𝑎 in state 𝑠 and then

following the optimal, learned policy 𝜋 . The discounted reward

signal is used to update the Q-table:

𝑄𝜋 (𝑠, 𝑎) = 𝑟0 + 𝛾𝑚𝑎𝑥𝑎𝑄𝜋 (𝑠, 𝑎) (1)

𝛾 is a discount factor that balances the importance of immediate

versus future reward. Q-learning inference follows a greedy or 𝜖-

greedy policy, which for a given state picks the maximum Q-value

action with probability 1-𝜖 and a random action otherwise. Given

device resources are limited, and the scheduler should incur mini-

mal power overhead, Q-learning’s low memory requirements and

𝒪(𝑛) inference and update are fitting. These properties are espe-

cially important for multi-sensor devices, where different schedules

can by used for each component depending on its events of interest.
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We further minimize overhead by quantizing the number of dis-

crete actions/states. We divide state into 𝑡 time periods over which

activation rate is fixed. This can be done based on observed/expected

event patterns and imposed operational constraints; hourly pe-

riods should provide enough granularity for most applications.

We also use 𝐾 possible activation frequencies based on the ob-

served/expected range of event intervals and durations.With hourly

periods and 𝐾 = 7 possible actions, the resulting 24x7 Q-table is

only ∼3KB; multiple Q-tables can therefore be used on one device,

for the scheduling of different connected sensors.

We can formulate the reward 𝑅 for period 𝑡 as:

𝑅𝑡 = 𝑁𝑝𝑡 −𝑤1 · 𝑁𝑛𝑡 (2)

𝑁𝑝 is the total number of positive activations over 𝑡 (i.e., those
on which an event(s) is detected), and 𝑁𝑛 the total negative activa-
tions.𝑤1 is a tunable parameter for adjusting the scale discrepancy

between 𝑁𝑝 and 𝑁𝑛 to vary event detection priorities (i.e., larger

𝑤1 applies more weighting towards minimizing total activations);

it can be set based on the range of activation frequencies, and ob-

served or expected event patterns.𝑤1 can also be period-specific,

increasing as the number of expected events increases between

periods. The reward is designed for broad applicability in various

use-cases; it can support continuous periodic recording of fixed

duration with an updated action space, more nuanced optimiza-

tion by adding conditions that influence event occurrence, or apply

differentiated rewards for events/actions in different periods.

The Q-table can be learned based on pre-deployment data and

fine-tuned on the device, or learned fully on the device. The latter

can initially follow a conservative schedule, or a schedule based

on expected event patterns, using occasional random activations

to compile a probability distribution of event occurrences for each

period 𝑡 . This distribution can be used for Q-table initialization, as-

signing larger values to state-action pairs corresponding to periods

with greater event probabilities, reducing the impact of initially

poor scheduling if learning is slow. The Q-table can be updated

periodically once converged, or if detection rates fall.

2 PROTOTYPE AND MEASUREMENTS
We next prototype a Terracorder setup for biodiversity monitoring

and validate its long-term sensing capabilities. This application is

incredibly important for building an understanding of ecological

dynamics; a learning-based scheduler not only enables adaptive

scheduling, but also provides useful information for conservation-

ists on large-scale event patterns.

The prototype is configured with a 5MP camera, omnidirectional

I2S microphone, and PIR sensor(all shown in Fig. 1). The compo-

nents are selected for their low-power operation and/or use in ex-

isting biodiversity monitoring devices [3]. The PIR sensor remains

on continuously, including in deep-sleep, acting as an event-trigger

for our camera. The microphone is our scheduled component, but

recording could also be event-triggered for less frequent events

of longer durations. We measure the current draw of the sensors

and device using a high-voltage power monitor capable of 𝜇A-scale

measurements. The board is supplied at 3.3V via its JST-PH battery

connector. WiFi is used for the communication of results; this is

appropriate for a built environment, however the device can also

use 4G or LoRaWAN in non-urban areas.

Figure 1: Prototype configuration

We perform Q-learning inference and Q-table updates on-device

to show their negligible overhead. Goertzel filtering is also per-

formed on-device, for event detection (discussed in §3); its measure-

ment follows a 0.1s recording. We also implement an alternative

integer-quantized one-layer CNN model for event detection, using

ESP-TFLite-Micro; its measurement also follows a 0.1s recording

and includes Mel spectrogram generation (also discussed in §3).

We attain a low deep-sleep current of <100𝜇A, with all sensors

attached and the RTC enabled (providing deep-sleep timekeeping

for scheduling purposes). The power consumption for Q-learning

inference and update is ∼30𝜇A and ∼70𝜇A respectively, with a la-

tency of <0.1s, confirming its negligible overhead. Goertzel filtering

and TFLite inference (and 0.1s recording) have similar consump-

tions of ∼33.3mA and ∼33.1mA respectively, which, given latencies

of ∼0.03s and ∼0.07s, add minimal overhead. However, due to its

memory costs, only one quantized TFLite model can realistically be

used on-device; Goertzel and other thresholding approaches offer

greater scalability. WiFi is the largest power consumer, particularly

for the transmission of images, requiring further optimization.

The bare-board active consumption of a Raspberry Pi, as a com-

parison, can range from ∼150mA (Zero) to >500mA (Model 3); a

Model 3 setup for acoustic monitoring uses ∼300mA on average

[14]. PICT, a Pi Zero event-triggered camera setup for biodiversity

monitoring, also using a 5MP camera, uses ∼150mA in idle opera-

tion, and ∼374mA with camera/Wifi enabled [3]. While the sensors

used are not entirely equivalent, their power usage highlights an

order of magnitude difference between existing devices and ours.

Table 1: PowerFeather current measurements (3.35V in)

Mode/Operation Current Draw (mA)

Deep-sleep (PIR and RTC active) 0.097

Microphone

- 3s recording 31.57

- 0.1s recording + Goertzel filter 32.34

- 0.1s recording + TFLite inference 33.11

Camera (one activation) 49.33

Transmission (via WiFi)

- 3s audio recording 61.33

- 5MP image 97.73

QL inference 0.031

QL update 0.071
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Table 2: Q-learning hyperparameters

Parameter Value

𝛾 (discount factor) 0.9

𝜖𝑚𝑎𝑥 0.3

𝜖𝑚𝑖𝑛 0.1

𝜖𝑑𝑒𝑐𝑎𝑦 0.99

𝛼 (learning rate) 0.1

𝛽 1𝑒−5

Actions (seconds) 3, 5, 60, 300, 1800

3 ISOLATED SCHEDULING
We apply an off-the-shelf bird vocalization detection model, Bird-

NET [8], to generate event times and durations from the continuous

recordings of an acoustic monitoring device in the Stability for Al-

tered Forest Ecosystems (SAFE) project, a large-scale experiment

in the Sabah rainforest, Borneo. We use the SAFE data as it is pre-

screened yet also temporally heterogeneous in event density.

The generated events are used in building and evaluating our

scheduling approach; combined with our measurements from Table

1, they provide the basis for estimating the device’s battery life in

a real-world deployment. We correct for BirdNET false positives

by thresholding at a confidence level of 0.7; users can generate

species-specific thresholds based on expert validation of pilot data

recorded from the sensed environment to further improve detection

accuracy [15].

The schedule is learned over 24 hours of detections and evalu-

ated over the following 24 hours, to imitate day-by-day learning

with minimal pre-deployment data. We implement a Goertzel filter

on-device to simulate real-time event detection, as commonly used

in existing passive acoustic monitoring devices [7]. This evaluates

specific frequency components of a fast Fourier transform (FFT) on

buffered recordings, with reduced operations and lower memory

usage compared to FFT. We set the bandwidth of multiple filters

to cover a range of frequencies relevant to the event(s) of interest,

and threshold its median to identify if an audio event is of inter-
est and justifies further recording. The Goertzel filter processes

a 0.1s recording (at 16000kHz) with just 0.03s latency, minimally

impacting our device’s lifetime.

The issue with Goertzel filtering, however, and other related

approaches, is its potential for false positives; any event within

its range of covered frequencies may be detected (likewise, any

marginally off-frequency events would be missed). This can ob-

scure or distort the structure of temporal patterns, resulting in

degraded fine-tuning performance. We therefore also implement

a single-layer CNN on-device for event detection, trained on Mel

spectrograms of 0.1s positive slices from BirdNET detections, and

negative slices from elsewhere in the continuous recordings. This in-

volves extracting Mel spectrograms on-device from buffered record-

ings using ESP-DSP. We attain ∼70% accuracy on unseen event

data; however, no validation is done on the positive slices.

We assume a fixed 0.1s recording period on activation to detect

ongoing events; if an event is detected, recording continues for the

entirety of the event. Otherwise, the device returns to deep-sleep

until its next scheduled activation. The simulation also includes

an 0.03s delay based on measured Goertzel filtering latency. We

assume that all events have equal priority, although this may not

be the case in every practical scenario; to address variations, users

can extend our reward to quantify event importance in each period.

We discretize state into hourly periods. Table 2 outlines our ac-

tion space and Q-learning hyperparameters used. The configuration

results in a 24x7 Q-table of size ∼3KB on the device.

The scheduling results are visualised in Fig. 2. We compare our

scheduler to a number of fixed baselines that activate the device

every 𝑛 seconds, irrespective of the current period. These base-

lines are commonly used in real-world biodiversity monitoring

deployments, alongside continuous periodic recording of fixed du-

ration [7]. However, more complex algorithmic schedules, or ones

based on known event patterns, could also be implemented; al-

though these are non-adaptable, they can be used to initialize the

Q-table in order to accelerate its convergence. Given the reduced

action/state spaces, the Q-learning algorithm can converge in ∼30
episodes; this is practical for on-device learning.

The device’s lifetime is calculated using a 13400mAh LiPo/Li-Ion

battery. We model the average operating current based on our hard-

ware measurements and numbers of events detected. We assume

each detected event triggers a 3s recording – this is based on the av-

erage event duration – and a subsequent Wifi transmission. We also

assume one in three events triggers a camera activation and trans-

mission; this is much higher than typical rates for bird/mammal

detection in the Sabah rainforest [9]. The assumptions made pro-

vide an overall relatively conservative estimate of battery lifetime

as we (i) do not parallelize operations (i.e., we use only one core of

our dual-core ESP32); (ii) record the entire duration of each detected
event; and (iii) trigger a camera activation for a large number of

detected events.

Figure 2: Pareto curve of fixed vs. Q-learning schedules

Our scheduling approach, using Goertzel filtering, detects 85.3%

of events, increasing battery lifetime by 55.1% over a fixed 3s base-

line that detects all events. This extends lifetime from 0.69 to 1.07

years. The use of TFLite event detection results in similar numbers;

51.9% improvement at 1.05 years. With a renewable power source

such as a solar panel for battery recharging, our lifetime bottleneck

shifts from the device’s power consumption to its robustness.

4 COLLABORATIVE SCHEDULING
The results outlined are promising, and our scheduler is useful as

is for individual deployments or scenarios with constrained inter-

device communication. However, most applications, particularly

biodiversity monitoring, require large-scale deployments of net-

worked sensors. Given an adequately dense network, the sensing
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ranges of multiple devices can overlap, and therefore capture the

same events. This provides an opportunity for further optimization

via collaborative network-wide scheduling; devices can schedule

their activations so that they are complementary to each other.

This form of network-wide scheduling is often used for maximizing

the coverage of energy-harvesting sensor networks by minimizing

redundant sensing activity. We instead optimise for useful active
time (i.e., all devices in a sensing radius could be in deep-sleep

over periods of low event activity), rather than total active time or

coverage. We propose a uniquely collaborative approach, scalable

to large networks, that improves the battery-life of each device as

more overlapping devices are added.

The scheduling approach presented above needs minimal modi-

fication for network-wide scheduling, with its goal now being to

maximise the useful active time of the network, rather than its

individual devices. This boils down to trying to ensure (1) all events

are detected, (2) each event is detected by only one device, and (3)

devices are only activated when events occur.

We modify our reward to the following:

𝑅𝑡 = 𝑁𝑝𝑡 −𝑤1 · 𝑁𝑛𝑡 −𝑤2 ·
𝑁∑︁
𝑖

(
𝑁𝑜𝑡 𝑖 − 1

)
−𝑤3 · 𝐵𝜎𝑡 (3)

𝑁𝑝 is the number of positive activations (i.e. the number of detected

events) over all devices for the period 𝑡 , and 𝑁𝑛 the number of nega-

tive activations.𝑁𝑜 is a list of the number of overlapping activations

for each event detected by multiple sensors. 𝐵𝜎 is the variability of

battery levels across the devices; included to discourage the sched-

ule from repeatedly activating the same sensors unless their utility

is especially high. 𝑤1, 𝑤2, and 𝑤3 are tunable balancing parame-

ters. Our state space expands to include the activation frequencies

alongside the binned number of event detections of each device

in period 𝑡 − 1. The action-space remains a vector of activation

frequencies. Given the increased state/action spaces, network-wide

scheduling is best modelled using deep Q-networks, or other deep

reinforcement learning approaches.

However, learning a distributed scheduling policy across all de-

vices leaves on-device coordination impractical; devices operate

independently and are unaware of each other’s states (e.g. over-

lapping event detections), and the policy is learned over the entire

network-space. This necessitates a federated learning approach to

inference, and regular data exchange with a base station or exter-

nal server, which can be resource-intensive and impractical. We

instead propose a scheduler that first learns a consistent global

policy across the network following eq. 2 (i.e., ignoring detection

overlaps and battery-life variability); inference can be performed

locally, at minimal overhead, as it only requires observation of the

current period 𝑡 and its detected events. Then, on initial deployment,

groups of mutually overlapping devices establish clusters over BLE
(or another low-power protocol) using GPS or signal strength. The

clusters assign a round-robin style ordering between devices, which

rotates every period 𝑡 [5]. Then, on event detection (or per a num-

ber of detections), devices issue a short-range RF ping including

a hashed representation of event signal features. This allows each

device to estimate the number of overlapping detections in each of

its clusters, penalizing their activations appropriately based on eq.

3 (𝐵𝜎 is not required), unless it’s their slot in the round-robin. This

approach not only enables on-device localized fine-tuning and min-

imizes redundant activations of devices in close proximity but also

improves the robustness of the network, as devices learn to adapt

their schedules if a neighbor breaks down and stops pinging other

devices. The approach can also minimize redundant activations in

networks following non-adaptive schedules.

We also look to further explore how devices in proximity groups

can activate each other via RF (e.g., interpreting durations of RF

pulses as specific frequencies), based on event locations and fore-

casted event patterns. This approach would require inter-device

communication to synchronize the number/timing of detections,

perform collaborative localization [6], and consider battery-life

variability, but could further enhance network lifetime and its re-

sponsiveness to out-of-schedule events.

5 CONCLUSION
We present Terracorder, a unique biodiversity-focused multi-sensor

device with on-device reinforcement learning scheduler. Our ap-

proach forms the basis of a collaborative scheduler that significantly

improves the useful operation, power consumption, and robustness

of networked devices; this then facilitates the large-scale data gath-

ering essential for conservation efforts.
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