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ABSTRACT

Destruction of natural habitats and anthropogenic climate change are threatening
biodiversity globally. Addressing this loss necessitates enhanced monitoring tech-
niques to assess the impact of environmental shifts and to guide policy-making
efforts. Species distribution models are crucial tools that predict species locations
by interpolating observed field data with environmental information. We develop
an improved, scalable method for species distribution modelling by proposing a
dataset pipeline that incorporates global remote sensing imagery, land use classifi-
cation data, environmental variables, and observation data, and utilising this with
convolutional neural network (CNN) models to predict species presence at higher
spatial and temporal resolutions than well-established species distribution mod-
elling methods. We apply our approach to modelling Protea species distributions
in the Cape Floristic Region of South Africa, demonstrating its performance in a
region of high biodiversity. We train two CNN models and compare their perfor-
mance to Maxent, a popular conventional species distribution modelling method.
We find that the CNN models trained with remote sensing data outperform Max-
ent, underscoring the potential of our method as an effective and scalable solution
for modelling species distribution.

1 INTRODUCTION

Species distribution models (SDMs) are an essential tool for biodiversity conservation due to their
linkage of science to decision-making (McShea, 2014), with two prevalent approaches to construct-
ing them. The first uses expert knowledge of a species’ range and its habitat preferences within that
range (Luedtke et al., 2023). The second fits SDMs using machine learning approaches that model
field observations of species occurrences as non-linear functions of bioclimatic and environmental
spatial layers. Maxent (Phillips et al., 2006) is the most widely adopted approach (Elith et al., 2011);
a recent dataset on the global distribution of utilised plants fitted Maxent models to predict distribu-
tions of 28,235 plant species (Pironon et al., 2024). SDMs have traditionally used spatial layers with
course-grained spatiotemporal resolution, making it hard to produce local fine-grained predictions
for species occurrence. Furthermore, SDMs generally only use the data at a single observation point
and do not leverage information about the surrounding area, which can provide valuable insights
into a species’ habitat such as proximity to water and neighbouring vegetation type.

We aim to provide a globally applicable method for creating SDMs, with the broader goal of pro-
viding an accurate view of where wild plant and animal species live across the planet for decision-
makers to balance biodiversity preservation with human needs. Mapping at high resolution is be-
coming increasingly important for policymaking as climate and anthropogenic changes have local
effects that are not captured by coarse environmental variables. Our approach combines convo-
lutional neural network (CNN) models (LeCun et al., 2015) that exploit spatial information with
high-resolution satellite data to produce accurate SDMs that also track local habitat changes. Using
remote sensing data as predictive features for SDMs also makes the models more applicable to re-
gions where ground-based features are unavailable due to funding constraints, political instability or
lack of capacity (Cavender-Bares et al., 2022).

Previous work has created datasets to train SDMs (Joly et al., 2014; Gillespie et al., 2021) along
with approaches (Botella et al., 2018; Deneu et al., 2019; 2021), but they focus on data-rich areas
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Figure 1: Sample S2-Cloudless and LULC classifications data (left) and the data pipeline (right)

such as Europe and the USA. We extend these processes to globally available data and investigate
how they perform in regions of high biodiversity, specifically via a case study of modelling species
under the Protea genus in the Cape Floristic Region in South Africa, one of the global biodiversity
hotspots (Myers et al., 2000). We present a dataset pipeline that combines remote sensing imagery
data, land use land classification data and environmental variables with species observations to a
create species distribution modelling dataset, which we then use to train two different versions of a
CNN architecture to perform species distribution modelling. We compare the performance of these
approaches to Maxent, which we train using only environmental variables.

2 DATASET, MODEL AND METHODS

2.1 DATA SOURCES

A key aspect of species distribution modelling is the collection of ground truth observation data
which provides information on species’ locations. Most models are created using historical datasets
from herbariums or smaller-scale, local datasets collected by ecologists. Historical datasets are
difficult to utilise with more temporally high-resolution remote sensing data. Given the rapid rate
of climate change and anthropogenic habitat changes over recent years, there is no guarantee that
natural habitats are still found at the site of these observations (Bracken et al., 2022). We use iNat-
uralist (Van Horn et al., 2018) as a crowd-sourced reference dataset for our pipeline, as it provides
both recent and global species presence observation data.

We use Sentinel 2 (S2) cloudless satellite basemaps (EOX) in the RGB 10m resolution bands
along with land-use land classification (LULC) data (see Figure 1), combined with traditional low-
resolution 1km bioclimatic environmental variables from WorldClim V2 based on temperature and
precipitation. The S2 data provides a visual representation of the environment from which key habi-
tat features can be extracted. Recent work by Dı́az et al. (2019) highlighted that anthropogenic
land use changes, such as land clearing for agriculture or settlement expansion, have been the pri-
mary drivers of biodiversity loss over the last 50 years, making it an important variable to include in
SDMs. We use “Dynamic World”, a near real-time map (Brown et al., 2022) to leverage fine-grained
10m resolution LULC classifications for SDMs.

2.2 DATASET PIPELINE

The dataset creation pipeline in Figure 1 (right) extends that proposed by Gillespie et al. (2021),
incorporating additional filtering, data sources and methods for creating dataset splits. The following
sections briefly detail the key elements of filtering observations and creating the training splits.

2.2.1 FILTER REFERENCE DATA

We use the Global Biodiversity Information Facility, an online network that combines biodiversity
data from a variety of sources, to download and preliminarily filter the iNaturalist observation data
based on parameters such as location, recording date, and location uncertainty distance. Once these
observations are downloaded we then further filter them via a shapefile for the region of interest – in
our case, the Cape Floristic Region (Hoffman et al., 2016). To address the uncertainty in the location
of the data points, as well as address any potential changes that may have occurred to vegetation
coverage over time, we extract the Dynamic World land classification for each observation location
and remove observations classified as “water” or “built”.
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Table 1: (left) Example clusters for creating training splits
and (below) statistics for test, train, and validation sets.

Test Set Train Set Valid Set

Observations 7582 153703 5297
Species 2108 4019 1848
Protea Observations 192 5620 299
Protea Occurrences 1741 93576 1323

The co-occurrence of species has an important impact on the existence of many species (Wisz et al.,
2013). We leverage species co-occurrence information by training a model to simultaneously predict
the occurrence of all species at a given location, not just the species of interest. Furthermore, includ-
ing other species should have a regularising effect on the model and stop it from overfitting when
training, as well as providing “pseudo-absences” (Barbet-Massin et al., 2012) that allow the model
to learn where the species do not occur. Thus although we aim to only perform species distribution
modelling for Proteas, we include all species in the Tracheophyta phylum in our dataset. To include
co-species information in our data points, we use a per-observation method (Gillespie et al., 2021).
This method creates patches centered on an observation that represents a single iNaturalist entry.
Each patch is a geographic area and is labelled with all species in observations intersecting with it.
This means a single observation may occur in multiple neighbouring patches.

2.2.2 CREATE TRAINING SPLITS

When performing data analysis with geospatial data, a commonly encountered phenomenon is spa-
tial autocorrelation (Getis, 2008). Spatial autocorrelation between the training and evaluation sets
can cause an overly optimistic view of model performance (Karasiak et al., 2022; Ploton et al., 2020;
Kattenborn et al., 2022). Including points in the test set that are spatially close to points in the train
set could mean these points share very similar features. One solution to this is to split out data into
test and train sets using some form of spatial clustering, to ensure spatial separation between training
and evaluation splits.

To create a test set free from spatial autocorrelation, we use the method by Gillespie et al. (2021)
with a different method for creating the validation set that is more representative of the statistics of
the test set. We focus our evaluation on the six Protea species (Table 2) which had more than 100 test
occurrences, more than 10 test observations and more training occurrences than test occurrences.

To create the validation set, we first spatially cluster the data using K-means clustering (Arthur &
Vassilvitskii, 2007) to ensure that the validation set provides good spatial coverage across the whole
region of interest. We use 10 clusters in this work. For each cluster, we order the observations by the
number of overlapping points and use the lowest 8% of each species of interest for the validation set.
This reduces the number of observations that need to be removed from the training set due to their
overlap with validation samples. To increase the number of occurrences for the species we then also
include all neighbouring observations in the validation set. To account for spatial autocorrelation,
we remove all the observations that overlap with any observations in the validation set from the train
set.

However, constructing the split in this manner means that all samples in the validation set contained
at least one Protea. This is not representative of the test set, where only about a quarter of the
samples contain Protea species. Thus, we use the same method previously described to add samples
that do not overlap with any Protea species to replicate the Protea presence/absence ratio. We sample
x × 3 × num protea examples observations from each cluster, where x is determined by the
proportion of the total number of samples that do not contain Proteas in that cluster. General statistics
about the data split can be found in Table 1 and species splits can be found in Table 2.
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Table 2: Number of observations and occurrences for the six Protea species of interest across the
test, train, and validation sets.

Observations per Set Occurrences per Set

Test Train Validation Test Train Validation

Protea repens (PR) 28 662 64 416 35917 599
Protea laurifolia (PLA) 20 400 34 346 13356 228
Protea nitida (PNI) 18 500 49 479 25301 369
Protea cynaroides (PC) 13 634 59 131 34137 451
Protea neriifolia (PNE) 13 354 30 200 19998 285
Protea lorifolia (PLO) 11 108 11 170 3530 29

2.3 MODELS AND EXPERIMENTATION

2.3.1 MAXENT

We use the Google Earth Engine (Crego et al., 2022) implementation of Maxent (Phillips et al.) with
default settings to mirror the lack of fine-tuning in the deep learning model using only the bioclim
variables. To create Maxent models for our species of interest, we use the same observations from
the dataset described in the previous section. While some presence points in this dataset have been
removed through the pipeline filtering, these points were spatially close enough that they would
have had very similar if not duplicate environmental variable values, given the resolution of the
WorldClim V2 rasters. Thus it should not affect predictive performance.

2.3.2 DEEP LEARNING MODEL

We use the Deepbiosphere model (Gillespie et al., 2021) to perform our experimentation with our re-
mote sensing dataset. Given an input data sample, including image data and environmental variable
values, the model can be configured to predict either the families, genera, and species that occur or
just the species that occur. We choose the former option, as this gives us the ability to predict where
the Protea genus occurs, as well as each of our species of interest. Gillespie also presents a novel
loss function, frequency-scaled binary cross-entropy loss, which proportionally weights absence and
presence predictions equally. Since samples mostly consist of absence predictions, this prevents the
model from learning to always predict species as absent.

For data preprocessing, we follow the TResNet (Ridnik et al., 2021) image preprocessing procedure.
We do not use any augmentation strategies while training. We train two models, one using satellite
images and environmental variables, which we shall refer to as DeepbiosphereImage, and the other
using satellite images, Dynamic World LULC images and environmental variables, which we shall
refer to as DeepbiosphereImage+DW . For the latter approach, we stack the satellite images and
Dynamic World LULC images and pass the six-channel input to the CNN. To train the models
we use the Adam optimizer with a learning rate of 1e−4, and a batch size of 165 and train for
100 epochs. Using our validation metrics, we choose the best-performing model checkpoint, and
evaluate these models on the test set.

3 RESULTS

Comparative Efficacy. Area Under the Curve Receiver Operating Characteristics (AUCROC) is
one of the most common metrics used to measure species distribution model performance. We
report this metric to compare our models across the selected Protea species (see Table 3). Both
DeepbiosphereImage and DeepbiosphereImage+DW on average outperform Maxent with respect
to AUCROC by 2.99 and 2.72 percent respectively. The results also suggest that this method for
species distribution modelling performs well in areas of high biodiversity, which is crucial to scaling
SDMs globally to include the tropical belt where an estimated two-thirds of the world’s terrestrial
biodiversity lives. Despite our dataset containing about double the number of total species as the
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Table 3: AUCROC results for the Maxent model, DeepbiosphereImage model, and
DeepbiosphereImage+DW model for the Protea repens (PR), Protea laurifolia (PLA), Protea ni-
tida (PNI), Protea cynaroides (PC), Protea neriifolia (PNE), and Protea lorifolia (PLO) species.

PR PLA PNI PC PNE PLO

Maxent 0.7524 0.9282 0.8165 0.9166 0.8453 0.8709
DeepbiosphereImage 0.8159 0.9392 0.8280 0.9143 0.9040 0.9082
DeepbiosphereImage+DW 0.8292 0.9192 0.8036 0.9324 0.9031 0.9059

dataset created by Gillespie et al. (2021), we achieve similar performance albeit on different remote
sensing data.

Presence vs Absence. The crowd-sourced dataset (iNaturalist) used for our observations does not
contain true absence points which makes it difficult to compare and interpret the negative predictions
of the models (Lobo et al., 2010). Thus to fully evaluate the models, a dataset comprised of true
absence and presence data collected in a structured field campaign is required. Such a dataset would
also allow for analysis of biases in the citizen science dataset and understanding how these affect
model performance.

Land Use Datasets. While there is a difference in performance between the Deepbiosphere mod-
els and Maxent, there is no substantial difference between the performance of the two Deepbiosphere
models. The DeepbiosphereImage model mostly outperforms the DeepbiosphereImage+DW model
in the per-species metrics. Our hypothesis here is that the land use land cover classification (LULC)
classes are too course-grained in Dynamic World and, being derived from the same Sentinel-2
imagery used as input to our model, the network may be extracting relevant information directly
from the images during training. The decrease in performance of the DeepbiosphereImage+DW
model versus Maxent for the Protea Nitida reveals the brittleness caused by this duplication, as the
DeepbiosphereImage model remains an improvement over Maxent.

4 CONCLUSIONS AND FUTURE WORK

In this work, we investigated the use of remote sensing data and CNN models to provide an improved
method for performing scalable species distribution modelling. We found that using a deep learning
approach has provided us with an exciting alternative that is at least as accurate as the prevalent
Maxent method, and also one that naturally scales up with more data availability. While we used a
case study of Protea species in the Cape Floristic Region in South Africa to illustrate the technique,
our ambition is to extend this analysis to the full spectrum of plant and animal species worldwide
to facilitate more accurate policymaking for environmental preservation. However, a major barrier
is the sparseness of occurrence datasets for many species; incredibly, 30% of utilised plant species
have fewer than 10 records in digital databases, which is too few to fit simple SDMs. Thus there
are huge discrepancies in the amount of data available across geographies, with the tropics most
poorly represented (Chapman et al., 2024). While the collection and digitalisation of large field
datasets is the long-term solution, the approach presented here of combining LULC and habitat
classification with sparse observation data could also work for data-deficient species if we combine
expert ecological knowledge (Merow et al., 2022) in the training process.

Another advantage of Maxent which needs to be incorporated into deep learning SDMs is that ap-
proaches for addressing sample biases and other problems are well developed (Elith et al., 2010),
although there is evidence that non-parametric models (especially ensembles thereof) can outper-
form this approach (Valavi et al., 2021). Future work should properly investigate the effect of and
methods for addressing sample bias in deep learning SDMs.
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