
Scheduling for Reduced Tail Task Latencies in Highly
Utilized Datacenters

Smita Vijayakumar
University of Cambridge

Cambridge, UK
sv440@cam.ac.uk

Anil Madhavapeddy
University of Cambridge

Cambridge, UK
avsm2@cam.ac.uk

Evangelia Kalyvianaki
University of Cambridge

Cambridge, UK
ek264@cam.ac.uk

ABSTRACT
Modern datacenters run diverse workloads that increasingly
comprise data-parallel computational jobs. There has been a
steady rise in their demand leading to high-volume traffic.
To meet these demands, datacenter providers operate their
clusters at levels of high utilization. We show that under such
conditions, existing schedulers impose large wait times on
tail tasks, leading to long job completion time. We propose a
new decentralized scheduler, Murmuration, that reduces the
total wait time of tasks. It employs multiple communicating
schedulers to schedule tasks of jobs such that their start
times are as close together as possible, ensuring small tail
task completion time and better average job completion time.
Our evaluation of Murmuration using publicly available

workloads on a real-world cluster shows 15% — 25% faster
job completion time than that of the default Kubernetes
scheduler for different arrival characteristics. We show that
Murmuration scales to incoming workloads by scheduling
more than a million tasks in a matter of minutes. We further
enhance the design of Murmuration by incorporate queue re-
ordering techniques to order the scheduling and execution
of jobs and tasks. Simulations evaluated on two industry
workloads show that with queue re-ordering, Murmuration
outperforms other schedulers with a 100× better median job
completion time than that of current schedulers.

CCS CONCEPTS
• Applied computing → Data centers; • Computer sys-
tems organization → Cloud computing; Distributed
architectures.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SoCC ’24, November 20–22, 2024, Redmond, WA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1286-9/24/11.
https://doi.org/10.1145/3698038.3698522

KEYWORDS
Scheduling, tail latency, highly utilized, datacenters, bursty,
heavy-load

ACM Reference Format:
Smita Vijayakumar, AnilMadhavapeddy, and Evangelia Kalyvianaki.
2024. Scheduling for Reduced Tail Task Latencies in Highly Utilized
Datacenters. In ACM Symposium on Cloud Computing (SoCC ’24),
November 20–22, 2024, Redmond, WA, USA. ACM, New York, NY,
USA, 20 pages. https://doi.org/10.1145/3698038.3698522

1 INTRODUCTION
Datacenters deliver cost-effective infrastructure to serve
the needs of user applications. These applications comprise
one or more jobs that, in turn, comprise one or more tasks.
Schedulers allocate resources to tasks, aiming to achieve one
or more goals like cluster utilization [4, 29, 73] and user-
perceived service quality [17]. As the number of applications
hosted in datacenters rises [5, 8, 62, 66], ensuring the avail-
ability of sufficient resources while being profitable becomes
crucial [53, 73]. To this end, service providers operate data-
centers in a region of high load [9, 40].

However, there are times when available resources lag be-
hind increased user demands, such as short spikes in requests
that cause temporary overload. It is hard to plan for such
spikes since the mid- to long-term capacity of datacenters
is predicted based on models that rely on past demand and
supply patterns [6, 11, 56]. Often such predictions are rid-
den with inaccuracies leading to insufficient capacities [56].
Moreover, future demand patterns do not always mimic past
trends, as with unforeseen global events like pandemics. Dat-
acenters are also prone to pockets of high load on a small
number of machines due to unexpected bursts in requests,
network partitions, firmware bugs, over-subscription of re-
sources and incorrect load balancing [55, 80]. Finally, not
every datacenter is a hyperscaler, which are operated with
spare idle resources [11]. Overload is a possibility in small-
to medium-sized datacenters where resources are limited
and temporary bursts can saturate clusters.

When faced with such increased demand on available re-
sources providers may choose to temporarily drop traffic,
eliminate low-priority batch load or enter degraded modes of
operation [11, 30, 52, 56]. However, these measures directly

https://orcid.org/0009-0006-8525-6305
https://orcid.org/0000-0001-8954-2428
https://orcid.org/0000-0003-0753-1261
https://doi.org/10.1145/3698038.3698522
https://doi.org/10.1145/3698038.3698522

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Smita Vijayakumar, Anil Madhavapeddy, and Evangelia Kalyvianaki

affect the quality of service perceived by users. Alternately,
the approach we follow in this paper is to allow all outstand-
ing requests to run to completion when queuing delays are
tolerable. We demonstrate that in such busy clusters these
requests take longer than required to complete using current
scheduling approaches (§2). This is due to large variability
in completion time of tasks that comprise these jobs.
Workloads increasingly comprise data processing frame-

works that have thousands of tasks per job (fanout) [3, 16,
18, 67, 69]. It is well-studied that as fanout increases jobs
become vulnerable to large completion time due to vari-
ability in task execution time [2, 4, 17, 78]. The inherently
bursty nature of incoming requests leads to a build up of task
queues on resources [17, 61] especially as cluster utilization
increases [23, 37, 51, 61], leading to increased variation in
execution time of tasks. In this work, we demonstrate that
in the context of highly utilized datacenters schedulers aggra-
vate variability in task completion time in high fanout jobs,
leading to a further increase in completion time of jobs.

While cluster schedulers have been extensively studied, to
the best of our knowledge, we are the first to quantitatively
analyze job tail latency in the context of highly utilized clus-
ters and bursty workloads, which presents significant design
and implementation challenges. In particular, we make the
following contributions. First, we show that current sched-
uling approaches contribute towards long job completion
time due to long completion time of tail tasks, i.e., the task
which finish the last among all tasks of a job. We present
an analysis of tail task latency in highly utilized clusters un-
der both centralized and distributed scheduling paradigms.
We use Kubernetes which is a state-of-the-art container or-
chestration platform with a centralized scheduler [49], and
Sparrow which is a distributed scheduler designed to sched-
ule short tasks fast [59]. We show that under high load, large
job completion time in Kubernetes is attributed to long tail
task completion time, while in Sparrow it is attributed to
long average task completion time (§2).
Second, based on our observations, we propose a new

scheduling approach, Murmuration, that reduces tail task
latency in highly utilized clusters by employing job-aware
scheduling (§3). Our key insight is to schedule for tempo-
ral proximity in the execution start time of tasks of a job.
Murmuration is a decentralized scheduler, defined as one in
which multiple scheduler instances communicate placement
information with each other to take independent schedul-
ing decisions. This ensures scalability in handling incoming
job requests (§4). In Murmuration, schedulers communicate
placement information to build local cluster state. They use
this information to place tasks of a job on nodes such that
these tasks start execution at around the same time and as
soon as possible, subject to the current state of the system.

This leads to smaller tail task latency as compared to existing
schedulers.

Third, we evaluate our implementation (§5) of Murmura-
tion on Kubernetes (§6) using publicly available workloads
on 50 node clusters. Murmuration shows 15 — 25% smaller
median job completion time over the default Kubernetes
scheduler, while exhibiting a small scheduling time for tasks.
We also simulate large clusters with thousands of machines
where Murmuration, implemented with queue re-ordering,
shows a median job completion time that is 100× better than
that of current schedulers when evaluated on two industry
workloads. We contextualize our findings to reflect on the
implications of our work to job scheduling (§7).

2 MOTIVATION
We first examine how current scheduling approaches affect
job completion time when most resources are busy in a data-
center. Under such conditions, when a burst of jobs arrives,
it is a challenge for schedulers to find free resources quickly
enough for jobs to finish fast. We consider jobs that consist of
independent tasks that can be executed in parallel [13], like
data-parallel computational frameworks, machine learning
application [3, 16, 18, 67–69] and HPC workloads which are
increasingly moving to the cloud [7, 10]. We assume that
tasks of a job are all ready for scheduling at around the same
time, i.e., at job creation time. The design also handles tasks
re-created following failure scenarios (§4.2). The focus of
this work is on highly loaded clusters that regularly face
sharp bursts of incoming jobs but have enough resources to
eventually execute all jobs. We do not target latency-critical
or long-running applications, rather workloads which are
tolerant of queuing delays.
We first model the major steps that tasks go through be-

tween submission and completion (§2.1). We describe the
workloads used in this work (§2.2) followed by a study of
modern schedulers in relation to this model. For central-
ized schedulers (§2.3), we identify that the time spent at
the scheduler can significantly increase job completion time.
We show that the problem of long scheduling time is tack-
led by distributed schedulers (§2.4) which schedule tasks
quickly, but their limited view of cluster resources makes
their placements sub-optimal under high load as compared
to centralized schedulers [29, 79].

2.1 End-to-End Task Timeline
We define task completion time (𝑇𝐶𝑇) as the time interval
between when a task is ready for scheduling and its comple-
tion. A job completes when the last of its tasks finishes, so a
job’s completion time (𝐽𝐶𝑇) is the maximum 𝑇𝐶𝑇 among all
its tasks [29]. Tail tasks are tasks that finish the last among
all tasks of a job. Since 𝐽𝐶𝑇 is the maximum 𝑇𝐶𝑇 among all

Scheduling for Reduced Tail Task Latencies in Highly Utilized Datacenters SoCC ’24, November 20–22, 2024, Redmond, WA, USA

Task
queued

Scheduling
starts

Successfully
placed

Starts
executing

Task
completes

w2s s w2x x

Failed Scheduling
TST
TCT

time

Sparrow

w2s s x

Kubernetes

w2s s w2x x

w2x≃ 0

Figure 1: Task Lifecycle.

of its tasks, 𝐽𝐶𝑇 is defined by the tail 𝑇𝐶𝑇 , that is, for task 𝑡
and job 𝑗 ,

𝐽𝐶𝑇𝑗 = max
𝑡 ∈ 𝑗

{𝑇𝐶𝑇𝑡 } (1)

Figure 1 shows how𝑇𝐶𝑇 can be roughly divided into four
non-overlapping time periods:wait time to be scheduled (𝑤2𝑠),
scheduling time (𝑠), wait time to execute (𝑤2𝑥) and execution
time (𝑥). We use these timings, explained below, to study and
compare different schedulers.
When a task first arrives for scheduling, it is placed in a

scheduler’s queue. 𝑤2𝑠 refers to the time a task spends in
this queue waiting to be scheduled. Scheduling time (𝑠) is
the time a scheduler spends trying to find a suitable node for
the task to run on. If a node is found, the task is sent to the
designated node for execution. If no such node is found the
task is put back into the queue to be selected for scheduling
at a later time. 𝑤2𝑠 and 𝑠 can repeat multiple times until a
node is found for a task. We use the term task scheduler time
(𝑇𝑆𝑇) to refer to the total time a task spends at the scheduler
until a suitable node is found and includes all the times a
task spends in𝑤2𝑠 and 𝑠 .
After a task is assigned to a node for execution, it could

spend time waiting to be executed at the designated node
(𝑤2𝑥). This is the time a task spends at theworker-side queues,
if these exist [8, 59, 63]. However, when a scheduler does
not support worker-side queues [29, 72], then𝑤2𝑠 is practi-
cally zero as these schedulers find nodes with enough free
resources for immediate task execution. Execution time 𝑥 is
the total time spent executing a task. So,𝑇𝐶𝑇 = 𝑇𝑆𝑇 +𝑤2𝑥+𝑥 .
Table 1 summarizes the notations used to describe a task’s
lifecycle.

We examine how the various times identified during task
processing affect 𝐽𝐶𝑇 in different scheduling approaches.

Table 1: Notations used to describe task lifecycle.

Notation Description
w2s wait time to be scheduled
s scheduling time

w2x wait time to execute
x execution time

TST Task Scheduler Time
TCT Task Completion Time

Broadly, schedulers can be categorized as centralized and dis-
tributed. Centralized schedulers [29, 41, 64, 72, 74] have the
entire cluster’s information available during scheduling and
can make globally-informed high quality task placements.
Distributed schedulers [46, 59] are scalable and cope well
with high input request rates, but they lack a global cluster
view for placing tasks well. We use the Kubernetes and Spar-
row schedulers as baselines to examine how they perform
with regard to 𝑇𝑆𝑇 and 𝑇𝐶𝑇 in a highly loaded cluster. For
each of these schedulers we examine the characteristics of
tail task completion times (tail 𝑇𝐶𝑇 s). We evaluate Kuber-
netes using a cluster hosted on CloudLab [25], and Sparrow
using Eagle’s simulator [19].

2.2 Workload Description
The Murmuration scheduler is designed for modern indus-
try workloads that typically have more than one task per
job [8, 69, 74]. In this work, we use two different industry
workloads - Yahoo traces [13] which is our primary workload
and Cloudera traces [12], our secondary workload (§6). Both
workloads describe the characteristics of data-parallel jobs
in large datacenters [12, 13]. They describe incoming jobs
in terms of their arrival times, fanout, estimated job (task)
running time, and the actual running times of the tasks. We
summarize the characteristics of these jobs in Table 2. Both
Kubernetes and Sparrow are evaluated in this section using
the Yahoo workload.

Table 2: Workload characteristics.

Workload Fanout Job Inter-arrival(s) Task Duration(s)
50𝑡ℎ 99𝑡ℎ 50𝑡ℎ 99𝑡ℎ 50𝑡ℎ 99𝑡ℎ

Yahoo 15 636 8 8 16 2410
Cloudera 126 3650 12 13 48 2515

2.3 Centralized Scheduling
We use Kubernetes as a reference centralized scheduler and
its design does not support worker-side queues. Figure 1
shows the lifecycle of a task as scheduled by the default
Kubernetes scheduler. First, tasks of new jobs are put into

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Smita Vijayakumar, Anil Madhavapeddy, and Evangelia Kalyvianaki

the scheduler’s ready queue where all tasks that are ready
to be scheduled wait (𝑤2𝑠). The scheduler de-queues tasks
based on the earliest creation timestamp and for each task
it aims to find a node that fulfills the task’s resource and
affinity requirements.
Kubernetes maintains a cache with a list of nodes avail-

able in the cluster. When scheduling a task the scheduler
filters these nodes to find feasible nodes that have enough
free resources currently to meet the task’s request. When
such feasible nodes are found, it assigns a score to each of
them based on configured scoring rules such as availability
of the task’s image and utilization of resources at the node.
It assigns the task to the node with the highest score. When
multiple nodes have the same score, it chooses one among
them at random. The above operations constitute the sched-
uling of the task (𝑠). The scheduler then sends the task to
the node, where the task is ready to run as soon as it arrives
since resources will be available (i.e.𝑤2𝑥 is negligible). The
task’s code and image are downloaded and it is executed at
the node (𝑥).
There may be cases when no feasible node is found for

a task when the cluster is busy and resources requested by
the task are not immediately available. In such cases, the
scheduler keeps the task in a retry queue where it waits
for some time (𝑤2𝑠) before being re-admitted into the ready
queue for scheduling (𝑠). This retry mechanism prevents
head-of-line blocking by giving smaller tasks the opportunity
to be scheduled with currently available resources.
However, scheduling retries become the common case

in highly utilized clusters as tasks go through multiple it-
erations of queuing and scheduling attempts before being
successfully scheduled (𝑇𝑆𝑇). For purposes of evaluation, we
quantitatively define a highly utilized Kubernetes cluster as
one which is actively executing the maximum number of
pods it can support. This is derived from the fact that Ku-
bernetes restricts the maximum number of simultaneously
active pods on a node to 110, irrespective of its compute
cores [48].
Once a Kubernetes cluster is highly utilized, it is chal-

lenging for the scheduler to find placement for tasks in the
ready queue. Tasks fail to get scheduled and get moved to
the retry queue, increasing their 𝑇𝑆𝑇 . The more utilized the
cluster, the larger the tail𝑇𝑆𝑇 . Eventually, as the cluster load
reduces, pending tasks get allocated and the waiting time
𝑤2𝑠 for newly arriving tasks reduces.

2.3.1 Testbed Setup. Our Kubernetes cluster is hosted on
a CloudLab setup that comprises 50 nodes. The setup is a
heterogeneous mix of bare metal machines with 8 cores and
64GB RAM (m510), 16 cores and 128GB RAM (c6525-25g)
and 32 cores and 128GB RAM (d6515). All machines run
Ubuntu 20.04 and Kubernetes 1.23.6. Unless specified, the

cluster has a single master node running all control plane
services. We run 5, 000 — 10, 000 jobs starting from a ran-
domly selected job in the Yahoo workload trace. The total
number of pods offered over the course of each experiment
is approximately 150, 000. An additional management node
runs the job creation script and records the 𝐽𝐶𝑇 upon a job’s
completion. Unless stated otherwise, we run 10 schedulers
across nodes. Pods are created as specified in the trace, and
each pod is given a default CPU limit of 0.1 cores. These
pods run the sha1sum application on /dev/zero device for the
duration of the task’s actual running time as specified in the
trace. Each run takes approximately 20 hours to complete.

Arrival Rates. We study the effects of various arrival char-
acteristics on a Kubernetes cluster. Figure 2 shows the four
different arrival patterns of unscheduled pods that we use in
our evaluation. Each pattern shows the cumulative number
of new unscheduled pods added into scheduler’s queue every
second, throughout the duration of our experiments.

All four arrival distributions have a median value of 8 - 10
pods (tasks) per second (tps), though their actual arrival rates
vary. These arrival patterns vary drastically in their bursti-
ness, defined as the variance in arrival rates with respect to
the median [15], as is seen in the tail of these distributions. In
𝐴 and 𝐵, the peak arrival rates are 28 and 40tps respectively,
while in 𝐶 and 𝐷 they are 195 and 373tps. Hence, 𝐴 and 𝐵

are relatively steady as compared to the more bursty arrival
rates of 𝐶 and 𝐷 . We use these rates to achieve different
cluster utilization states in our evaluation. For purposes of
motivation, we use pattern 𝐴 which has a small burstiness
and a median arrival rate of 8tps on our 50 node cluster.

0 100 200 300 400
Unscheduled pods / second

0.0

0.5

1.0

A B C D

Figure 2: Arrival rates of unscheduled pods.

2.3.2 Evaluation. Figure 3 shows the cumulative distribu-
tion of 𝑥 (blue line), average of 𝑇𝑆𝑇 and 𝑇𝐶𝑇 for all tasks of
a job taken over all jobs (green lines), and similarly, tail 𝑇𝑆𝑇
and 𝑇𝐶𝑇 of jobs (red lines) once the cluster reaches steady-
state. Note that the figure discounts the time before the clus-
ter reaches steady-state. We see that the average completion
time 𝑇𝐶𝑇 per job almost equals the average scheduling time
𝑇𝑆𝑇 (green lines overlapping) which indicates that the major-
ity of time a task spends in its lifecycle is on scheduling. The
average 𝑇𝐶𝑇 can be significantly higher than the average
execution time 𝑥 . The tail𝑇𝐶𝑇 shows the dramatic effect that
multiple scheduling cycles have on 𝑇𝐶𝑇 . As in the case of

Scheduling for Reduced Tail Task Latencies in Highly Utilized Datacenters SoCC ’24, November 20–22, 2024, Redmond, WA, USA

0 10000 20000 30000 40000 50000
Duration (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Average x
Average TST
Average TCT
Tail TST
Tail TCT
JCT
JCT (no retry)
JCT (1s retry)

Figure 3: Analysis of 𝐽𝐶𝑇 in Kubernetes using arrival
rate 𝐴. Averages are mean taken over all tasks per job.

the average 𝑇𝐶𝑇 , the tail 𝑇𝐶𝑇 is dominated by the tail 𝑇𝑆𝑇
(red lines overlapping) indicating that tail tasks also spend
most of their time in scheduling. However, large numbers
of scheduling retries for tail tasks increases the scheduling
time variance between tasks belonging to a job. The result is
that the tail 𝑇𝐶𝑇 is much higher than the average, leading
to longer 𝐽𝐶𝑇 .
Even when we reduce or eliminate the time that a task

spends in the retry queue, we still observe long tail 𝑇𝑆𝑇 s.
We made changes to the default codebase to implement two
other versions of Kubernetes. The first is with a reduced retry
queue wait time from the default 30sec to 1sec. The second is
with no retry queue, where tasks are queued directly in the
ready queue when scheduling fails due to resource unavail-
ability. In both these cases, we still observe long tail 𝑇𝑆𝑇 ,
as seen in Figure 3. This is because while the earlier tasks
wait in the retry queue (or at the end of the ready queue),
scheduler may attempt to schedule later tasks right when a
resource is freed, causing long 𝑇𝐶𝑇 for earlier tasks.

For this evaluation, we now compare the effect of hetero-
geneity in our cluster, which is known to cause straggler
tasks, load imbalances and increased variance in completion
times [1, 2, 4, 78], with scheduling times. We analyze the
spread of completion times of tasks belonging to the same job
across all jobs of the experiment above. Figure 4 shows the
standard deviation in timestamps of tasks belonging to a job
at four different events as identified in Figure 1; when tasks:
a) are added to the Kubernetes’ scheduler queue (top); b) are
scheduled (second from top); c) start their execution (second
from bottom); and d) finish their execution (bottom).

The figure shows that tasks of a job are added to the sched-
uler’s queue in a synchronized manner with a mean standard
deviation of 1sec (figure on top). Once tasks are scheduled,
this value increases to 1.25h (three bottom figures) and tasks
belonging to a job are no longer in close temporal proximity.
The increased spread in time of tasks of the same job intro-
duced after scheduling remains almost unchanged as tasks
progress to execution and completion. This shows that the

0

1

Added to scheduler's queue

0

1

Scheduled

0

1

Execution started

0 3500 7000 10500 140000

1

Execution ended

Standard Deviation (seconds)

Jo
bs

Figure 4: Variance in the completion of stages of life-
cycle across tasks of jobs.

primary reason for long tail task completion times in highly
utilized clusters is scheduling, and that under such cases, the
effects of heterogeneity are much smaller.

We conclude by taking note of the fact that a host of sched-
ulers implement policies like fairness that limit multiplexing
of tasks [8, 24, 29]. By design, these schedulers leave some
tasks behind, experiencing high tail 𝑇𝐶𝑇 similar to our ob-
servation here. These results suggest that to reduce the 𝐽𝐶𝑇
the goal should be to reduce the tail task completion time (tail
𝑇𝐶𝑇) by reducing the dominant tail task scheduling time (tail
𝑇𝑆𝑇) component of centralized schedulers.

We end this section by noting that the three 𝐽𝐶𝑇 lines in
Figure 3 are moved further to the right from the tail 𝑇𝐶𝑇
lines, although using Equation 1 we would expect them to be
equal or very close. This is because in Kubernetes additional
implementation-specific delays occur before jobs arrive at
the scheduler’s queue, primarily caused by rate-limiting in
Kubernetes’ control plane. The 𝐽𝐶𝑇 values are obtained using
Kubernetes’ API and are shifted right owing to these delays.
We treat Kubernetes as a black-box and the delay occurring
before jobs arrive at a scheduler are not the focus of this
paper. Our implementation (§5) makes changes only at the
scheduling stage, so our comparison against Kubernetes is
fair as both systems (default Kubernetes andMurmuration on
Kubernetes) experience the same delays before scheduling.
We also present an extensive evaluation using simulations
which does not suffer from such delays. To summarize, the
focus of this paper is on job timings at and after scheduling
and not before.

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Smita Vijayakumar, Anil Madhavapeddy, and Evangelia Kalyvianaki

2.4 Distributed Scheduling
Next, we examine how distributed scheduling with worker-
side queues affects 𝐽𝐶𝑇 . Distributed schedulers achieve scal-
able scheduling by running multiple instances of schedulers
that take independent [46, 59] or coordinated [8, 63] deci-
sions for placement. Due to their inherent scalability, they
do not impose limits on the cluster sizes that they support
as opposed to centralized approaches; e.g., Kubernetes limits
the cluster size to 5, 000 nodes [49]. Distributed schedulers
place tasks on worker-side queues even when nodes do not
have free resources at the time of placement.
Figure 1 shows the task lifecycle for Sparrow [59], our

reference distributed scheduler. Sparrow employs multiple
scheduler instances each with its own scheduling queue
(𝑤2𝑠). To find a placement, Sparrow probes a limited number
of cluster nodes and places a batch of tasks of a job on the
least loaded among the probed nodes. Each task is considered
for scheduling exactly once (𝑠) and so the 𝑇𝑆𝑇 component
is smaller as compared to Kubernetes due to lack of retries.
Sparrow queues redundant probes on multiple nodes and
only considers the probes that execute the earliest, while
canceling the rest.

2.4.1 Simulator Setup. We use Eagle’s simulator [20] to
evaluate the performance of Sparrow (we describe the simu-
lator in more detail in §6.2). Sparrow is implemented with
batch scheduling and late binding where a job’s probes are
queued on all nodes contacted. We simulate a large-scale
cluster with 10, 000 nodes and an incoming request rate of
2, 000tps. Sparrow’s evaluation uses different arrival rates
and patterns as compared to the evaluation of Kubernetes
above. This is because Kubernetes rate-limits input API re-
quests, leading to smaller rate of unscheduled tasks at the
scheduler. However, no such limits apply to the simulator.

2.4.2 Evaluation. Figure 5 shows the performance of Spar-
row using simulations [20]. The tail 𝑇𝐶𝑇 (solid red line)
closely follows the average 𝑇𝐶𝑇 (dashed green line) as there
are no repeated scheduling attempts. This is a desired feature,
and one that Kubernetes lacks. However,𝑤2𝑥 is significantly
large (solid pink line) and dominates the average 𝑇𝐶𝑇 . This
is because the placement quality in Sparrow is degraded un-
der high load conditions where the probability of finding a
lightly loaded node is small [20, 22], leading to longer worker-
side queues and longer 𝑇𝐶𝑇 . This is shown by the curves of
both the average and tail 𝑇𝐶𝑇 that have large completion
times. The task which encounters the largest𝑤2𝑥 among all
tasks of a job likely becomes the tail task, since 𝑤2𝑠 and 𝑠
are both small in Sparrow. So, though the tail 𝑇𝐶𝑇 is close
to the average 𝑇𝐶𝑇 , they are both visibly large, leading to a
large average 𝐽𝐶𝑇 .

0 10000 20000 30000 40000
Duration (seconds)

0.00

0.25

0.50

0.75

1.00

CD
F Average x

Average w2x
Average TCT
Tail TCT
JCT

Figure 5: Analysis of 𝐽𝐶𝑇 in Sparrow.

To summarize, schedulers like Sparrow show a desirable
characteristic of near-constant scheduling time for all tasks.
This leads to the average and tail 𝑇𝐶𝑇 values being close to
each other, unlike in centralized schedulers. However, sched-
uling itself samples a few nodes and places tasks on lightly
loaded of probed nodes. Under high load, this increases the
overall 𝑇𝐶𝑇 as compared to centralized schedulers. These
results suggest that in distributed schedulers, the average wait-
ing time to execute (average𝑤2𝑥) is the dominant component
of the average task completion time (average 𝑇𝐶𝑇). There-
fore, by reducing the average𝑤2𝑥 , the average 𝑇𝐶𝑇 , and the
average 𝐽𝐶𝑇 , can be reduced.

3 DESIGN GOALS
Our overarching goal is to design a scalable scheduler to re-
duce the average job completion time (𝐽𝐶𝑇) in highly utilized
clusters where free resources are scarce. When reducing 𝐽𝐶𝑇
we focus on reducing tail task completion time (𝑇𝐶𝑇). To
this end, we aim to reduce the variance in the 𝑇𝐶𝑇 among
tasks belonging to a job. Keeping the variance in 𝑇𝐶𝑇 small
is challenging as tail latency can easily grow in large-scale
systems [17]. Our exploratory results earlier suggest that in
centralized scheduling 𝑇𝑆𝑇 can be highly variable (like in
Kubernetes), while in distributed scheduling𝑤2𝑥 can be very
high (like in Sparrow). Therefore, among the four different
timings (§2.1) that contribute to 𝑇𝐶𝑇 , we focus on reducing
the variance in the total time tasks of a job spend in being
scheduled and waiting to execute, i.e., 𝑇𝑆𝑇 +𝑤2𝑥 .

Our work aims to reduce the variance of𝑇𝑆𝑇 +𝑤2𝑥 for all
tasks of a job, and ultimately to reduce the tail 𝑇𝐶𝑇 . We aim
to achieve this by ensuring that all tasks of a job (i) spend
comparable times at the scheduler (reducing the variance
in 𝑇𝑆𝑇); and (ii) are placed on nodes where they can start
executing around the same time (reducing the variance in
𝑤2𝑥). Our work does not consider how𝑇𝐶𝑇 could be further
reduced by having a smaller execution time 𝑥 (by using faster
hardware, for example), which is orthogonal to our work.

Scheduling for Reduced Tail Task Latencies in Highly Utilized Datacenters SoCC ’24, November 20–22, 2024, Redmond, WA, USA

Our design goals are threefold:
G1 Low Average Scheduling Time: we aim to keep the
scheduling time small by reducing the variance in task sched-
uling time 𝑇𝑆𝑇 among tasks of the same job, similar to dis-
tributed schedulers.
G2 Low Variance in Total Wait Times: we aim to ensure
that the spread of the time spent by tasks of the same job
when waiting to be scheduled and to execute, that is (𝑇𝑆𝑇 +
𝑤2𝑥), is small. In this work, we do not focus on the variance
in execution time 𝑥 between tasks of a job.
G3 Scalable Scheduling:we aim to make the new scheduler
scalable with respect to the rates of incoming jobs and to the
number of nodes in the cluster.
Our overarching goal is to reduce the average job com-

pletion times in highly utilized clusters (G0), achieved as a
combination of goals G1 and G2. To achieve our goals we
aim to place tasks belonging to the same job fast and with a
small variance in their scheduling time, achieving goal G1.
Tasks are placed on nodes such that they start executing
near-simultaneously and as soon as possible, reducing the
average tail 𝑇𝐶𝑇 and average 𝐽𝐶𝑇 and achieving goal G2.

Note that goalG0 aims to reduce the average 𝐽𝐶𝑇 by reduc-
ing the variance in (𝑇𝑆𝑇 +𝑤2𝑥) among tasks of a job, reducing
its tail 𝑇𝐶𝑇 . As the tail 𝑇𝐶𝑇 is reduced for most jobs, the
average 𝐽𝐶𝑇 is improved. We do not aim to reduce the tail
of the distribution of 𝐽𝐶𝑇 itself, though that may happen as
a result of smaller tail 𝑇𝐶𝑇 .
Since we consider our work in the context of bursty traf-

fic, we would like to ensure scheduling can scale to spikes
in incoming requests (goal G3). We aim to achieve this by
deploying multiple scheduler instances capable of handling
varying input request rates. In the next section, we design a
scheduler that targets these goals and effectively schedules
tasks in busy clusters.

4 MURMURATION
We propose Murmuration, a scalable decentralized scheduler
designed to reduce tail 𝑇𝐶𝑇 and average 𝐽𝐶𝑇 in highly uti-
lized datacenters by reducing the variance in the total wait
time between tasks of a job. To achieve this, Murmuration (i)
schedules tasks in exactly one scheduling attempt and (ii)
places tasks of the same job on nodes with the smallest ex-
pected waiting time at the time of scheduling. This approach
ensures that all tasks of a job are scheduled quickly and begin
execution in close temporal proximity.

Our work combines the strengths of both centralized and
distributed scheduler designs. Murmuration employs a dis-
tributed approach where multiple schedulers place tasks in
parallel to handle bursty arrivals. Incoming job requests are
load-balanced across schedulers. All tasks of a job are han-
dled by the same scheduler and each scheduler has its own

Node Manager

Task

TaskTask

Queue

Scheduler

Unscheduled
Tasks Queue Scheduling Logic

Resource Cache
Job

Node Manager

Task

TaskTask

Queue

Node Manager

Task

TaskTask

Queue

Node Manager

Task

TaskTask

Queue

Scheduler

Unscheduled
Tasks Queue Scheduling Logic

Resource Cache

Node Manager

Task

TaskTask

Queue

Scheduler

Unscheduled
Tasks Queue Scheduling Logic

Resource Cache

Node Manager

Task

TaskTask

Queue

Node Manager

Task

TaskTask

Queue

Node Manager

Task

TaskTask

Queue

Node Manager

Task

TaskTask

Queue

Figure 6: Murmuration’s components. Nodes (white
blocks) host a node manager and optionally, one or
more schedulers.

queue. This leads to shorter scheduler queue lengths as com-
pared to that of a single centralized queue, while ensuring
scheduling scales to handle bursts of incoming requests.
Murmuration also employs a scheduling approach simi-

lar to centralized where all schedulers share near up-to-date
information on the estimated waiting times at nodes which
is used for making scheduling decisions. In Murmuration,
schedulers communicate placement information with each
other and build their own local view of waiting times across
nodes. This communication between schedulers makes Mur-
muration a decentralized scheduler rather than a distributed
scheduler (§1), ensuring good task placements comparable
with that of centralized scheduling (§6).

We consider a datacenter to be composed of thousands of
multi-processor machines [16, 27, 69, 74]. When a job arrives
for scheduling its arrival time, number of tasks and estimated
job running time are provided. Note that estimated job run-
ning time is a single value denoting the time that each of
its tasks are estimated to run for, though mis-estimations in
running times are tolerated (§6). Nodes can process multi-
ple tasks in parallel by allocating a share of their available
CPU resources among tasks. We consider CPU as the only
dominant resource in this work. However, Murmuration can
be extended to include estimated wait times for additional
resources like memory, disk and network [28, 32].

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Smita Vijayakumar, Anil Madhavapeddy, and Evangelia Kalyvianaki

4.1 Design Overview
Figure 6 shows Murmuration’s main components and their
interactions on a cluster. A node executes tasks by running a
node manager (in orange). It optionally participates in sched-
uling by hosting one or more schedulers (in green) which
consume a configurable subset of its resources. Every sched-
uler has a queue for incoming jobs. When a job is submit-
ted it is assigned a scheduler and its tasks are enqueued in
the scheduler’s queue. Tasks are dequeued in the order of
job creation time, ensuring earliest jobs and their tasks are
scheduled first as soon as their required resources are avail-
able. This is equivalent to running the first-come-first-served
(FCFS) scheduling policy locally at every scheduler. The node
manager handles the execution of tasks assigned to a node.
It has a single designated worker-side queue for new tasks
scheduled on that node, and tasks are serviced in FCFS order.
Schedulers make placement decisions based on a near

up-to-date global view of task assignments on nodes. This
information is available locally at every scheduler in its re-
source cache, as shown in Figure 6, which contains a list of
all nodes and the expected wait times for CPU at each node.
The expected wait time (E𝑛) of a node 𝑛 is defined as the
time a newly scheduled task is expected to wait at 𝑛 before
it is selected for execution. E𝑛 provides the estimated value
for 𝑤2𝑥 at 𝑛, and is the sum of the estimated job running
time (𝑥) of all tasks 𝑡 currently queued or executing at 𝑛.
So, E𝑛 =

∑
𝑡 𝑥𝑡 . When scheduling a task, the node with the

smallest expected wait time is chosen for placement and ties
are broken at random. The figure shows a job with two tasks
arrives at a scheduler and its tasks are scheduled at two of
the least-loaded nodes in the scheduler’s cache. Though this
design does not consider the distribution of execution times
across the workload, we do so later when describing queue
re-ordering techniques (§ 4.2).

To populate values in resource caches, schedulers send and
process resource update messages using peer-to-peer gossip
which enable schedulers to have near-current information
on cluster resources. An update message is sent when ei-
ther a scheduler schedules a new task or a task completes
execution on a node. Update messages contain the identity
of the node and the estimated running time of the newly
placed or completed task. These messages are used to update
the estimated wait times of the corresponding nodes in the
caches of schedulers. Update messages are processed in the
background when schedulers are not actively scheduling a
task and therefore, are not in the critical path of the schedul-
ing flow. Note that Murmuration assumes reliable delivery
of update messages, even if out-of-order.

Algorithm 1 provides details of Murmuration’s scheduling
running at each scheduler. As long as a scheduler 𝑠 has tasks

Algorithm 1:Murmuration Scheduling
1 N := set of all nodes
2 S := set of all schedulers
3 𝑠𝑞 := queue at scheduler 𝑠 ∈ S
4 𝑡𝑐𝑝𝑢 , 𝑡𝑚𝑒𝑚 , 𝑡𝑒𝑠𝑡𝑇𝑖𝑚𝑒 := 𝑡 ’s CPU, memory, estimated

runtime

5 /* task scheduling at each 𝑠 ∈ S */

6 while (tasks in 𝑠𝑞) do
7 𝑡 = task from the earliest job in 𝑠𝑞

8 𝑡𝑁 = nodes in cache with resources ≥ 𝑡𝑐𝑝𝑢 , 𝑡𝑚𝑒𝑚

9 𝑡𝑑𝑠𝑡 = random (nodes with smallest E𝑛 in 𝑡𝑁)
10 send 𝑡 to 𝑡𝑑𝑠𝑡
11 UpdateLocCache(𝑡𝑑𝑠𝑡 , 𝑡𝑒𝑠𝑡𝑇𝑖𝑚𝑒)
12 /* Asynchronously send update message */

13 UpdateRemCache[𝑡𝑑𝑠𝑡 , 𝑡𝑒𝑠𝑡𝑇𝑖𝑚𝑒] to (S \ 𝑠)
14 /* Asynchronously process new message */

15 forall (𝑠 ∈ S) do
16 when new UpdateRemCache[𝑡𝑑𝑠𝑡 , 𝑡𝑒𝑠𝑡𝑇𝑖𝑚𝑒]
17 UpdateLocCache(𝑡𝑑𝑠𝑡 , 𝑡𝑒𝑠𝑡𝑇𝑖𝑚𝑒)
18 /* task finishing at node 𝑛 ∈ N */

19 forall (𝑛 ∈ N) do
20 when task 𝑡 finishes at node 𝑛
21 UpdateRemCache[𝑡𝑑𝑠𝑡 , 𝑡𝑒𝑠𝑡𝑇𝑖𝑚𝑒] to (S)

22 procedure UpdateLocCache (𝑛𝑜𝑑𝑒 , 𝑥)
23 if (task placement at 𝑛𝑜𝑑𝑒) then
24 E𝑛𝑜𝑑𝑒 = E𝑛𝑜𝑑𝑒 + 𝑥

25 else if (task finished at 𝑛𝑜𝑑𝑒) then
26 E𝑛𝑜𝑑𝑒 = E𝑛𝑜𝑑𝑒 - 𝑥

in its queue, it picks task 𝑡 with the earliest creation times-
tamp to schedule (line 7). It selects all nodes from its cache
that can satisfy 𝑡 ’s CPU and memory requirements (line 8).
The node 𝑡𝑑𝑠𝑡 with the smallest estimated wait time is found
(line 9), breaking ties at random. 𝑡 is sent to this node for
execution (line 10). Node managers queue newly scheduled
tasks when they receive them. As soon as enough resources
become available on the node, the first task in the queue is
de-queued for execution.
The next steps refer to updating the resource caches of

schedulers given the placement of a new task 𝑡 at the selected
𝑡𝑑𝑠𝑡 . First, 𝑡𝑑𝑠𝑡 ’s estimated wait time E is incremented in
the local scheduler 𝑠’s cache by the estimated running time
of the job (𝑈𝑝𝑑𝑎𝑡𝑒𝐿𝑜𝑐𝐶𝑎𝑐ℎ𝑒 (), line 11). 𝑠 sends a resource
update message to all other remote schedulers about the
placement of 𝑡 at 𝑡𝑑𝑠𝑡 (𝑈𝑝𝑑𝑎𝑡𝑒𝑅𝑒𝑚𝐶𝑎𝑐ℎ𝑒 (), line 13). When a
scheduler receives such a message it updates the wait time
of the designated node 𝑡𝑑𝑠𝑡 in its local resource cache (lines

Scheduling for Reduced Tail Task Latencies in Highly Utilized Datacenters SoCC ’24, November 20–22, 2024, Redmond, WA, USA

16 - 17). Finally, when a task finishes executing, an update
message is sent by the node manager to all remote schedulers
to decrement the estimated waiting time of the task’s node
in their respective local caches (lines 20 - 21).

Figure 7 shows an example flow between two schedulers
(𝑠1 and 𝑠2) hosted on two nodes (𝑛1 and 𝑛2). A single in-
coming job of two tasks (𝑡1 and 𝑡2) and an estimated job
running time of 3sec is submitted to the cluster and assigned
to 𝑠1 1 . For scheduling 𝑡1, 𝑠1 selects 𝑛1 which has the least
estimated wait time in its cache and sends 𝑡1 to 𝑛1 2 (we
assume that 𝑛1 and 𝑛2 have the resources to run 𝑡1 and 𝑡2).
Once received, 𝑛1 queues 𝑡1 in its worker-side queue and
processes 𝑡1 immediately since no other tasks are currently
running on this node. In 3 , 𝑠1 increments the estimated
wait time of 𝑛1 by 3sec in its local cache and notifies 𝑠2 of
𝑡1’s placement on 𝑛1. When 𝑠2 receives the update message
it increments the value of 𝑛1’s estimated wait time by 3sec
in its local cache. Similarly, 4 and 5 show the scheduling
and placement of 𝑡2 on 𝑛2 and the notification of the place-
ment to 𝑠2 respectively. Finally, in 6 and 7 𝑡1 and 𝑡2’s
completion notifications are sent respectively by 𝑛1 and 𝑛2
to both schedulers 𝑠1 and 𝑠2. 𝑠1 and 𝑠2 reduce the estimated
wait times for the nodes in their respective caches by 3sec.

Size of resource update message. A resource update
message contains a node identifier and the estimated run-
time of the newly placed or completed task. Assuming that
the node identifier is a 4B integer and the estimated run-
time is a 4B floating point number, a task generates 8B × 2
= 16B of network overhead for placement and completion
notifications. Our workload (§6) has a median fanout of 15
tasks per job, so the median total bytes exchanged per pair
of schedulers per job is 240B. Our typical deployments have
10 schedulers, so the network overhead per job is 2.4KB.

Number of Update Messages. The number of update
messages exchanged is proportional to the fanout of the
workload processed (𝑓) and the number of schedulers de-
ployed in the cluster (𝑆). Schedulers send placement informa-
tion to all schedulers except themselves, while nodes send
task completion notifications to all schedulers. The average
number of messages exchanged per job is 𝑓 × (2 × 𝑆 − 1).
Since our workload has a median fanout of 𝑓 = 15 tasks per
job (§2.2) and our typical deployment has 𝑆 = 10 (§6), an
average of 285 messages are generated per job.
Batched Resource Updates. Murmuration generates a

large number of messages when scheduling jobs with high
fanout. This creates a large backlog of messages to be asyn-
chronously processed by schedulers. Therefore, we modify
Murmuration’s design to generate a single resource update
message for placing a job instead of as many as its tasks,
leading to fewer messages exchanged between schedulers.
This message contains the adjusted wait times of all nodes

Node Estimated Wait Time

n1 0 3 0

n2 2 5 2

n1

n2

Jo
b

t1
t2 1

3
5

4
Resource Cache

Sc
he

du
le

r

t2
completed

t1
completed

t1
scheduled

t2
scheduled

Resource Cache

Sc
he

du
le

r

Node Estimated Wait Time

n1 0 3 0

n2 2 5 2

t1
scheduled

t1
completed

t2
scheduled

t2
completed

7

Node Manager

Queue

Queue

Task

Task

Node Manager
Task

Task
6

2

Queue

Queue

Figure 7: Murmuration example scheduling.

that tasks are placed on. Typically, the adjustment to a node’s
value is the estimated job running time, but can be larger if
multiple tasks are placed on it. This caps the size of update
message to the number of cluster nodes. The number of mes-
sages that are generated per job is 𝑆 − 1 for placement and 𝑆
× 𝑓 for completion notifications, for a total of (1 + 𝑓) × 𝑆 − 1.
This brings it down from 285 messages in the non-batched
version to 159 when using batching.

Batching update messages incurs additional delays as the
message is sent after all tasks of a job are scheduled. In Mur-
muration the scheduling time is small owing to the simplicity
of its design. Therefore, batching messages does not add sig-
nificant delay in relaying information to other schedulers.
We implement Murmuration’s prototype without batched
messages (§5), and our simulator with batching (§6.2).

4.2 Discussion
Placement Conflicts and Resource Cache Staleness.
Placement conflicts occur when two or more schedulers se-
lect the same node simultaneously from their local resource
caches as the one with the smallest estimated wait time to
schedule their tasks. Murmuration employs a relaxed ap-
proach towards placement conflicts that arise due to reasons
like network and processing delays; once tasks are scheduled
they are always sent to the selected node without resolv-
ing any potential conflicts. Tasks are placed in worker-side
queues for execution in the order they arrive. Eventually,
despite thousands of nodes and high fanout jobs, Murmura-
tion’s resource caches have a near up-to-date view of wait
times although the actual order in node queues may vary
from the one assumed by the schedulers. Murmuration is
designed to reduce𝑤2𝑥 across jobs by balancing out the total
estimated wait time at each node.
Figure 8 shows an example where both 𝑠1 and 𝑠2 select

𝑤 (with estimated wait time of 10𝑠 in both schedulers) to
place their tasks 𝑡𝑥 (estimated running time of 3𝑠) and 𝑡𝑦
(estimated running time of 4𝑠) respectively. Initially, each

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Smita Vijayakumar, Anil Madhavapeddy, and Evangelia Kalyvianaki

timetx(3) ty(4)
s2s1 W

top node
w=10

top node
w=10

send tx @w send ty @w
 tx

 txtyupdate local cache
w=10+3=13 update local cache

w=10+4=14 s1 and s2 have
different wait values for w

UpdateRemCache(w,3)

update local cache
w=14+3=17

update local cache
w=13+4=17

UpdateRemCache(w,4)

s1 and s2 have the
same wait values for w

placement
conflict

Figure 8: Example placement conflict of two tasks 𝑡𝑥
and 𝑡𝑦 both placed on node𝑤 by schedulers 𝑠1 and 𝑠2.

scheduler updates its own local cache assuming that its task
is appended to the end of𝑤 ’s queue, and temporarily have
different wait times for𝑤 . However, after the two schedulers
exchange UpdateRemCache messages they both are updated
with the true wait time of𝑤 despite conflicting placement.
Note that the arrival order of the two tasks at𝑤 is random.
Message Update Delays. The above example also demon-
strates the lag in schedulers’ cache updates because of inher-
ent delays in network propagation andmessage processing at
sending and receiving schedulers. In such cases, schedulers
may select nodes which might not have the true smallest
estimated wait time. The degree to which the caches are
out-of-sync depends on job inter-arrival time and update
message delays, and we evaluate these effects later (§6.2.3).
Fault Tolerance. In Murmuration, schedulers maintain two
states, namely, schedulers’ queues containing unscheduled
tasks, and resource caches that store expected wait times
at nodes. When schedulers crash or restart they lose both
states. Upon scheduler failures, Murmuration’s underlying
scheduling framework re-creates affected tasks, if required,
and assigns them to active schedulers [75].
A newly (re-)started Murmuration scheduler initializes

its resource cache with an approximate state. For this, it
requests the cache from two randomly chosen schedulers.
When such a request is received, a scheduler only responds if
its resource cache is already initialized. The requesting sched-
uler initializes its cache with the first response it receives
from a scheduler. If no such response is received within a
configured timeout period, it requests two other schedulers
and so on, till it receives a response or exhausts all sched-
ulers in its list. In the latter case, the scheduler proceeds with
an empty cache, similar to the case when the cluster is first
initialized. Our evaluation shows that Murmuration is able
to schedule tasks well using such approximate states (§6.2.4).

Queue Re-ordering Techniques. In Murmuration, sched-
ulers schedule tasks of jobs, and node managers dequeue
tasks for execution, using FCFS to process their queues (§4).
We choose FCFS owing to its simplicity (§5). However, in
strict FCFS, long tasks executing before shorter ones cause
head-of-line (HoL) blocking, leading to increased wait times
for tasks queued behind them [17, 63, 79]. Murmuration’s
performance can be improved using job and task-related
information available to both schedulers and node managers
to make better decisions on processing their queues. We
aim to use queue re-ordering to further improve the average
𝐽𝐶𝑇 by increasing the throughput of completed jobs in the
system (goal G0). Although we do not explicitly evaluate
Murmuration with starvation avoidance techniques, they
can be easily plugged in [63].

To increase the throughput of jobs, we aim to schedule the
"smallest" of jobs at the scheduler first. We use the Shortest
Job First (SJF) policy that selects the job with the smallest
cumulative estimated running time of its tasks. The intuition
is that more number of jobs will finish in a given time, im-
proving the average 𝐽𝐶𝑇 . Note that since jobs get distributed
among multiple schedulers, re-ordering jobs at a scheduler
provides only a partial ordering of jobs in the cluster.
At the node manager, we use the Shortest Task First

(STF) policy that selects the task with the shortest estimated
running time to execute first. This helps avoid the problem
of HoL blocking and leads to faster average task comple-
tion time. We use the notations Murmuration-FCFS to mean
FCFS at the scheduler and FCFS at the node manager, and
Murmuration-SRJF (Murmuration-Shortest Remaining Job
First) to mean SJF at the scheduler and STF at the node man-
ager. We evaluate the performance of Murmuration-FCFS
and Murmuration-SRJF with respect to other well-known
schedulers (§6.2.1).
Data Locality. Data locality is an important consideration
for schedulers [81]. As future work, data locality can be
integrated into Murmuration by incorporating it as a metric
along with estimated wait time (Algorithm 1, line 9) when
scoring nodes for task placement.

5 IMPLEMENTATION
We now describe the implementation of Murmuration on
Kubernetes’ stable release version 1.23. A Kubernetes cluster
consists of one or more machines (nodes) hosting application
containers and control plane services. The control plane
contains a set of core Kubernetes services responsible for
managing the cluster and executing jobs. These services
include etcd, kube-apiserver, kube-controller-manager and
kube-scheduler. The kubelet service runs on each node in
the cluster and acts as a node agent. The smallest deployable
unit is a pod; a logical object representing a collection of one

Scheduling for Reduced Tail Task Latencies in Highly Utilized Datacenters SoCC ’24, November 20–22, 2024, Redmond, WA, USA

or more containers. In our implementation, we have a one-to-
one mapping between a task and a pod, used interchangeably
hereafter.
etcd [26] is the centralized datastore that stores user and

cluster data. kube-controller-manager provides various con-
trollers, like the node-controller and the job-controller, that
monitor and react to changes in the states of objects, like
nodes and jobs, so that active jobs complete. kube-scheduler
schedules all newly created pods (§2.3). Finally, kubelet col-
lects the required data and images and starts containers for
pods assigned to the node.

5.1 Murmuration in Kubernetes
Murmuration is a decentralized scheduler where multiple
scheduler instances schedule pods in parallel. We implement
Murmuration in Kubernetes by using the underlying frame-
work wherever possible. In this section, we focus on the main
modifications in the kube-scheduler and kubelet services.
Kubernetes has a centralized scheduler although it sup-

ports the deployment of multiple instances. Each scheduler
instance has its own unique name. If an incoming pod spec-
ifies a scheduler’s name then it is sent to that scheduler. If
no scheduler is specified in a pod’s specification, then it is
scheduled by the default kube-scheduler. Murmuration’s de-
ployment uses multiple instances of the same kube-scheduler
binary, however, each of these instances is assigned a unique
name. A new job creation request (§2.3.1) specifies a sched-
uler name for its pods. When these pods are created, they
are sent to the specified scheduler.
Scheduling.Wemodify the existing cache of kube-scheduler
to store the estimated wait times of nodes. During a schedul-
ing cycle, the scheduler first finds feasible nodes that have the
required resources (Algorithm 1 line 8), sorts them according
to their estimated wait times, and schedules a pod on the
node with the smallest wait time (lines 9-10). Murmuration
scores all nodes unlike a subset of nodes that Kubernetes
uses. The modified kubelet service manages the multiplexing
of running tasks at nodes.
Resource update messages. kube-scheduler uses the bind
API call to commit the placement of a task on a node in etcd.
Murmuration additionally uses this API for schedulers to
communicate placement information with each other. Ev-
ery pod’s specification contains the estimated job running
time as an environment variable. When a scheduler com-
pletes a placement or receives a bind notification from other
schedulers, it extracts the pod’s estimated running time to
update the node’s wait time in its cache (Algorithm 1, lines
12 - 17). Similarly, schedulers update a node’s wait time in
their caches when they receive pod completion notification
from kubelet (Algorithm 1, lines 18 - 21).

Worker-side queues.We implement worker-side queues
in kubelet for queuing pods assigned to a node. All pods are
queued according to their creation timestamps. kubelet is
notified of available resources when a task finishes execution
and releases its resources. kubelet allocates these resources to
as many queued pods as possible, until the node’s resources
are fully occupied and no further pods can be accommodated.
Our current implementation supports unbounded queues,
although the length of the worker-side queue can be bound
depending on the CPU and memory resources available to
kubelet. All evaluations for Murmuration completed success-
fully without implementing bounds on worker-side queues
(§6.1).

Though we describe only the default implementation of
Murmuration, we made additional changes to support queue
re-ordering and fault tolerance. We implemented SJF re-
ordering in kube-scheduler, and STF in kubelet (§4.2). To
support fault tolerance we made changes to kube-controller-
manager. These changes include implementing a constantly
updated list of active cluster schedulers and nodes, detecting
scheduler failures and assigning other active schedulers to
jobs affected by these failures, and managing a job’s lifecycle
to handle node failures.

6 EVALUATION
Murmuration is designed to schedule jobs comprising many
parallel tasks, as found in modern workloads [69]. We evalu-
ate Murmuration’s performance using industry workloads
(§2.2) both as a prototype evaluation on CloudLab cluster
(§6.1) and as trace-driven simulations (§6.2). In particular,
we evaluate our design goals as follows:
G0: Low Job Completion Times: We run the workloads
for different job arrival rates (§2.2) and evaluate Murmura-
tion’s performance with respect to existing schedulers (§6.1
and §6.2). Our evaluation shows that Murmuration has a 25%
smaller median job completion time 𝐽𝐶𝑇 as compared to the
default Kubernetes’ scheduler for different request arrival
rates. Murmuration-SRJF re-ordering has a 𝐽𝐶𝑇 that is 100𝑋
better than that of Sparrow, Yaq-d and Eagle.
G1: Low Scheduling Times:We evaluate task scheduling
time 𝑇𝑆𝑇 , and compare the average and tail 𝑇𝑆𝑇 in Murmu-
ration against our evaluation of centralized and distributed
schedulers (§2). We show that Murmuration has a small𝑇𝑆𝑇
for all tasks, including tail tasks (§6.1).
G2: Low Total Waiting Times: We evaluate the total task
wait time (𝑇𝑆𝑇 +𝑤2𝑥) for Murmuration, and show that the
variance in this value is small among tasks of the same job as
compared to our evaluation of centralized schedulers (§6.1).
G3: Scalable Scheduling:We show thatMurmuration achieves
high throughput by scheduling millions of pods in minutes.

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Smita Vijayakumar, Anil Madhavapeddy, and Evangelia Kalyvianaki

0 25000 50000
Job Completion Times (seconds)

0.0

0.5

1.0

CD
F

Kubernetes
Kubernetes no retry
Kubernetes 1s retry
Murmuration

(a) G0 - JCT comparison.

0 25000 50000
Duration (seconds)

0.0

0.5

1.0

CD
F Average x

Average TST
Tail TST
Average TCT
Tail TCT

(b) G1 - x, 𝑇𝑆𝑇 and 𝑇𝐶𝑇 .

0 25000 50000
Wait times (seconds)

0.0

0.5

1.0

Kubernetes
Kubernetes no retry
Kubernetes 1s retry
Murmuration

(c) G2 - (TST + w2x) for tail tasks.

Figure 9: Comparison of Murmuration against Kubernetes for Figure 3 for arrival 𝐴.

0 25000 50000
Duration (seconds)

0.0

0.5

1.0

Kubernetes
Murmuration

(a) Steady arrival 𝐵.

0 25000 50000
Duration (seconds)

0.0

0.5

1.0

Kubernetes
Murmuration

(b) Bursty arrival 𝐶.

0 25000 50000
Duration (seconds)

0.0

0.5

1.0

Kubernetes
Murmuration

(c) Bursty arrival 𝐷 .

Figure 10: 𝐽𝐶𝑇 comparison for different arrival rates.

Additionally, we evaluate the effect of a) inaccuracies in
estimating job running times (§6.2.2); and b) delays in pro-
cessing update messages due to network propagation and
asynchronous communication among the schedulers (§6.2.3).

6.1 Prototype Evaluation
We evaluate the performance of Murmuration under vary-
ing input request characteristics of steady-state arrivals 𝐴
and 𝐵, and bursty arrivals 𝐶 and 𝐷 (§2.3). In all prototype
evaluations, Murmuration incorporates baseline error of ±9%
on the median and ±100% on the 99𝑡ℎ percentile in estimated
running times with regard to actual task runtimes. Estimated
job runtime is the average of actual task durations of a job,
as specified in workload traces. Errors are the variance in the
average and actual task durations taken over the entire work-
load.Additional median error of±15% and 99𝑡ℎ percentile error
of ±50% are incorporated in running time estimates [8]. Mur-
muration’s prototype and deployment scripts are available
as open-source repositories [75, 77].

We evaluate our system’s goals (§3) and compare it against
Kubernetes. Figure 9 shows the comparison against three
different versions of kube-scheduler: (i) the default version of
kube-scheduler; (ii) a modified version where pods that fail
scheduling due to unavailable resources wait for a maximum
of 1sec in the retry queue before returning to the ready queue
(Kubernetes 1s retry); and, (iii) a third version where pods
are sent directly to the ready queue if they fail scheduling

due to resources unavailability (Kubernetes no retry) (§2.3.2).
This evaluation is the Murmuration equivalent of Figure 3,
run with steady arrival pattern 𝐴 (Figure 2).
Figure 9a shows how the different 𝐽𝐶𝑇 s compare once

the cluster reaches steady-state. Murmuration (pink line)
reduces the median 𝐽𝐶𝑇 by 20% — 25% as compared to the
different versions of kube-scheduler, and by 13% — 18% for
the 99𝑡ℎ percentile 𝐽𝐶𝑇 . This shows that Murmuration is able
to achieve goal G0 of low 𝐽𝐶𝑇 in highly utilized clusters.
Figure 9b shows the cumulative distribution of x (dotted

blue line), average and tail 𝑇𝑆𝑇 (dashed green lines), and av-
erage and tail𝑇𝐶𝑇 (orange and dashed red lines). We see that
the average and tail 𝑇𝑆𝑇 overlap and show a near-constant
value with a median of 5𝑚𝑠 , unlike Kubernetes where the tail
𝑇𝑆𝑇 is much larger than that of other tasks. This proves that
Murmuration achieves goal G1 of having a small scheduling
time. Note that both the average and tail𝑇𝐶𝑇 curves overlap
suggesting that all tasks belonging to a job, including tail
tasks, complete at nearly the same time.
Figure 9c compares the total wait times for tasks as com-

pared to the three versions of kube-scheduler. The wait times
in Murmuration are 3× smaller than in Kubernetes for both
the median and 99𝑡ℎ percentile, proving it achieves goal G2
of smaller total wait times (𝑇𝑆𝑇 +𝑤2𝑥).
Figure 10 shows the cumulative distribution of 𝐽𝐶𝑇 for

both Murmuration and Kubernetes for steady arrival 𝐵, and

Scheduling for Reduced Tail Task Latencies in Highly Utilized Datacenters SoCC ’24, November 20–22, 2024, Redmond, WA, USA

0 200 400 600 800
Time (seconds)

0

1000

2000

3000

4000
De

cis
io

ns
 /

se
co

nd Throughput

Figure 11: G3: Scheduling throughput in Murmuration.

bursty arrivals 𝐶 and 𝐷 . Murmuration (green line) has a bet-
ter performance as compared to Kubernetes with a 16 — 20%
smaller median 𝐽𝐶𝑇 in all three cases. Note that Murmura-
tion’s tail of 𝐽𝐶𝑇 distribution for 𝐴, 𝐵 and 𝐶 is smaller or
comparable to that of Kubernetes, while for 𝐷 it is longer
by 7%. As stated earlier (§3), Murmuration’s goal G0 is to
reduce the average 𝐽𝐶𝑇 and not the tail of its distribution.
To summarize, we evaluated Murmuration under condi-

tions of normal and high utilization with a median arrival
rate of 8 — 10 tasks per second on our 50 node cluster (§2.3).
We find that in all scenarios, Murmuration reduces the me-
dian 𝐽𝐶𝑇 by 16 — 25% as compared to default Kubernetes
scheduler.

Finally, we present Murmuration’s ability to scale to high
incoming workloads. We use a CloudLab cluster with 100
nodes and 10 schedulers. 500 jobs arrive following pattern
𝐶 sped up by 100𝑋 , for a total of 1.6 million pods. Figure
11 shows that schedulers achieve a peak scheduling of 3900
decisions per second, and are able to place all 1.6 million
pods in around 13 minutes. This shows that Murmuration
is able to handle extremely large and bursty input request
rates, achieving goal G3.

6.2 Evaluation using Simulation
We present the simulation of Murmuration using Eagle’s
simulator [20] which provides an implementation of Eagle
hybrid scheduler, and Sparrow and Yaq-d distributed sched-
ulers. In Yaq-d [63], schedulers build local cluster state using
heartbeat messages sent by nodes periodically. It incorpo-
rates various local queue management and task reordering
techniques at nodes with a goal to reduce fallow resources
when tasks complete.

Eagle [20] is a hybrid scheduler that partitions a cluster
to execute long and short jobs separately to avoid HoL. It
uses various techniques to improve 𝐽𝐶𝑇 such as executing
long jobs in order of their cumulative task executions times,
avoiding placing short tasks on nodes where long ones exe-
cute, executing multiple tasks of a job using a single probe,
and using SRPT for executing tasks at nodes.
We extend the simulator by adding support for Murmu-

ration (§5) in order to have a fair comparison against these

schedulers. We simulate small datacenters with 1, 000 nodes
and large ones up to 15, 000 nodes. We evaluate the systems
using both Yahoo and Cloudera traces (§2.2) with a total of
10, 000 jobs arriving at a rate of 2, 000 tasks per second. We
use a standard deployment of 10 schedulers, unless spec-
ified otherwise. The simulation assumes all machines are
switched on for the entire duration of the experiment. We
report the median 𝐽𝐶𝑇 and utilization for each datacenter
size. Utilization is computed as the ratio of the total time
nodes in the cluster are busy executing tasks to the total node
seconds elapsed in the cluster. The simulator extended with
support for Murmuration is available as open-source [76].
For Yaq-d, nodes periodically advertise their estimated

waiting times to the schedulers using heartbeats. Since we
speed up workload arrival by 1, 000 times, hence we have
used 8 millisecond as the heartbeat interval as compared
to the recommended value of 8 seconds [20], so that Yaq-d
accesses the current state of nodes. We note that this value is
too small for real-world deployments.We use all other recom-
mended parameter values for schedulers [19]. Note that the
original simulator implements 𝑆𝑅𝑃𝑇 for both Eagle and Yaq-
d, and additional job-level re-ordering in Eagle. Hence, we
simulate two version of Murmuration, Murmuration-FCFS
that has no re-ordering of jobs and tasks, and Murmuration-
SRJF that incorporates SJF and STF re-ordering policies (§4.2).

6.2.1 Murmuration’s Performance. Figures 12 and 13
show results using the Yahoo and the Cloudera traces re-
spectively. Labels atop every bar show the multiplier with
respect to Murmuration-SRJF’s 𝐽𝐶𝑇 . Utilization ranges from
near-saturation in clusters comprising 1, 000 nodes to lightly-
loaded in 15, 000 node clusters.
For both Yahoo and Cloudera workloads, Murmuration-

SRJF outperforms other schedulers across all datacenter sizes
with the median 𝐽𝐶𝑇 being two orders of magnitude smaller.
Sparrow performs better than expected in our simulations
since batch schedulingwith late binding samples a large num-
ber of nodes for each of these high fanout jobs. Recall that
Murmuration-FCFS uses no re-orderingwhile all other sched-
ulers use one or both job-level and task-level re-ordering,
leading to better performance. Therefore, we primarily com-
pare their performance with that of Murmuration-SRJF.
Yaq-d has a much larger median 𝐽𝐶𝑇 because its sched-

ulers rely on snapshots of node statuses taken every 8 mil-
liseconds, rather thanmaintaining up-to-date estimates them-
selves. For bursty arrivals, such snapshots quickly turn stale.
Eagle is a hybrid scheduler that partitions a cluster into two
sub-clusters for long and short jobs (§7). These sub-clusters
have periods of under- and over-utilization for heteroge-
neous workloads, leading to increased median 𝐽𝐶𝑇 .
Though Murmuration-SRJF performs the best, we note

that its utilization is low. This is because the last job in

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Smita Vijayakumar, Anil Madhavapeddy, and Evangelia Kalyvianaki

1000 5000 10000 15000
Cluster Size

0

5

10

15

20

25

30

JC
T

(1
0,

00
0

se
co

nd
s)

1 1 1 1

356

247
113 69

360

253
134 76

263

167 77 49
74

10 15 13

Murmuration-SRJF
Murmuration-FCFS
Sparrow

Eagle
Yaq-d

0

25

50

75

100

Ut
iliz

at
io

n
(%

)

Figure 12: 50𝑡ℎ percentile 𝐽𝐶𝑇 comparison for the Yahoo trace. Numbers on bars represent 𝐽𝐶𝑇 relative to Murmu-
ration with SRJF. Dots indicate the cluster’s utilization in the corresponding system.

1000 5000 10000 15000
Cluster Size

0

50

100

150

200

JC
T

(1
0,

00
0

se
co

nd
s)

1 1 1 1

106

97
87 72

113

106
94 87

76

68 58 50

113

71
36 24

Murmuration-SRJF
Murmuration-FCFS
Sparrow

Eagle
Yaq-d

0

25

50

75

100

Ut
iliz

at
io

n
(%

)
Figure 13: 50𝑡ℎ percentile 𝐽𝐶𝑇 comparison for the Cloudera trace. Numbers on bars represent 𝐽𝐶𝑇 relative to
Murmuration-SRJF. Dots indicate the cluster’s utilization in the corresponding system.

Murmuration-SRJF takes longer to finish. Since we consider
all machines to be switched on till the end of the simulation,
some machines are idle towards the end, bringing down the
overall utilization. As noted earlier, the focus ofMurmuration
is to reduce the median and not the tail 𝐽𝐶𝑇 .

6.2.2 Mis-estimations in Running Times. As previously
mentioned, estimated job runtimes are provided as a part of
the workload traces. While both Kubernetes and Sparrow do
not depend on runtime estimations, Murmuration uses them
to calculate nodewait times and tomake placement decisions.
However, these estimates are not always accurate [8, 14, 21],
and analysis shows a median estimation error of 15% and a
99𝑡ℎ percentile error of 50% [8].

To study the effect of such inaccuracies on Murmuration
we artificially introduce mis-estimation in running times pro-
vided in the workload traces.We create twoworkloads where
all jobs are mis-estimated. In the first workload, if 𝑟 denotes
the running time of a job, we consider job running times to
be uniformly mis-estimated in the range [0.85∗r, 1.15 ∗ 𝑟).
In the second workload, all jobs are mis-estimated in the
range [0.5 ∗ 𝑟, 1.5 ∗ 𝑟). We consider these two workloads to
approximate the median and tail of mis-estimations observed
in the real-world.

Figure 14 shows the effect of mis-estimations on quality of
scheduling. For the first workload with jobs mis-estimated
uniformly in [0.85∗r, 1.15 ∗ 𝑟) (orange line), Murmuration
shows a 3% increase in 𝐽𝐶𝑇 over all percentiles. For the

Scheduling for Reduced Tail Task Latencies in Highly Utilized Datacenters SoCC ’24, November 20–22, 2024, Redmond, WA, USA

0 10000 20000 30000 40000 50000
Duration (seconds)

0.0

0.5

1.0

CD
F

No error
15% error
50% error

Figure 14: Impact of running time mis-estimations.

second workload (dashed blue line), the increase in 𝐽𝐶𝑇

is between 15 — 18%; however such large errors in mis-
estimations account for only 1% of mis-estimations observed.
Therefore, Murmuration’s performance does not degrade
too much under observed inaccuracies in job running times.
In Murmuration, the cumulative mis-estimation of job run-
ning times gets spread uniformly across different nodes. This
enables schedulers to select lightly-loaded nodes despite in-
accuracies in the actual node wait times.

6.2.3 Delayed Scheduler Updates. Schedulers experience
delays in processing update messages which are handled
asynchronously in the background. These messages are also
optionally batched and sent out periodically, or configured
to be sent upon a minimum number of updates. We study
the effect of such delays over large scheduler deployments.

In Figure 15, we vary the number of schedulers deployed
from 25% to 100% in a 5, 000 node cluster. We simulate de-
lays of 100 milliseconds to 100 seconds in update message
processing, typical of applications delays in background pro-
cessing [47]. Since the input arrival rate is 2, 000tps, these
delays translate to respectively 200 to 200, 000 messages in
transit per second. The figure shows the median 𝐽𝐶𝑇 relative
to the ideal case of no delay.
We see that the 𝐽𝐶𝑇 increases as the update delays in-

crease due to schedulers working on increasingly stale re-
source caches. For example, at 1 second delay, the 𝐽𝐶𝑇 is 1.08
times that at 100 milliseconds. At 10 second delay, the 𝐽𝐶𝑇
rise to 1.85 times. Further, we observe that 𝐽𝐶𝑇 increases
as the number of schedulers increases; when the number of
schedulers deployed is small, every scheduler handles more
number of jobs, and hence, their resource caches are more
up-to-date. As the number of deployed schedulers increases,
the arrival of jobs at each individual scheduler decreases,
resulting in greater discrepancies among scheduler caches.

6.2.4 Fault Tolerance. We evaluate the effect of restart-
ing a scheduler that is operational and actively processing
jobs. The aim is to assess the quality of resource caches that
new schedulers are initialized with. For this, we modify our

100ms 1s 10s 100s
Update Delays

0

1

2

3

Re
la

tiv
e

JC
T 25% schedulers

50% schedulers
75% schedulers
100% schedulers

Figure 15: Effect of update delays on median 𝐽𝐶𝑇 .

0 2500 5000 7500 10000
Jobs

0

25

50

75

JC
T

(1
,0

00
 se

co
nd

s)

No New Schedulers
1 New Scheduler

Figure 16: Performance on addition of a new scheduler.

simulator to randomly select a scheduler from among 10
schedulers at the start of the evaluation, and delay its start
by 𝑡 = 10s. We chose this value because this is the time taken
by a scheduler to finish initializing in a Kubernetes cluster
running Murmuration’s prototype. Upon start, the scheduler
requests two randomly selected schedulers for their caches
(§4.2) which return a deepcopy of their caches.

All scheduler-to-scheduler communications incur a net-
work delay of 5 milliseconds [19]. Scheduling time is given by
𝑡𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑡 𝑗𝑜𝑏 + 𝑡𝑡𝑎𝑠𝑘 × 𝑡𝑎𝑠𝑘𝑠_𝑝𝑒𝑟_ 𝑗𝑜𝑏, where 𝑡 𝑗𝑜𝑏 = 0.1 sec-
onds and 𝑡𝑡𝑎𝑠𝑘 = 5 milliseconds [64]. To simulate real-world
schedulers that delay background processing, responses sent
by schedulers incur an additional overhead uniformly dis-
tributed in (0, 3) seconds. The newly restarted scheduler
accepts the first cache response, and gets added to the list
of active schedulers and starts scheduling jobs. We simulate
only a single scheduler failure.
Evaluation. We run our simulation multiple times to iden-
tify how jobs fare when placed by a newly added scheduler
versus when handled by existing active schedulers. Figure 16
shows that the performance is very similar and that the
new scheduler shows a slight improvement in the tail of the
𝐽𝐶𝑇 . This is because the queue of the newly added scheduler
has smaller number of jobs waiting, leading to a relatively
smaller𝑤2𝑠 . When scheduled by already active schedulers,
these jobs wait longer behind already queued jobs which re-
flects in larger tail 𝐽𝐶𝑇 . This further proves the effectiveness
of Murmuration in reducing scheduler wait time𝑤2𝑠 .

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Smita Vijayakumar, Anil Madhavapeddy, and Evangelia Kalyvianaki

7 RELATEDWORK
Scheduling Designs. A large body of work exists on sched-
ulers, broadly centralized [29, 38, 41, 42, 68, 72, 74], dis-
tributed [8, 24, 46, 59] and hybrid [20, 22, 27, 44, 79, 83].
We compare Murmuration with Kubernetes, Yaq-d and Spar-
row as representative systems and show its effectiveness in
highly utilized clusters. Though Murmuration relies on job
estimates, it performs well even with inaccurate estimates.
Recently, there has been a surge in using machine learn-
ing techniques for scheduling [54, 58, 82]. Though promis-
ing, these techniques depend on the quality of training data
which need to be representative of the workloads. Murmu-
ration can be extended to include such learning techniques
in a decentralized context, similar to Pronto [31] that uses
an aggregate of local models to build a global view of the
cluster.
Overloaded Clusters. Bronson and Huang et al. [9, 40] refer
to “the state of a permanent overload with an ultra-low good-
put (throughput of useful work)”. They describe different
reasons beyond increased arrival rates that cause permanent
overloads, analyzing several cases from Google, AWS, Azure
and others. In our paper, we show that certain scheduling
designs also cause increased completion times. Murmuration
addresses this performance degradation, and could be used
in conjunction with other load limiting policies.
Estimated Job Runtime. Some schedulers use runtime es-
timates to perform scheduling decisions [8, 33, 60, 63, 71]
while others [21, 39] argue against using them. Yaq [63] and
Apollo [8] are closely related with Murmuration and also use
runtime estimates for scheduling. Yaq [63] implements both
a centralized (Yaq-c) and a distributed (Yaq-d) scheduler with
worker-side queues. It explores placement quality using var-
ious local and global queue management and job reordering
techniques, which is complementary to Murmuration.

Apollo [8] is a loosely coordinated framework with multi-
ple schedulers and a central resource monitor to aggregate
load information. It uses a wait-time matrix to schedule tasks
on nodes that have sizable task inputs, are located in the same
rack, or are lightly loaded. Apollo adopts a token-based exe-
cution of jobs that subjects it to long tail 𝑇𝐶𝑇 . In contrast,
Murmuration is decentralized and every scheduler instance
maintains its own resource view based on job estimates. It
focuses on improving the average tail 𝑇𝐶𝑇 in busy clusters.
Prior work propose backfill and its variants [34, 57, 70]

for batch workloads. These allow short jobs to utilize idle
resources out-of-turn by selecting appropriate batches of jobs
to occupy nodes. In Murmuration’s online scheduling, jobs
arrive at different times. Worker-side queues help prevent
idle resources by queuing tasks ready for execution as they
arrive. Queue re-ordering (§4.2) can be applied to achieve
better utilization, as in backfill scheduling.

Tail Latencies. Reducing tail latency has been studied exten-
sively. Plenz et al. [61] show queuing is one of the primary
reasons for increased tail latencies. Li et al. [51] show that
non-FIFO scheduling and multi-core operations with multi-
ple queues increase application tail latencies. They propose
multiple processors process a single common queue to help
reduce tail latency, as designed in Murmuration. Kernel and
cache level optimizations are further suggested for improv-
ing tail latencies [23, 45]. Others [35, 43] target small tail
latency for short interactive services and microsecond scale
applications. Reducing latency using straggler replication is
also well-studied [2, 4, 36, 78]. These approaches replicate
straggler tasks on machines for reducing the execution times
of tasks, and are orthogonal to our work.
Kubernetes. Senjab et al. [65] identify the need to evalu-
ate Kubernetes on large clusters and on dynamic workloads
across heterogeneous environments to identify scalability
bottlenecks. Further, Larsson et al. [50] find Kubernetes to
be unsuitable for edge computing scenarios, attributing its
single-point failure and lack of scale to its centralized sched-
uling. In this work, we show that the performance of Ku-
bernetes degrades under heavily-loaded conditions and that
Murmuration’s scheduling approach is better designed to
handle such challenging conditions. Senjab et al. also pro-
pose that scheduling should take into account application
characteristics, as is done in Murmuration.

8 CONCLUSION
Murmuration is a decentralized scheduler which is effective
in handling scheduling under conditions of both normal and
bursty arrivals in datacenters. Murmuration reduces the total
wait time tasks face when waiting to be scheduled in sched-
uler queues and in lengthy worker-side queues. It achieves
this by having scheduler instances communicate their place-
ment decisions to build their own nearly-updated view of
cluster resources. Our evaluations show that Murmuration
reduces the tail task completion times as well as the average
job completion times by 25%. Murmuration, its simulator
and deployment scripts are open-source [75–77].

9 ACKNOWLEDGMENTS
We would like to thank Richard Mortier, Jon Crowcroft, Ke-
shav and the rest of the Cambridge Systems Research Group
for their valuable feedback on this work. We would also like
to thank our shepherd, Matthias Boehm, and SoCC 2024 re-
viewers for their comments which helped improve this paper.
Finally, we are grateful to Huawei Technologies for funding
this work as a PhD studentship.

Scheduling for Reduced Tail Task Latencies in Highly Utilized Datacenters SoCC ’24, November 20–22, 2024, Redmond, WA, USA

REFERENCES
[1] Faraz Ahmad, Srimat T. Chakradhar, Anand Raghunathan, and T. N.

Vijaykumar. 2012. Tarazu: Optimizing MapReduce on Heterogeneous
Clusters. In Proceedings of the Seventeenth International Conference
on Architectural Support for Programming Languages and Operating
Systems (London, England, UK) (ASPLOS XVII). Association for Com-
puting Machinery, New York, NY, USA, 61–74. https://doi.org/10.
1145/2150976.2150984

[2] Mehmet Fatih Aktas, Pei Peng, and Emina Soljanin. 2018. Straggler Mit-
igation by Delayed Relaunch of Tasks. SIGMETRICS Perform. Eval. Rev.
45, 3 (Mar 2018), 224–231. https://doi.org/10.1145/3199524.3199564

[3] George Amvrosiadis, Jun Woo Park, Gregory R. Ganger, Garth A.
Gibson, Elisabeth Baseman, and Nathan DeBardeleben. 2018. On the
Diversity of Cluster Workloads and Its Impact on Research Results. In
Proceedings of the 2018 USENIX Conference on Usenix Annual Technical
Conference (Boston, MA, USA) (USENIX ATC ’18). USENIX Association,
USA, 533–546.

[4] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica.
2013. Effective Straggler Mitigation: Attack of the Clones. In Proceed-
ings of the 10th USENIX Conference on Networked Systems Design and
Implementation (Lombard, IL) (NSDI’13). USENIX Association, USA,
185–198.

[5] Hitesh Ballani, Paolo Costa, Raphael Behrendt, Daniel Cletheroe, Istvan
Haller, Krzysztof Jozwik, Fotini Karinou, Sophie Lange, Kai Shi, Benn
Thomsen, and HughWilliams. 2020. Sirius: A Flat Datacenter Network
with Nanosecond Optical Switching. In Proceedings of the Annual
Conference of the ACM Special Interest Group on Data Communication on
the Applications, Technologies, Architectures, and Protocols for Computer
Communication (Virtual Event, USA) (SIGCOMM ’20). Association for
Computing Machinery, New York, NY, USA, 782–797. https://doi.org/
10.1145/3387514.3406221

[6] Noman Bashir, Nan Deng, Krzysztof Rzadca, David Irwin, Sree Kodak,
and Rohit Jnagal. 2021. Take it to the limit: peak prediction-driven
resource overcommitment in datacenters. In Proceedings of the Six-
teenth European Conference on Computer Systems (Online Event, United
Kingdom) (EuroSys ’21). Association for Computing Machinery, New
York, NY, USA, 556–573. https://doi.org/10.1145/3447786.3456259

[7] Angel M. Beltre, Pankaj Saha, Madhusudhan Govindaraju, Andrew
Younge, and Ryan E. Grant. 2019. Enabling HPC Workloads on Cloud
Infrastructure Using Kubernetes Container Orchestration Mechanisms.
In 2019 IEEE/ACM International Workshop on Containers and New Or-
chestration Paradigms for Isolated Environments in HPC (CANOPIE-
HPC). 11–20. https://doi.org/10.1109/CANOPIE-HPC49598.2019.00007

[8] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zheng-
ping Qian, Ming Wu, and Lidong Zhou. 2014. Apollo: Scalable and
Coordinated Scheduling for Cloud-Scale Computing. In Proceedings
of the 11th USENIX Conference on Operating Systems Design and Im-
plementation (Broomfield, CO) (OSDI’14). USENIX Association, USA,
285–300.

[9] Nathan Bronson, Abutalib Aghayev, Aleksey Charapko, and Timothy
Zhu. 2021. Metastable failures in distributed systems. In Proceedings of
theWorkshop on Hot Topics in Operating Systems (Ann Arbor, Michigan)
(HotOS ’21). Association for Computing Machinery, New York, NY,
USA, 221–227. https://doi.org/10.1145/3458336.3465286

[10] Jeferson R. Brunetta and Edson Borin. 2019. Selecting Efficient Cloud
Resources for HPC Workloads. In Proceedings of the 12th IEEE/ACM
International Conference on Utility and Cloud Computing (Auckland,
New Zealand) (UCC’19). Association for Computing Machinery, New
York, NY, USA, 155–164. https://doi.org/10.1145/3344341.3368798

[11] Marcus Carvalho, Walfredo Cirne, Francisco Brasileiro, and John
Wilkes. 2014. Long-term SLOs for reclaimed cloud computing re-
sources. In Proceedings of the ACM Symposium on Cloud Computing
(Seattle, WA, USA) (SOCC ’14). Association for Computing Machinery,
New York, NY, USA, 1–13. https://doi.org/10.1145/2670979.2670999

[12] Yanpei Chen, Sara Alspaugh, and Randy Katz. 2012. Interactive An-
alytical Processing in Big Data Systems: A Cross-Industry Study of
MapReduceWorkloads. Proc. VLDB Endow. 5, 12 (Aug 2012), 1802–1813.
https://doi.org/10.14778/2367502.2367519

[13] Yanpei Chen, Archana Ganapathi, Rean Griffith, and Randy Katz. 2011.
The Case for Evaluating MapReduce Performance Using Workload
Suites. In Proceedings of the 2011 IEEE 19th Annual International Sympo-
sium on Modelling, Analysis, and Simulation of Computer and Telecom-
munication Systems (MASCOTS ’11). IEEE Computer Society, USA,
390–399. https://doi.org/10.1109/MASCOTS.2011.12

[14] Emilio Coppa and Irene Finocchi. 2015. On Data Skewness, Stragglers,
and MapReduce Progress Indicators. In Proceedings of the Sixth ACM
Symposium on Cloud Computing (Kohala Coast, Hawaii) (SoCC ’15).
Association for Computing Machinery, New York, NY, USA, 139–152.
https://doi.org/10.1145/2806777.2806843

[15] M.E. Crovella and A. Bestavros. 1997. Self-similarity in World Wide
Web traffic: evidence and possible causes. IEEE/ACM Transactions on
Networking 5, 6 (1997), 835–846. https://doi.org/10.1109/90.650143

[16] Carlo Curino, Subru Krishnan, Konstantinos Karanasos, Sriram Rao,
Giovanni M. Fumarola, Botong Huang, Kishore Chaliparambil, Arun
Suresh, Young Chen, Solom Heddaya, and et al. 2019. Hydra: A Feder-
ated Resource Manager for Data-Center Scale Analytics. In Proceedings
of the 16th USENIX Conference on Networked Systems Design and Im-
plementation (Boston, MA, USA) (NSDI’19). USENIX Association, USA,
177–191.

[17] Jeffrey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun.
ACM 56, 2 (Feb 2013), 74–80. https://doi.org/10.1145/2408776.2408794

[18] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified
Data Processing on Large Clusters. Commun. ACM 51, 1 (Jan 2008),
107–113. https://doi.org/10.1145/1327452.1327492

[19] Pamela Delgado. 2015. Eagle Simulator. https://github.com/epfl-
labos/eagle

[20] Pamela Delgado, Diego Didona, Florin Dinu, and Willy Zwaenepoel.
2016. Job-Aware Scheduling in Eagle: Divide and Stick to Your Probes.
In Proceedings of the Seventh ACM Symposium on Cloud Computing
(Santa Clara, CA, USA) (SoCC ’16). Association for Computing Machin-
ery, New York, NY, USA, 497–509. https://doi.org/10.1145/2987550.
2987563

[21] Pamela Delgado, Diego Didona, Florin Dinu, and Willy Zwaenepoel.
2018. Kairos: Preemptive Data Center Scheduling Without Runtime
Estimates. In Proceedings of the ACM Symposium on Cloud Computing
(Carlsbad, CA, USA) (SoCC ’18). Association for Computing Machinery,
New York, NY, USA, 135–148. https://doi.org/10.1145/3267809.3267838

[22] Pamela Delgado, Florin Dinu, Anne-Marie Kermarrec, and Willy
Zwaenepoel. 2015. Hawk: Hybrid Datacenter Scheduling. In 2015
USENIX Annual Technical Conference (USENIX ATC 15). USENIX Associ-
ation, Santa Clara, CA, 499–510. https://www.usenix.org/conference/
atc15/technical-session/presentation/delgado

[23] Henri Maxime Demoulin, Joshua Fried, Isaac Pedisich, Marios Kogias,
Boon Thau Loo, Linh Thi Xuan Phan, and Irene Zhang. 2021. When
Idling is Ideal: Optimizing Tail-Latency for Heavy-Tailed Datacenter
Workloads with PerséPhone. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles (Virtual Event, Germany)
(SOSP ’21). Association for Computing Machinery, New York, NY, USA,
621–637. https://doi.org/10.1145/3477132.3483571

[24] Fahad R. Dogar, Thomas Karagiannis, Hitesh Ballani, and Antony
Rowstron. 2014. Decentralized Task-Aware Scheduling for Data Center

https://doi.org/10.1145/2150976.2150984
https://doi.org/10.1145/2150976.2150984
https://doi.org/10.1145/3199524.3199564
https://doi.org/10.1145/3387514.3406221
https://doi.org/10.1145/3387514.3406221
https://doi.org/10.1145/3447786.3456259
https://doi.org/10.1109/CANOPIE-HPC49598.2019.00007
https://doi.org/10.1145/3458336.3465286
https://doi.org/10.1145/3344341.3368798
https://doi.org/10.1145/2670979.2670999
https://doi.org/10.14778/2367502.2367519
https://doi.org/10.1109/MASCOTS.2011.12
https://doi.org/10.1145/2806777.2806843
https://doi.org/10.1109/90.650143
https://doi.org/10.1145/2408776.2408794
https://doi.org/10.1145/1327452.1327492
https://github.com/epfl-labos/eagle
https://github.com/epfl-labos/eagle
https://doi.org/10.1145/2987550.2987563
https://doi.org/10.1145/2987550.2987563
https://doi.org/10.1145/3267809.3267838
https://www.usenix.org/conference/atc15/technical-session/presentation/delgado
https://www.usenix.org/conference/atc15/technical-session/presentation/delgado
https://doi.org/10.1145/3477132.3483571

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Smita Vijayakumar, Anil Madhavapeddy, and Evangelia Kalyvianaki

Networks. In Proceedings of the 2014 ACM Conference on SIGCOMM
(Chicago, Illinois, USA) (SIGCOMM ’14). Association for Computing
Machinery, New York, NY, USA, 431–442. https://doi.org/10.1145/
2619239.2626322

[25] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,
Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson,
Kirk Webb, et al. 2019. The design and operation of {CloudLab}. In
2019 USENIX annual technical conference (USENIX ATC 19). 1–14.

[26] etcd. 2024. A distributed, reliable key-value store for the most critical
data of a distributed system. https://etcd.io

[27] Panagiotis Garefalakis, Konstantinos Karanasos, Peter Pietzuch, Arun
Suresh, and Sriram Rao. 2018. Medea: Scheduling of Long Running
Applications in Shared Production Clusters. In Proceedings of the Thir-
teenth EuroSys Conference (Porto, Portugal) (EuroSys ’18). Association
for Computing Machinery, New York, NY, USA, Article 4, 13 pages.
https://doi.org/10.1145/3190508.3190549

[28] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott
Shenker, and Ion Stoica. 2011. Dominant Resource Fairness: Fair
Allocation ofMultiple Resource Types. In Proceedings of the 8th USENIX
Conference on Networked Systems Design and Implementation (Boston,
MA) (NSDI’11). USENIX Association, USA, 323–336.

[29] Ionel Gog,Malte Schwarzkopf, AdamGleave, Robert N.M.Watson, and
Steven Hand. 2016. Firmament: Fast, Centralized Cluster Scheduling
at Scale. In Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation (Savannah, GA, USA) (OSDI’16).
USENIX Association, USA, 99–115.

[30] Google. 2017. Addressing Cascading Failures, Site Reliability Engineer-
ing. https://sre.google/sre-book/addressing-cascading-failures/

[31] Andreas Grammenos, Evangelia Kalyvianaki, and Peter Pietzuch. 2021.
Pronto: Federated Task Scheduling. arXiv:2104.13429 [cs.DC]

[32] Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sri-
ram Rao, and Aditya Akella. 2014. Multi-Resource Packing for Clus-
ter Schedulers. SIGCOMM Comput. Commun. Rev. 44, 4 (Aug. 2014),
455–466. https://doi.org/10.1145/2740070.2626334

[33] Robert Grandl, Mosharaf Chowdhury, Aditya Akella, and Ganesh
Ananthanarayanan. 2016. Altruistic Scheduling in Multi-Resource
Clusters. In Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation (Savannah, GA, USA) (OSDI’16).
USENIX Association, USA, 65–80.

[34] Isaac Grosof, Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf.
2022. Optimal Scheduling in the Multiserver-Job Model under Heavy
Traffic. Proc. ACM Meas. Anal. Comput. Syst. 6, 3, Article 51 (dec 2022),
32 pages. https://doi.org/10.1145/3570612

[35] Md E. Haque, Yong hun Eom, Yuxiong He, Sameh Elnikety, Ricardo
Bianchini, and Kathryn S. McKinley. 2015. Few-to-Many: Incremen-
tal Parallelism for Reducing Tail Latency in Interactive Services. In
Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems (Istanbul,
Turkey) (ASPLOS ’15). Association for Computing Machinery, New
York, NY, USA, 161–175. https://doi.org/10.1145/2694344.2694384

[36] Md E. Haque, Yong hun Eom, Yuxiong He, Sameh Elnikety, Ricardo
Bianchini, and Kathryn S. McKinley. 2015. Few-to-Many: Incremen-
tal Parallelism for Reducing Tail Latency in Interactive Services. In
Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems (Istanbul,
Turkey) (ASPLOS ’15). Association for Computing Machinery, New
York, NY, USA, 161–175. https://doi.org/10.1145/2694344.2694384

[37] Mor Harchol-Balter. 2013. Performance Modeling and Design of Com-
puter Systems: Queueing Theory in Action (1st ed.). Cambridge Univer-
sity Press, USA.

[38] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, An-
thony D. Joseph, Randy Katz, Scott Shenker, and Ion Stoica. 2011.

Mesos: A Platform for Fine-Grained Resource Sharing in the Data
Center. In Proceedings of the 8th USENIX Conference on Networked
Systems Design and Implementation (Boston, MA) (NSDI’11). USENIX
Association, USA, 295–308.

[39] Zhiming Hu, Baochun Li, Zheng Qin, and Rick Siow Mong Goh. 2017.
Job Scheduling without Prior Information in Big Data Processing Sys-
tems. In 2017 IEEE 37th International Conference on Distributed Comput-
ing Systems (ICDCS). 572–582. https://doi.org/10.1109/ICDCS.2017.105

[40] Lexiang Huang, Matthew Magnusson, Abishek Bangalore Muralikr-
ishna, Salman Estyak, Rebecca Isaacs, Abutalib Aghayev, Timothy
Zhu, and Aleksey Charapko. 2022. Metastable Failures in the Wild. In
16th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 22). USENIX Association, Carlsbad, CA, 73–90. https:
//www.usenix.org/conference/osdi22/presentation/huang-lexiang

[41] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal
Talwar, and Andrew Goldberg. 2009. Quincy: Fair Scheduling for
Distributed Computing Clusters. In Proceedings of the ACM SIGOPS
22nd Symposium on Operating Systems Principles (Big Sky, Montana,
USA) (SOSP ’09). Association for Computing Machinery, New York,
NY, USA, 261–276. https://doi.org/10.1145/1629575.1629601

[42] Morris A. Jette and Tim Wickberg. 2023. Architecture of the Slurm
Workload Manager. In Job Scheduling Strategies for Parallel Process-
ing, Dalibor Klusáček, Julita Corbalán, and Gonzalo P. Rodrigo (Eds.).
Springer Nature Switzerland, Cham, 3–23.

[43] Kaffes, Kostis and Chong, Timothy and Humphries, Jack Tigar and Be-
lay, Adam andMazières, David and Kozyrakis, Christos. 2019. Shinjuku:
Preemptive Scheduling for Msecond-Scale Tail Latency. In Proceedings
of the 16th USENIX Conference on Networked Systems Design and Im-
plementation (Boston, MA, USA) (NSDI’19). USENIX Association, USA,
345–359.

[44] Konstantinos Karanasos, Sriram Rao, Carlo Curino, Chris Douglas,
Kishore Chaliparambil, Giovanni Matteo Fumarola, Solom Heddaya,
Raghu Ramakrishnan, and Sarvesh Sakalanaga. 2015. Mercury: Hybrid
Centralized and Distributed Scheduling in Large Shared Clusters. In
Proceedings of the 2015 USENIX Conference on Usenix Annual Technical
Conference (Santa Clara, CA) (USENIX ATC ’15). USENIX Association,
USA, 485–497.

[45] Harshad Kasture and Daniel Sanchez. 2014. Ubik: Efficient Cache
Sharing with Strict Qos for Latency-Critical Workloads. In Proceed-
ings of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems (Salt Lake City, Utah,
USA) (ASPLOS ’14). Association for Computing Machinery, New York,
NY, USA, 729–742. https://doi.org/10.1145/2541940.2541944

[46] Mansour Khelghatdoust and Vincent Gramoli. 2018. Peacock: Probe-
Based Scheduling of Jobs by Rotating Between Elastic Queues. In
Euro-Par 2018: Parallel Processing - 24th International Conference on
Parallel and Distributed Computing, Turin, Italy, August 27-31, 2018,
Proceedings (Lecture Notes in Computer Science, Vol. 11014), Marco
Aldinucci, Luca Padovani, and Massimo Torquati (Eds.). Springer, 178–
191. https://doi.org/10.1007/978-3-319-96983-1_13

[47] Kubernetes. 2021. https://github.com/kubernetes/community/
blob/master/contributors/devel/sig-scheduling/scheduling_code_
hierarchy_overview.md.

[48] Kubernetes. 2023. Why the number of pods per node should not exceed
110? https://github.com/kubernetes/kubernetes/issues/119391

[49] Kubernetes. 2024. An open-source system for automating deployment,
scaling, and management of containerized applications. https://
kubernetes.io/docs/home

[50] Lars Larsson, Harald Gustafsson, Cristian Klein, and Erik Elmroth. 2020.
Decentralized Kubernetes Federation Control Plane. In 2020 IEEE/ACM
13th International Conference on Utility and Cloud Computing (UCC).
354–359. https://doi.org/10.1109/UCC48980.2020.00056

https://doi.org/10.1145/2619239.2626322
https://doi.org/10.1145/2619239.2626322
https://etcd.io
https://doi.org/10.1145/3190508.3190549
https://sre.google/sre-book/addressing-cascading-failures/
https://arxiv.org/abs/2104.13429
https://doi.org/10.1145/2740070.2626334
https://doi.org/10.1145/3570612
https://doi.org/10.1145/2694344.2694384
https://doi.org/10.1145/2694344.2694384
https://doi.org/10.1109/ICDCS.2017.105
https://www.usenix.org/conference/osdi22/presentation/huang-lexiang
https://www.usenix.org/conference/osdi22/presentation/huang-lexiang
https://doi.org/10.1145/1629575.1629601
https://doi.org/10.1145/2541940.2541944
https://doi.org/10.1007/978-3-319-96983-1_13
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-scheduling/scheduling_code_hierarchy_overview.md
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-scheduling/scheduling_code_hierarchy_overview.md
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-scheduling/scheduling_code_hierarchy_overview.md
https://github.com/kubernetes/kubernetes/issues/119391
https://kubernetes.io/docs/home
https://kubernetes.io/docs/home
https://doi.org/10.1109/UCC48980.2020.00056

Scheduling for Reduced Tail Task Latencies in Highly Utilized Datacenters SoCC ’24, November 20–22, 2024, Redmond, WA, USA

[51] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D. Gribble.
2014. Tales of the Tail: Hardware, OS, and Application-Level Sources of
Tail Latency. In Proceedings of the ACM Symposium on Cloud Computing
(Seattle, WA, USA) (SOCC ’14). Association for Computing Machinery,
New York, NY, USA, 1–14. https://doi.org/10.1145/2670979.2670988

[52] The Amazon Builders’ Library. 2024. Using load shedding to avoid over-
load. https://aws.amazon.com/builders-library/using-load-shedding-
to-avoid-overload/.

[53] L. Mai, E. Kalyvianaki, and P. Costa. 2013. Exploiting Time-Malleability
in Cloud-based Batch Processing Systems. (2013). https://openaccess.
city.ac.uk/id/eprint/8179/ Unpublished.

[54] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan,
Zili Meng, and Mohammad Alizadeh. 2019. Learning Scheduling Algo-
rithms for Data Processing Clusters. In Proceedings of the ACM Special
Interest Group on Data Communication (Beijing, China) (SIGCOMM ’19).
Association for Computing Machinery, New York, NY, USA, 270–288.
https://doi.org/10.1145/3341302.3342080

[55] Justin Meza, Tianyin Xu, Kaushik Veeraraghavan, and Onur Mutlu.
2018. A Large Scale Study of Data Center Network Reliability. In
Proceedings of the Internet Measurement Conference 2018 (Boston, MA,
USA) (IMC ’18). Association for Computing Machinery, New York, NY,
USA, 393–407. https://doi.org/10.1145/3278532.3278566

[56] Justin J. Meza, Thote Gowda, Ahmed Eid, Tomiwa Ijaware, Dmitry
Chernyshev, Yi Yu, Md Nazim Uddin, Rohan Das, Chad Nachiappan,
Sari Tran, Shuyang Shi, Tina Luo, David Ke Hong, Sankaralingam Pan-
neerselvam, Hans Ragas, Svetlin Manavski, Weidong Wang, and Fran-
cois Richard. 2023. Defcon: Preventing Overload with Graceful Feature
Degradation. In 17th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 23). USENIX Association, Boston, MA, 607–
622. https://www.usenix.org/conference/osdi23/presentation/meza

[57] A.W. Mu’alem and D.G. Feitelson. 2001. Utilization, predictability,
workloads, and user runtime estimates in scheduling the IBM SP2 with
backfilling. IEEE Transactions on Parallel and Distributed Systems 12, 6
(2001), 529–543. https://doi.org/10.1109/71.932708

[58] Deepak Narayanan, Keshav Santhanam, Fiodar Kazhamiaka, Amar
Phanishayee, and Matei Zaharia. 2020. Heterogeneity-aware cluster
scheduling policies for deep learning workloads. In Proceedings of the
14th USENIX Conference on Operating Systems Design and Implementa-
tion. 481–498.

[59] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. 2013.
Sparrow: Distributed, Low Latency Scheduling. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles
(Farminton, Pennsylvania) (SOSP ’13). Association for Computing Ma-
chinery, New York, NY, USA, 69–84. https://doi.org/10.1145/2517349.
2522716

[60] Jun Woo Park, Alexey Tumanov, Angela Jiang, Michael A. Kozuch,
and Gregory R. Ganger. 2018. 3Sigma: Distribution-Based Cluster
Scheduling for Runtime Uncertainty. In Proceedings of the Thirteenth
EuroSys Conference (Porto, Portugal) (EuroSys ’18). Association for
Computing Machinery, New York, NY, USA, Article 2, 17 pages. https:
//doi.org/10.1145/3190508.3190515

[61] Julius Plenz. 2019. How to Trade off Server Utilization and Tail Latency.
USENIX Association, Singapore.

[62] Leon Poutievski, Omid Mashayekhi, Joon Ong, Arjun Singh, Mukar-
ram Tariq, Rui Wang, Jianan Zhang, Virginia Beauregard, Patrick Con-
ner, Steve Gribble, Rishi Kapoor, Stephen Kratzer, Nanfang Li, Hong
Liu, Karthik Nagaraj, Jason Ornstein, Samir Sawhney, Ryohei Urata,
Lorenzo Vicisano, Kevin Yasumura, Shidong Zhang, Junlan Zhou, and
Amin Vahdat. 2022. Jupiter Evolving: Transforming Google’s Data-
center Network via Optical Circuit Switches and Software-Defined
Networking. In Proceedings of the ACM SIGCOMM 2022 Conference

(Amsterdam, Netherlands) (SIGCOMM ’22). Association for Comput-
ing Machinery, New York, NY, USA, 66–85. https://doi.org/10.1145/
3544216.3544265

[63] Jeff Rasley, Konstantinos Karanasos, Srikanth Kandula, Rodrigo Fon-
seca, Milan Vojnovic, and Sriram Rao. 2016. Efficient Queue Manage-
ment for Cluster Scheduling. In Proceedings of the Eleventh European
Conference on Computer Systems (London, United Kingdom) (EuroSys
’16). Association for Computing Machinery, New York, NY, USA, Arti-
cle 36, 15 pages. https://doi.org/10.1145/2901318.2901354

[64] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and
John Wilkes. 2013. Omega: Flexible, Scalable Schedulers for Large
Compute Clusters. In Proceedings of the 8th ACM European Confer-
ence on Computer Systems (Prague, Czech Republic) (EuroSys ’13). As-
sociation for Computing Machinery, New York, NY, USA, 351–364.
https://doi.org/10.1145/2465351.2465386

[65] Khaldoun Senjab, Sohail Abbas, Naveed Ahmed, and Atta ur Rehman
Khan. 2023. A survey of Kubernetes scheduling algorithms. Journal
of Cloud Computing 12 (06 2023). https://doi.org/10.1186/s13677-023-
00471-1

[66] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armis-
tead, Roy Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie
Germano, Anand Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda,
Jim Wanderer, Urs Hölzle, Stephen Stuart, and Amin Vahdat. 2015.
Jupiter Rising: A Decade of Clos Topologies and Centralized Control
in Google’s Datacenter Network. SIGCOMM Comput. Commun. Rev.
45, 4 (Aug. 2015), 183–197. https://doi.org/10.1145/2829988.2787508

[67] Apache Spark. 2024. A unified engine for large-scale data analytics.
https://spark.apache.org/docs/latest/job-scheduling.html

[68] The Apache Software Foundation. 2022. The Hadoop Fair Sched-
uler. https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-
yarn-site/FairScheduler.html

[69] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E. Haque, Zhi-
jing Gene Qin, Steven Hand, Mor Harchol-Balter, and John Wilkes.
2020. Borg: The next Generation. In Proceedings of the Fifteenth Euro-
pean Conference on Computer Systems (Heraklion, Greece) (EuroSys ’20).
Association for Computing Machinery, New York, NY, USA, Article
30, 14 pages. https://doi.org/10.1145/3342195.3387517

[70] Dan Tsafrir, Yoav Etsion, and Dror G. Feitelson. 2007. Backfilling Using
System-Generated Predictions Rather than User Runtime Estimates.
IEEE Transactions on Parallel and Distributed Systems 18, 6 (2007), 789–
803. https://doi.org/10.1109/TPDS.2007.70606

[71] Alexey Tumanov, Timothy Zhu, Jun Woo Park, Michael A. Kozuch,
Mor Harchol-Balter, and Gregory R. Ganger. 2016. TetriSched: Global
Rescheduling with Adaptive Plan-Ahead in Dynamic Heterogeneous
Clusters. In Proceedings of the Eleventh European Conference on Com-
puter Systems (London, United Kingdom) (EuroSys ’16). Association
for Computing Machinery, New York, NY, USA, Article 35, 16 pages.
https://doi.org/10.1145/2901318.2901355

[72] Oana-Mihaela Ungureanu, Cundefinedlin Vlundefineddeanu, and
Robert Kooij. 2019. Kubernetes Cluster Optimization Using Hybrid
Shared-State Scheduling Framework. In Proceedings of the 3rd Interna-
tional Conference on Future Networks and Distributed Systems (Paris,
France) (ICFNDS ’19). Association for ComputingMachinery, NewYork,
NY, USA, Article 2, 12 pages. https://doi.org/10.1145/3341325.3341992

[73] Abhishek Verma, Madhukar Korupolu, and JohnWilkes. 2014. Evaluat-
ing job packing in warehouse-scale computing. 2014 IEEE International
Conference on Cluster Computing, CLUSTER 2014 (11 2014), 48–56.
https://doi.org/10.1109/CLUSTER.2014.6968735

[74] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppen-
heimer, Eric Tune, and John Wilkes. 2015. Large-Scale Cluster Man-
agement at Google with Borg. In Proceedings of the Tenth European

https://doi.org/10.1145/2670979.2670988
https://aws.amazon.com/builders-library/using-load-shedding-to-avoid-overload/
https://aws.amazon.com/builders-library/using-load-shedding-to-avoid-overload/
https://openaccess.city.ac.uk/id/eprint/8179/
https://openaccess.city.ac.uk/id/eprint/8179/
https://doi.org/10.1145/3341302.3342080
https://doi.org/10.1145/3278532.3278566
https://www.usenix.org/conference/osdi23/presentation/meza
https://doi.org/10.1109/71.932708
https://doi.org/10.1145/2517349.2522716
https://doi.org/10.1145/2517349.2522716
https://doi.org/10.1145/3190508.3190515
https://doi.org/10.1145/3190508.3190515
https://doi.org/10.1145/3544216.3544265
https://doi.org/10.1145/3544216.3544265
https://doi.org/10.1145/2901318.2901354
https://doi.org/10.1145/2465351.2465386
https://doi.org/10.1186/s13677-023-00471-1
https://doi.org/10.1186/s13677-023-00471-1
https://doi.org/10.1145/2829988.2787508
https://spark.apache.org/docs/latest/job-scheduling.html
https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
https://doi.org/10.1145/3342195.3387517
https://doi.org/10.1109/TPDS.2007.70606
https://doi.org/10.1145/2901318.2901355
https://doi.org/10.1145/3341325.3341992
https://doi.org/10.1109/CLUSTER.2014.6968735

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Smita Vijayakumar, Anil Madhavapeddy, and Evangelia Kalyvianaki

Conference on Computer Systems (Bordeaux, France) (EuroSys ’15). As-
sociation for Computing Machinery, New York, NY, USA, Article 18,
17 pages. https://doi.org/10.1145/2741948.2741964

[75] Smita Vijayakumar. 2023. Mumuration’s Prototype. https://github.
com/csesmita/murmuration_prototype.

[76] Smita Vijayakumar. 2023. Mumuration’s Simulator. https://github.
com/csesmita/murmuration_simulator.

[77] Smita Vijayakumar. 2024. Mumuration’s Helper Scripts. https://github.
com/csesmita/kubernetes-helper.

[78] Da Wang, Gauri Joshi, and Gregory Wornell. 2015. Using Straggler
Replication to Reduce Latency in Large-Scale Parallel Computing.
SIGMETRICS Perform. Eval. Rev. 43, 3 (nov 2015), 7–11. https://doi.
org/10.1145/2847220.2847223

[79] ZhijunWang, Huiyang Li, Zhongwei Li, Xiaocui Sun, Jia Rao, Hao Che,
and Hong Jiang. 2019. Pigeon: an Effective Distributed, Hierarchical
Datacenter Job Scheduler. In Proceedings of the ACM Symposium on
Cloud Computing, SoCC 2019, Santa Cruz, CA, USA, November 20-23,
2019. ACM, 246–258. https://doi.org/10.1145/3357223.3362728

[80] Dan Williams, Hani Jamjoom, Yew-Huey Liu, and Hakim Weath-
erspoon. 2011. Overdriver: handling memory overload in an over-
subscribed cloud. SIGPLAN Not. 46, 7 (Mar 2011), 205–216. https:

//doi.org/10.1145/2007477.1952709
[81] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmele-

egy, Scott Shenker, and Ion Stoica. 2010. Delay Scheduling: A Simple
Technique for Achieving Locality and Fairness in Cluster Scheduling.
In Proceedings of the 5th European Conference on Computer Systems
(Paris, France) (EuroSys ’10). Association for Computing Machinery,
New York, NY, USA, 265–278. https://doi.org/10.1145/1755913.1755940

[82] Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan,
and Chi Xu. 2020. Learning to Dispatch for Job Shop Scheduling via
Deep Reinforcement Learning. In Proceedings of the 34th International
Conference on Neural Information Processing Systems (Vancouver, BC,
Canada) (NIPS’20). Curran Associates Inc., Red Hook, NY, USA, Article
137, 12 pages.

[83] Wei Zhou, K. Preston White, and Hongfeng Yu. 2019. Improving
Short Job Latency Performance in Hybrid Job Schedulers with Dice. In
Proceedings of the 48th International Conference on Parallel Processing
(Kyoto, Japan) (ICPP 2019). Association for Computing Machinery, New
York, NY, USA, Article 56, 10 pages. https://doi.org/10.1145/3337821.
3337851

https://doi.org/10.1145/2741948.2741964
https://github.com/csesmita/murmuration_prototype
https://github.com/csesmita/murmuration_prototype
https://github.com/csesmita/murmuration_simulator
https://github.com/csesmita/murmuration_simulator
https://github.com/csesmita/kubernetes-helper
https://github.com/csesmita/kubernetes-helper
https://doi.org/10.1145/2847220.2847223
https://doi.org/10.1145/2847220.2847223
https://doi.org/10.1145/3357223.3362728
https://doi.org/10.1145/2007477.1952709
https://doi.org/10.1145/2007477.1952709
https://doi.org/10.1145/1755913.1755940
https://doi.org/10.1145/3337821.3337851
https://doi.org/10.1145/3337821.3337851

	Abstract
	1 Introduction
	2 Motivation
	2.1 End-to-End Task Timeline
	2.2 Workload Description
	2.3 Centralized Scheduling
	2.4 Distributed Scheduling

	3 Design Goals
	4 Murmuration
	4.1 Design Overview
	4.2 Discussion

	5 Implementation
	5.1 Murmuration in Kubernetes

	6 Evaluation
	6.1 Prototype Evaluation
	6.2 Evaluation using Simulation

	7 Related Work
	8 Conclusion
	9 Acknowledgments
	References

