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ABSTRACT 
Nature-based climate solutions supply carbon credits generated from net carbon drawdown in 
exchange for project funding, but their credibility is challenged by the inherent variability and 
impermanence of drawdown. By evaluating drawdown benefits from a social cost of carbon 
perspective, project developers can enhance credibility and estimate impermanence by 
conservatively anticipating drawdowns to be eventually released following a release schedule, 
issuing additional credits when actual release is less severe than anticipated. We demonstrate 
how we can use ex post observations of drawdowns to construct optimal release schedules 
that limit the risk of credit reversals (when net drawdown is negative). We simulate both theor
etical and real-life projects to examine how this approach balances the trade-off between gen
erating credits evaluated as more permanent and limiting reversal risk. We discuss how this 
approach incentivizes project performance and provides a pragmatic solution to challenges 
facing larger-scale implementation of nature-based climate solutions.
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Introduction

The international community has pledged to halt 
deforestation as a part of a package of measures 
designed to achieve net zero emissions by 2050 
[1–5]. In particular, REDDþprojects for tropical for
est conservation aim to reduce carbon emissions 
and concurrently provide biodiversity and social 
co-benefits [6]: it has been estimated that these 
nature-based solutions (NBS) could potentially 
deliver around a third of greenhouse gas emissions 
reduction needed to meet the 2 �C target set by 
the Paris Agreement [7]. NBS project developers 
secure funding by issuing carbon credits, which 
can be sold on international carbon markets to 
entities seeking to offset unavoidable emissions 
from their activities. However, the scale of the vol
untary carbon market has thus far lagged behind 
expectations and current investment in NBS proj
ects is woefully insufficient to contribute meaning
fully towards net zero targets [8–10].

Multiple factors limit investment in NBS carbon 
credits [11], including the uncertainties around the 

real benefits of NBS projects and reputational risks 
associated with project failure [9,12]. It is challeng
ing to quantify the net carbon drawdown of a pro
ject, also known as additionality, relative to a 
counterfactual scenario representing what would 
have happened without the project interventions. 
Developing quasi-experimental approaches to 
establish reliable counterfactual scenarios and 
measure drawdown more accurately remains an 
open area of active research [13–16].

Similarly, concerns over the permanence of car
bon storage in NBS calls into question their value for 
climate change mitigation [17,18]. Forest carbon 
storage is lost when forest is degraded due to dis
turbance [19,20] or is converted to non-forest uses 
[21]. Higher carbon loss in a project relative to its 
counterfactual scenario causes release of net carbon 
drawdown (additionality) back into the atmosphere, 
during or especially after the end of the project: this 
means that NBS projects may only provide tempor
ary carbon storage [12,22]. It is currently common to 
account for this carbon release by setting aside a 
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proportion of the credits generated into a buffer 
pool to compensate for later release events, but this 
approach neither adequately addresses releases 
occurring after the end of the project nor robustly 
couples the risk of carbon loss to the buffer pool 
size. As a result, the amount of buffer needed can 
be severely underestimated [23].

In contrast to debates about whether imperman
ent carbon storage contributes meaningfully to 
reduction in atmospheric carbon dioxide concentra
tion and warming, we adopt a welfare-centered 
approach and focus on its social benefits in the con
text of the Cambridge Permanent Additional Carbon 
Tonne (PACT) framework. The PACT framework 
assesses additional carbon drawdown using a pixel- 
matching counterfactual analysis [24,25] and 
addresses impermanence by conservatively viewing 
all carbon drawdown in NBS projects as imperman
ent: the drawdown is projected to be released back 
into the atmosphere over time, either during or after 
the end of the project, following a release sched
ule. Both the economic benefit of drawdowns and 
damage of releases are calculated based on the 
Social Cost of Carbon (SCC) [26,27], and future dam
ages are discounted into present-day terms [28]. 
The benefit of drawdowns and damage of releases 
are used to quantify the Equivalent Permanence 
(EP), a value ranging between 0 and 1: EP ¼ 0 and 
1 indicate a drawdown that is immediately released 
(generating no benefit) and permanent drawdown, 
respectively (see Appendix A.1 for details). The net 
amount of carbon credits issued is the amount of 
drawdown multiplied by its EP. The calculation of EP 
enables comparison of diverse types of carbon cred
its on a common scale, notably between NBS and 
geological storage.

In the PACT framework, credits issued for a 
given crediting interval are the sum of the actual 
carbon drawdown computed ex post (at the end of 
the crediting interval) and the amount of release 
that was predicted to occur in that interval. This 
adjustment is necessary because when a project 
developer reduces the EP of credits issued in previ
ous periods to account for impermanence, they 
anticipate the quantity of releases in each future 
period. If the actual release in a period is smaller 
than predicted, the amount of unrealized pre
dicted release is accounted for in the form of 
bonus credits. This means that it is possible to 
issue credits even in a crediting interval where the 
project has a negative drawdown.

In an NBS project, where carbon drawdown can 
vary through time and is potentially reversible, the 

project developer needs to balance two competing 
interests: generating credits that are evaluated as 
being as permanent as possible (i.e. higher EP), and 
ensuring that there are as few years as possible 
where no credits can be generated due to release 
events. This is the crux of the problem that we 
address with the new work presented in this study.

Since the amount of credits issued is the 
adjusted drawdown multiplied by its equivalent 
permanence, the project developer can increase 
the credits issued by estimating a higher equiva
lent permanence for the drawdown, deferring 
anticipated releases farther into the future. 
However, by doing so, they anticipate fewer 
releases in the immediate future, so there is a 
higher chance that observed releases will exceed 
total predicted releases in those future periods, 
resulting in a negative adjusted drawdown (i.e. 
reversal of additionality): we refer to this as rever
sal events. It is not realistic to expect NBS projects 
to be free from the risk of reversal in every time 
period. Nevertheless, projects where reversal fre
quently occurs are likely to be viewed as risky 
investments with low credibility by credit buyers, 
threatening the viability of the project. We posit 
that project developer’s optimal behavior is to 
limit probability of reversal to a project-specific tol
erable level, say 5%.

It is evident that both equivalent permanence 
and probability of reversal are influenced by the 
release schedule: a front-loaded release schedule, 
where a developer anticipates more releases to 
occur in the near future, will lower equivalent per
manence, but also reduce reversal risk by increas
ing the amount of total predicted releases that can 
compensate for actual releases (see Appendix A.2
for a more formal statement of this dilemma). In 
this study, we resolve this trade-off between 
increasing permanence and reducing reversal risk 
by finding an optimal release schedule that con
structs the release schedules of carbon drawdown 
in each year in a risk-averse strategy, so as to pre
vent the probability of reversal from exceeding a 
chosen level. We demonstrate with a simulation 
model how this approach is achieved, and how it 
ensures balance between credit issuance and 
reduced reversal risk. Specifically, we ask the fol
lowing questions:

1. Can the optimal release schedule approach 
balance project performance, credit perman
ence and reversal risk, either in a theoretical 
or a real-life setting?
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2. What are the effects of parameter assump
tions on model output?

3. Does aggregating multiple projects to be 
managed as a single “portfolio” improve per
manence and reduce reversal risk?

Materials and methods

Construction of the optimal release schedule

We model the actual carbon drawdown in year t 
(Figure 1, black solid curve), computed at the end of 
year t, as a random variable, which may be positive 
in some years and negative in others, and has a dis
tribution that reflects the uncertainty in project 
effectiveness. Carbon drawdown in year t is expected 
to be released in future years tþ j according to a 
release schedule, which can be conceptualized as 
deposits of drawdowns into future yearly “caches”: 
the drawdown in year t that is anticipated to be 
released in a future year tþ j is viewed as credits 
taken from year t, and deposited into the cache of 
year tþ j. The total adjusted drawdown available for 
credit issuance (Figure 1, red dotted curve) in each 
year t is calculated as the sum of the year’s actual 
drawdown and the total amount of previously pre
dicted releases in the credit cache (i.e. the sum of 
deposits taken from drawdown in all past years t − i).

A reversal event occurs when the adjusted draw
down in a given year is negative: the probability of 
reversal is therefore the area under the probability 

density function of the drawdown to the left of 
zero. We use the left-tail percentile of the curve, 
representing the “worst-performing” years, to track 
this probability. Suppose we aim to limit probability 
of reversal to 5%, we can find the 5th-percentile of 
the actual drawdown curve (ax, Figure 1, vertical 
black dashed line), such that the area under the 
curve to its left is equal to 0.05: this means that the 
5% “worst-performing” years will have an actual 
drawdown lower than the 5th-percentile value. 
When this 5th-percentile value is negative, the 
probability of reversal will be larger than 5% unless 
it is adjusted by prior anticipated releases. By 
“depositing” anticipating releases, we shift the prob
ability density function of the adjusted drawdown 
to the right compared to actual drawdown, reduc
ing the probability of reversal. When we shift the 
curve by the difference between the 5th-percentile 
and zero, the area under the adjusted drawdown 
curve to the left of zero (Figure 1, red shaded area) 
will become 0.05, and the probability of reversal 
will be successfully limited to 5%. In other words, 
the absolute value of the 5th-percentile value (jaxj, 
henceforth called the credit cache volume) is the 
amount of total anticipated releases that should be 
deposited each year to bound the reversal risk to 
5%. This can be achieved by depositing issued cred
its of each year as anticipated releases to fill up the 
credit cache volumes of subsequent years 
successively.

Figure 1. At any year t of a project, the probability density function of the actual drawdowns (black solid curve) is derived 
from empirical data obtained since the start of the project to the year t. The probability density function of the adjusted 
drawdowns (red dotted curve) is derived by adjusting the actual drawdown values with the total amount of anticipated 
releases. If the total amount of anticipated releases equals the absolute value of the x-percentile of actual drawdowns 
(jaxj, referred to as the credit cache volume), the probability of reversal (red shaded area) will be limited to x (assuming 
ax < 0). Panel (a) represents a more risk-averse strategy, where a developer anticipates a greater chance of future 
releases, resulting in a larger credit cache volume, lower permanence, and smaller probability of reversal (x); panel (b) 
represents a riskier strategy, where a developer anticipates lower releases, resulting in a smaller credit cache volume, 
higher permanence, and higher probability of reversal.
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In Figure 2 below, we present a step-by-step 
illustration of how to evaluate yearly carbon draw
down and available credits and constructing opti
mal release schedules in order to satisfy the 
condition that the probability of reversal should 
not exceed x, assuming that the carbon draw
down distribution, and consequently the credit 
cache volume value, is constant over time.

Year 1: We measure the actual drawdown (a1, 
dark blue solid bar). Since there are no previously 
anticipated releases in year 1, the number of cred
its available to be issued is c1 ¼ a1 (blue bracket). 
We anticipate the releases of this amount of cred
its by allocating it successively to each future year 
(light blue solid bars), for each year allocating 
enough credits to meet the credit cache volume or 
until all available credits have been accounted for. 
We see that the anticipated release in year 2 (̂r2

1) 
has reached the credit cache volume ax, while the 

anticipated release in year 3 (̂r3
1) is less than this 

value, and that c1 ¼ r̂2
1 þ r̂3

1: The equivalent per
manence of c1 can be calculated based on this 
release schedule, and the amount of PACT of c1 �

EP1 can be issued.
Year 2: Since there are previously anticipated 

releases for this year (̂r2
1), the credits available to 

be issued is the sum of the actual drawdown (a2, 
dark red striped bar) and the previously antici
pated releases: c2 ¼ a2 þ

P
îr

2
i ¼ a2 þ r̂2

1 (red 
bracket). Once again, we anticipate the release of 
this amount of credits (light red striped bars) by 
successively allocating it in future years. We see 
that in years 3 and 4, the total anticipated releases 
now amount to ax, while there is still a gap 
between the total anticipated releases in year 5 
(̂r5

2) and ax.
Year 3: The actual drawdown is negative (a3 < 0, 

carbon loss in the project area exceeds that of the 

Figure 2. Step-by-step illustration of the construction of the release schedule. In each year t (represented by a different 
color), the actual drawdown (at, dark-colored bar) is measured, and the credits available to be issued (ct, brackets) is 
calculated as the sum of the at and total previously anticipated releases (Riri

t, light-colored bars). The credits are then 
deposited in the credit caches of future years successively, such that the total anticipated releases in each year amounts 
to the credit cache volume (ax ¼ 400, thin horizontal line), and that each year’s credit is fully released over time (for 
each color, the height of the bracket is equal to the sum of those of the light-colored bars).
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counterfactual pixels, resulting in a release event) 
(dark purple dotted bar). However, because we had 
already anticipated releases to happen (Rir̂i

3), the 
anticipated releases can be used to compensate for 
actual releases, and the credits available to be issued 
are the adjusted drawdown is a3 þ

P
i r̂

3
i ¼

a3 þ r̂3
1 þ r̂3

2 > 0 (purple bracket). We anticipate the 
release of this amount of credits in the same way as 
in previous years (light purple dotted bar). Note that 
because the total anticipated releases in year 4 
already amounts to ax, the anticipated release of c3 

is allocated to year 5 (̂r5
3).

Figure 3 provides a ledger-like summary of the 
actual and adjusted drawdown, issued credits and 
credit permanence of each year in the example 
above. In short, we construct optimal release 
schedules by allocating the issued credits in each 
year (ct) successively to future years, in each year 
allocating the amount necessary for the total 
anticipated releases in that year to amount to ax. 
To calculate equivalent permanence for the credits 
issued every year, even near the end of the pro
ject, we anticipate releases to continue to occur 
past the end of the project: this also provides the 
possibility to issue credits even after the project 
ends, as long as carbon release occurs at a slower 
rate than previously anticipated.

If the project developer is willing to tolerate a 
higher percentage x of reversal risk, the x-per
centile value will be less negative, and the credit 
cache volume will be smaller (Figure 1b). This rep
resents a more risky strategy where credits are 
deposited in the credit caches of each year in a 
more gradual manner, which results in higher 
equivalent permanence overall but also a higher 

reversal risk (see Appendix A.2 for mathematical 
formulation and formal proof).

This approach requires the probability density 
function of annual net carbon drawdown (Figure 
1, black solid curve) to be known, which relies on 
a reasonably accurate estimation of carbon fluxes 
in a project, for example through remote sensing 
technologies. In the simplest cases, parametric 
distributions can be used to provide an analytical 
approximation for the value of the credit cache 
volume. In more complex cases, random sampling 
can be used to calculate the credit cache volume 
more accurately as the left-tail x-percentile of the 
sampled drawdown distribution. This provides us 
with an easy-to-implement approach to construct 
optimal release schedules that limit reversal risk 
to a percentage of x from empirical observations.

As new measurements and estimations of carbon 
drawdown or release are obtained every year, they 
can be included in the re-calculation of the carbon 
drawdown distribution and the credit cache volume. 
This approach thus allows for positive changes in 
project performance to be rewarded, creating incen
tives for project improvement: if positive carbon 
drawdown is observed over successive years, the 
drawdown distribution will shift to become more 
positive, meaning that the credit cache volume will 
become smaller with the same tolerance threshold 
of reversal risk. This means that less anticipated 
release will be deposited in each future year, leading 
to an increase in equivalent permanence.

Model simulation

For all simulations in this study, we assumed 
annual crediting intervals for simplicity. Although 

Figure 3. A Tabulated summary of the yearly actual drawdown, issued credits and credit permanence of the example 
given in Figure 2, including the period after the project ends, where the drawdown was assumed to be released at a rate 
equal to annual drawdown rate during the project, until all drawdowns have been released. Total anticipated releases 
per year is equal to the credit cache volume (ax ¼ 400), except for the last year where all the remaining drawdowns are 
released.
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this differs from current common practice (e.g. 
five-year verification periods in the Verra method
ology), our analysis can be trivially extended to 
permit longer crediting intervals. A similar assump
tion has also been used in other modeling studies 
[29,30]. We have released a detailed methodology 
for every step of the computation as well as a full 
implementation of our approach as open-source 
code [25,31,32]. The simulation code used in this 
study was written and performed in R 4.3.2, and 
the dplyr, magrittr, and ggplot2 packages were 
used for data processing and visualization [33–35].

Simulation of theoretical projects
To illustrate how the optimal release schedule 
approach balances project performance, credit per
manence and reversal risk, we performed Monte 
Carlo simulations of theoretical projects with differ
ent carbon drawdown rates. In each project, car
bon loss is modeled with exponential distributions, 
whose parameter is denoted k. Specifically, the 
project carbon loss distribution is parameterized 
with 1/kp ¼ 1, and the counterfactual carbon loss 
distribution is parameterized with 1/kc > 1. As 1/k 

is the mean of the exponential distribution, a 
higher 1/kc value indicates higher average annual 
carbon loss in the counterfactual scenario com
pared to the annual carbon loss in the project 
area, which leads to an overall higher net carbon 
drawdown rate (1/kc − 1/kp ¼ 1/kc − 1).

At each year t in the simulation, we randomly 
drew values of carbon loss in the project (lp) and 
counterfactual (lc) from the respective exponential 
distributions. We calculated the drawdown as the 
difference between the two sampled values (at ¼

lc − lp). We calculated the credit cache volume ana
lytically, assuming it to be constant over the dur
ation of the simulation (see Appendix B.1.1).

To approximate real-life projects where 
observed data on carbon losses are limited in the 
initial years, we defined the first five years of the 
simulation as the warm-up period, where 
observed drawdown and release values are used 
to inform the estimation of carbon loss distribu
tions in later years. During the warm-up period, 
releases were ignored, and drawdowns were not 
issued as credits but stored in a project-level pool 
as an additional safeguard. In each year t after the 
warm-up period (t> 5), whenever there was a gap 
between the credit cache volume and total antici
pated releases allocated to that year, the draw
down stored in this pool was allocated to fill in the 

gap as additional anticipated releases, until the 
pool was depleted.

We calculated total credits (ct) as the sum of the 
drawdown (at) and total anticipated releases (rt) 
(Equation A1). These credits were then allocated as 
anticipated releases in future years, by filling up 
successively the credit cache volume in each year, 
as illustrated in the previous section. We assumed 
that carbon releases continue to occur past the 
end of the project, at double the mean counterfac
tual carbon loss rate (2/kc), and allocated antici
pated releases according to the same rule until all 
credits had been released. We calculated the 
equivalent permanence (EP) of the credits issued 
at each year (if any) following Equation A3, assum
ing t0 ¼ 2021 for the determination of Social Cost 
of Carbon (SCC) values.

We simulated projects with net carbon draw
down rate varying from 0.1 to 5 (1/kc from 1 to 6). 
For each drawdown rate value, we performed 100 
repetitions of simulations lasting 50 years. For each 
repetition, we calculated the following three statis
tics: (1) mean annual credits issued across all years 
(excluding the warm-up period), (2) maximum 
equivalent permanence (EP) across all years, and 
(3) reversal risk (proportion of years with negative 
credits) across all years. For illustrative purposes, 
we also selected three of the simulation settings 
where drawdown rate is 0.1, 1, 4, respectively, and 
plotted the yearly time series of (1) credits issued, 
(2) equivalent permanence (EP), and (3) reversal 
risk (proportion of years with negative credits over 
all 100 repetitions).

Sensitivity analyses
We examined the sensitivity of simulation outputs 
to three model parameters: (1) length of the 
warm-up period, (2) post-project carbon release 
rate, and (3) project duration.

Firstly, based on the observation that reversal 
risk increases when drawdown rate is low, we pos
ited that a longer warm-up period may help miti
gate this phenomenon, and performed sensitivity 
analysis of reversal risk to the length of the warm- 
up period to test this hypothesis. We performed 
simulations of theoretical projects with exponential 
carbon loss distributions, with settings where 
drawdown rate is 0.1, 0.3, 0.5, and 0.7, respectively 
(1/kc ¼ 1.1,1.3,1.5,1.7), and where the length of 
warm-up period ranges from 1 to 20 years with 
steps of one year, resulting in 4� 20¼ 80 simula
tion settings in total. For each simulation setting, 
we performed 100 repetitions of simulations 

6 E.-P. RAU ET AL.



following the same procedure as described in the 
first section, apart from the length of warm-up 
period. In all simulations, the project carbon loss 
distribution is parameterized with 1/kp ¼ 1, and 
the project duration was set at 50 years. We calcu
lated the reversal risk (proportion of years with 
negative credits across all years) of each simula
tion, and plotted the reversal risk against the 
length of the warm-up period for each group of 
simulations with the same drawdown rate.

Secondly, we performed sensitivity analysis of 
credit permanence to post-project carbon release 
rate. We performed simulations of theoretical proj
ects with exponential distributions of annual car
bon loss in the project area (1/kp ¼ 1) and in the 
counterfactual scenario (1/kc ¼ 1.3). We con
structed settings where the carbon release rate 
after the project ends was n� kc, with n ranging 
from within the interval [1,5] with steps of 0.1, 
resulting in 50 simulation settings in total and the 
post-project release rate ranging from 1.3 to 6.5. 
For each simulation setting, we performed 100 
repetitions of simulations following the same pro
cedure as described in the previous section, apart 
from the post-project carbon release rate. In all 
simulations, the warm-up period was set at 5 years, 
and the project duration was set at 50 years. We 
calculated the maximum equivalent permanence 
(EP) across all years for each simulation and plot
ted the maximum EP against n.

Lastly, we performed sensitivity analysis of 
credit permanence to project duration. We per
formed simulations of theoretical projects with 
exponential carbon loss distributions, with settings 
where the project duration ranges from within the 
interval [10, 100] with steps of 5, resulting in 19 
simulation settings in total. For each simulation 
setting, we performed 100 repetitions of simula
tions following the same procedure as described 
in the previous section, apart from the project dur
ation. In all simulations, the project carbon loss dis
tribution is parameterized with 1/kp ¼ 1, the 
counterfactual carbon loss distribution is parame
terized with 1/kc ¼ 1.3, the warm-up period was 
set at 5 years, and the post-project carbon release 
rate was set at 2/kc. We calculated the maximum 
equivalent permanence (EP) across all years for 
each simulation and plotted the maximum EP 
against the project duration.

Simulation of real-life projects
To exemplify how the optimal release schedule 
approach could be applied to real-life NBS 

projects, We performed Monte Carlo simulations of 
four ongoing REDDþprojects: Rio Pepe y ACABA 
(RPA), Gola, Alto Mayo, and Mai Ndombe. We used 
satellite-based datasets from the year of the start 
of each real-life project (t0) to 2021 to track forest 
cover and aboveground biomass through time, 
and applied a pixel-matching approach to quantify 
observed annual carbon losses in the project and 
in the counterfactual scenario. (For details, see 
Appendix C and the PACT Tropical Moist Forest 
Accreditation Methodology document [25]).

We derived net carbon drawdown distributions 
from the project and counterfactual carbon loss 
distributions, and calculated the credit cache vol
ume with a sampling approach: in each year t 
before 2021, we fitted statistical distributions to 
the carbon loss values in the project and counter
factual from the start of the project to year t; in 
each year t after 2021, we fitted statistical distribu
tions to the carbon loss values in the project and 
counterfactual from the start of the project to 
2021 (for details of distribution fitting, see 
Appendix C.4). We then randomly sampled 1000 
carbon loss values in the project and in the coun
terfactual, calculated their differences as the 
sampled drawdown distribution, and calculated 
the credit cache volume as the absolute value of 
its 5% percentile. As we expect the carbon loss dis
tributions in the project area and in the counter
factual scenario to be variable through time, we 
also expect the credit cache volume not to be con
stant over time, and therefore in each year include 
new observed carbon loss values to update the 
credit cache volume. We defined the first five years 
of the simulation as the warm-up period, where 
observed drawdown and release values are used 
to inform the estimation of carbon loss distribu
tions in later years. During the warm-up period, 
releases were ignored, and drawdowns were not 
issued as credits but stored in a project-level pool 
as an additional safeguard. In each year t after the 
warm-up period (t> 5), whenever there is a gap 
between the credit cache volume and total antici
pated releases allocated to that year, the draw
down stored in this pool was allocated to fill in the 
gap as additional anticipated releases, until the 
pool is depleted.

We calculated total credits (ct) as the sum of the 
drawdown (at) and total anticipated releases (rt) 
(Equation A1). These credits were then allocated as 
anticipated releases in future years, by filling up 
successively the credit cache volume in each year, 
as described above. We assumed that carbon 
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releases continue to occur past the end of the pro
ject occurs, at double the mean observed annual 
carbon loss rate in the counterfactual scenario, 
and allocated anticipated releases according to the 
same rule until all credits had been released. We 
calculated the equivalent permanence (EP) of the 
credits issued at each year (if any) following 
Equation A3.

For each project, we performed 100 repetitions 
of simulations lasting 50 years, starting from the 
year of the start of each real-life project (t0). For 
each repetition, we calculated the following three 
statistics: (1) mean annual credits across all years 
(excluding the warm-up period), (2) maximum 
equivalent permanence (EP) across all years, and 
(3) reversal risk (proportion of years with negative 
credits) across all years.

Below is a step-by-step summary of the simula
tion procedure of real-life projects. At each yearly 
time step t:

1. Obtain project carbon loss (lp) and counterfac
tual carbon loss (lc) from t0 to t (if t� 2021) or 
from t0 to 2021 (if t > 2021).

2. Fit both carbon loss distributions, draw 1000 
random values from each, calculate sampled 
drawdown as the difference between the two: 
at ¼ lc − lp.

3. Calculate credit cache volume (jaxj) by finding 
the left-tail 5% percentile of the sampled 
drawdown distribution, with a upper bound 
of zero.

4. Obtain drawdown values
a. If t� 2021: use observed values at year t
b. If t > 2021: draw random values from car

bon loss distribution and calculate draw
down as the difference between the two

5. Calculate credits
a. If t� 5: zero credits in the warm-up 

period, but positive drawdown is placed 
in a project-level pool.

b. If t > 5: calculate credits (ct) as the sum 
of drawdown and total anticipated 
releases, which should be equal to the 
credit cache volume (extract drawdown 
from project-level pool to fill up gap if 
total anticipated releases is smaller than 
credit cache volume and if the pool 
hasn’t been depleted).

6. If ct > 0, calculate anticipated releases (release 
schedule) based on the optimal release alloca
tion rule: calculate the available space in the 
credit cache of each following year j (credit 

cache volume − anticipated releases already 
allocated), and fill them up successively from 
the smallest j to the largest, until all credits 
have been allocated to a future year.
a. For years after the end of the project (j >

50), the available space for release is set 
to be double the mean counterfactual 
carbon loss rate (i.e. ax ¼ 2/kc).

7. If ct > 0, calculate the equivalent permanence 
(EP) of the credits following Equation A3.

Simulation of portfolios of aggregated projects
To test whether aggregating different projects 
together and managing them as a single project 
increases permanence and reduces reversal risk, 
we performed Monte Carlo simulations of aggre
gated theoretical or real-life projects. We adopted 
a simple way of aggregating projects, where the 
annual carbon drawdown and credits of the aggre
gated project is simply the sum of the carbon 
drawdown and credits of the individual projects: it 
can be imagined as being essentially a single large 
project with many geographically distinct project 
areas with different deforestation drivers and car
bon loss patterns. We calculated the credit cache 
volume with a sampling approach: in each year, 
we generated random samples of carbon loss val
ues in the project and in the counterfactual for 
each project, and calculated the drawdown distri
bution of the aggregated project (A) as the differ
ence between the sum of carbon loss values over 
all projects and the sum of carbon loss values over 
all counterfactuals. We then calculated the credit 
cache volume as the percentile value of A such 
that Pr(at < ax) ¼ x, with a upper bound of zero.

In each year t before 2021, we fitted statistical 
distributions to the carbon loss values in the pro
ject and counterfactual from the start of the pro
ject to year t; in each year t after 2021, we fitted 
statistical distributions to the carbon loss values of 
each project area and their respective counterfac
tual scenario, from the start of the project to 2021 
(for details, see Appendix C.4. We then randomly 
sampled 1000 carbon loss values in the project 
and in the counterfactual, calculated their differen
ces as the sampled drawdown distribution, and 
calculated the credit cache volume as the absolute 
value of its 5% percentile.

We first simulated the following aggregated proj
ects consisting of four theoretical projects with 
exponentially distributed carbon loss distributions: 
(1) drawdown rate ¼ 0.1, 0.1, 0.1, 4, respectively 
(one high-drawdown and three low-drawdown); (2) 

8 E.-P. RAU ET AL.



drawdown rate ¼ 0.1, 0.1, 4, 4, respectively (two 
high-drawdown and two low-drawdown); (3) draw
down rate ¼ 0.1, 4, 4, 4, respectively (three high- 
drawdown and one low-drawdown).

We then simulated the following aggregated 
projects based on the selected real-life NBS proj
ects: (1) all four projects (Gola, Alto Mayo, RPA, Mai 
Ndombe); (2) three projects out of the four with 
the highest observed carbon drawdown rates 
(Gola, Alto Mayo, RPA). At each yearly time step t 
in the simulation, we obtained yearly carbon loss 
values in the project and counterfactual, respect
ively, summed over all projects in the portfolio, 
and spanning the period from t0 to t (or to the lat
est year with available observations for year t in 
the future). We performed distribution fittings for 
each project, drew 1000 random values from each 
of the fitted carbon loss distributions, respectively 
(li

p and li
c), and calculated the sampled drawdown 

as at ¼
P

i¼1 li
c −
P

i¼1 li
p: We then calculated ax as 

the percentile value of A such that Pr(at < ax) ¼ x, 
with a upper bound of zero.

Results

Simulation of theoretical projects

Assuming a threshold of 5% reversal risk, projects 
with higher carbon drawdown obtained more 
credits (Figure 4a, Figure 5, top row), as expected. 
Their credits also had higher equivalent perman
ence (Figure 4b, Figure 5, middle row). This can be 
explained by the fact that with an overall higher 
drawdown, the estimated credit cache volume is 
smaller (fewer credits need to be deposited as 
anticipated releases in each year to cover the risk), 
leading to more gradual release schedules that 
increase the equivalent permanence. By following 
the optimal release schedule, we can achieve the 
desired 5% reversal risk except when carbon draw
down is very close to zero (Figure 4c, Figure 5, bot
tom row).

Sensitivity analyses

Increasing the length of the warm-up period con
sistently resulted in decreases in reversal risk until 
around 5%, and the lower the drawdown rate, the 
longer the warm-up period needed to be for rever
sal risk to descend to 5%. When drawdown rate is 
0.1, even with a warm-up period of 20 years, the 
mean reversal risk stayed above 5% (Figure 6). 
Nevertheless, even with the shortest warm-up 
period (one year) and the lowest drawdown rate 
examined (0.1), mean reversal risk was never 
higher than 0.15. Increasing post-project carbon 
release rate slightly decreased maximum EP, but 
only when at its lower value range: increasing the 
post-project release rate above 3 did not result in 
further decrease in maximum EP, which reaches its 
minimum at 0.1 (Figure 7). Increasing the project 
duration led to a continuous increase in maximum 
EP (Figure 8).

Simulation of real-life projects

In three of the four projects simulated (RPA, Gola, 
and Alto Mayo), by following the optimal release 
schedule, reversal risk could be limited to around 
the 5% threshold (Figure 9, bottom row). Lower- 
risk projects (RPA, Gola) consistently generated 
credits to be issued in all years in virtually all repe
titions, whereas higher-risk projects (Alto Mayo, 
Mai Ndombe) had a non-negligible chance of not 
having credits to issue in certain years (Figure 9, 
top row). Lower-risk projects generated credits 
with high equivalent permanence in the beginning 
that decreases gradually over time as the project 
approaches its end: this can be explained by our 
assumption of higher carbon release rate after the 
project ends [22]. Higher-risk projects had credits 
with low equivalent permanence throughout the 
simulation (Figure 9, middle row).

Figure 4. The relationship between net carbon drawdown rate (unitless) and (a) credits issued (unitless, median across all 
years); (b) equivalent permanence (EP) (maximum across all years); (c) reversal risk (proportion of years with negative 
credits across all years). The curves indicate mean values out of 100 repetitions of Monte Carlo simulation over 50 years. 
The horizontal red dashed line in the panel on the right indicates the 5% reversal risk threshold.
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Simulation of portfolios of aggregated projects

For theoretical projects, as more high-drawdown 
projects exist in the aggregated project, overall 
amount of credits issued increased, and the 
equivalent permanence was able to reach a higher 
level. The presence of even one high-drawdown 
project was sufficient to keep the overall reversal 
risk at around the 5% threshold level. (Figure 10).

For real-life projects, the inclusion of the low- 
drawdown Mai Ndombe project resulted in a con
siderably lower equivalent permanence (EP) and 
higher reversal risk: nevertheless, the aggregated 

project performs much better than the Mai Ndombe 
project alone, and the overall reversal risk rarely 
exceeds 0.1 (Figure 11a). The aggregated project 
containing only the two high-drawdown projects 
and one intermediate project performed well, with 
consistently high EP and low reversal risk 
(Figure 11b).

Discussion

Our approach computes an optimal release sched
ule that a NBS project developer should adopt to 
limit the risks of credit reversal arising from annual 
variability in net carbon drawdown (additionality), 

Figure 5. Simulated yearly time series of credits (unitless), equivalent permanence (EP), and reversal risk for theoretical 
projects with net carbon drawdown rates (unitless) of (a) 0.1, (b) 1, and (c) 4. Light gray and dark gray shaded areas show 
intervals between [5%–95%] and [25%–75%] percentiles, respectively, and black curves represent median values. 
Horizontal black solid lines in the top row indicate zero credits, and horizontal red dashed lines in the bottom row indi
cate the 5% reversal risk threshold (x).

Figure 6. The relationship between length of warm-up 
period and reversal risk (proportion of years with negative 
credits), with drawdown rates labelled next to each curve. 
Curves represent mean over 1000 repetitions, and shaded 
areas represent the 95% confidence interval.

Figure 7. Effect of post-project release rate on the max
imum equivalent permanence (EP) across all years of the 
simulation period (project duration held constant at 
50 years). In all simulations, 1/kp ¼ 1, 1/kc ¼ 1.3, and the 
warm-up period length is five years. Black curves indicate 
the mean of 100 repetitions.
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provided that they also adopt the PACT framework 
of evaluating the social benefits of impermanent 
carbon credits. We demonstrate that this approach 
succeeds in limiting reversal risk to a desirable 
level, except in projects with near-zero effective
ness at carbon drawdown. This incidentally allows 
us to identify ineffective projects.

Our approach dynamically adjusts the optimal 
release schedule based on observed carbon draw
down distributions updated with new observed 
data, allowing for credit permanence to be eval
uated from an early stage, and for additional credits 
to be generated whenever the project performs 
better than predicted. This creates incentives for 

project developers and local communities to main
tain long-term project custodianship, which has 
been identified as one of the key components 
needed for projects to be successful and effective 
[36–38]. It may also provide a form of inter-gener
ational equity, as future custodians of a project can 
receive credits from safeguarding the drawdown 
achieved in the past, as opposed to simply being 
expected to look after it without any reward.

We believe this approach to be a large improve
ment over the current buffer pool approach, which 
does not base the size of the buffer pool on an 
empirical assessment of the expected reversal risk. 
In addition, in the buffer pool approach, the cred
its stored in the buffer pool are typically canceled 
at the end of the project, which neither creates 
incentives for project improvement during the pro
ject nor after the project ends (although mecha
nisms such as a long-term monitoring system for 
reversals have been proposed to address this issue 
[39]). In contrast, by estimating anticipated 
releases past the end of the project, our approach 
provides incentives even after the project ends.

Sensitivity analysis revealed that longer initial 
warm-up period could help maintain reversal risk 
below the desired threshold. This warm-up period 
was designed in our simulations as a provisional 
method to be able to obtain sufficient observed 
data on carbon losses in early years, and to build 
an additional safeguard against reversal events. 

Figure 9. Simulated yearly time series of credits (Mg CO2), equivalent permanence (EP), and reversal risk (proportion of 
years with negative credits) for the four NBS projects, simulated over 50 years with 100 repetitions, starting from t0 (year 
of start of the project). Light and dark gray shaded areas show intervals between [5%–95%] and [25%–75%] percentiles, 
respectively, and red curves represent median values. Horizontal black solid lines in the top row indicate zero credits, and 
horizontal red dashed lines in the bottom row indicate the 5% reversal risk threshold. Gray vertical dotted lines indicate 
year 2021 (the latest year with available remote sensing observations).

Figure 8. Effect of project duration on the maximum 
equivalent permanence (EP) across all years of the simula
tion period (post-project release held constant at 2/kc) . 
In all simulations, 1/kp ¼ 1, 1/kc ¼ 1.3, and the warm-up 
period length is five years. Black curves indicate the mean 
of 100 repetitions.
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Newer implementation of the pixel-based match
ing approach for drawdown estimation, which 
generates a large number of project and counter
factual sub-samples, may eliminate the need to 
define a warm-up period because the sub-samples 
could be used to estimate carbon drawdown distri
butions even in early years. Nevertheless, in cases 
where remote sensing approach is not adequate 
(due to lower quality of remote sensing data, for 
example), alternative methods such as community- 
based monitoring may be employed, and time 
may be need for data availability and quality to 
improve [40]. Under these circumstances, imple
menting a warm-up period may be a reasonable 
approach. Its length represents an additional 
trade-off: longer warm-up period means lower 
reversal risks, but at a cost of delaying the start of 
credit issuance, which is a challenge that many 
projects currently face [8]. Strengthening infra
structural and financial support in forest monitor
ing and project planning and implementation in 
the initial stages, such as via readiness-related pro
grams and funds [41], will be crucial in overcoming 
this challenge.

We also found a clear positive effect of longer 
project duration on credit permanence (SI section 
F). Given that project duration can be limited by 
uncertainty of the stakeholders about the durability 

of funding flows [37], we propose that rather than 
making overly optimistic claims about long project 
duration, continual and dynamic monitoring should 
be leveraged to demonstrate project improvement 
and update credit permanence, so that the more 
steady income flow itself can become an incentive 
for risk-averse local communities to maintain partici
pation [42].

This approach is straightforward to implement 
as long as forest monitoring provides reasonably 
accurate estimates of carbon drawdown, which 
can be facilitated by advances in remote sensing 
technology and accumulation of monitoring data, 
in particular those who provide more accurate esti
mates of forest biomass [43]. Using publicly avail
able remote sensing can also help alleviate the 
cost of forest monitoring, especially when it is 
needed over a large spatial scale [44,45]. 
Moreover, a combination of spatially explicit data 
on drivers of forest carbon loss [46] and models 
that predict forest dynamics (e.g. growth and mor
tality), disturbance risks, and carbon loss patterns 
in response to climate change [20], could help 
evaluate credit permanence by improving project- 
counterfactual matching in disturbance regime, 
detecting temporal non-stationarity of carbon 
drawdown distributions, and infer the impact of 
rare but severe disturbance events.

Figure 10. Simulated yearly time series of credits (unitless), equivalent permanence (EP), and reversal risk for aggregated 
projects consisting of four theoretical projects with (a) drawdown rate ¼ 0.1, 0.1, 0.1, 4, respectively (one high-drawdown, 
three low-drawdown); (b) drawdown rate ¼ 0.1, 0.1, 4, 4, respectively (two high-drawdown and two low-drawdown); (c) 
drawdown rate ¼ 0.1, 4, 4, 4, respectively (three high-drawdown and one low-drawdown). Light gray and dark gray 
shaded areas show intervals between [5%–95%] and [25%–75%] percentiles, respectively, and red curves represent 
median values. Horizontal black solid lines indicate zero credits, and horizontal red dashed lines in the bottom row indi
cate the 5% reversal risk threshold (1 − x).
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Our approach also easily allows for multiple proj
ects to be aggregated and evaluated as a single 
project “portfolio,” which leads to higher perman
ence and lower reversal risk than could be achieved 
in each project individually. Aggregating projects 
(especially those that are diverse in geographic loca
tion and methodology) and assessing their ongoing 
risks with observed data allows credit buyers to 
manage risk sensibly in the volatile carbon market. 
It safeguards each individual project against rare but 
catastrophic disturbances (as the chance that mul
tiple projects will be affected by the same kind of 
sporadic catastrophe at the same time is exceed
ingly low), especially for projects considered as 
“high-risk” either due to being at an early stage of 
implementation or having high deforestation pres
sure. Aggregating projects also increases the 
amount of observed data that can be utilized to 
inform drawdown distributions, especially where 
long-term data are still scarce [24,47].

In this study, we optimized release schedules 
given the constraint of a maximum 5% reversal 
risk, a simple threshold that represents no more 
than two reversal events during a 40-year period. 

Future research directions include exploring the 
implications of jointly optimizing the release 
schedule and the maximum reversal risk threshold, 
for example by maximizing the expected revenue 
from credit sales, assuming that reversal events 
cause the credit price to fall.

Although our study focuses on avoided defor
estation projects, the central principle of issuing 
impermanent credits with anticipated future 
releases can be applied to other types of NBS proj
ects, provided that we can evaluate their benefits 
with counterfactual analysis and anticipate costs of 
future reversal of those benefits. For an example, 
for an afforestation project, we can model carbon 
releases as following an extreme value distribution, 
estimate the amount of releases expected to occur 
(return level) within a given time period [48], and 
allocate anticipated releases such that the long- 
term cumulative anticipated releases in a given 
period match the expected return level.

While there are significant differences between 
our proposed approach and the common practice 
in current methodologies used by certifying stand
ards (e.g. Verra VM0048), we believe that active 

Figure 11. Simulated yearly time series of credits (Mg CO2), equivalent permanence (EP), and reversal risk for aggregated 
projects consisting of (a) four projects and (b) three projects with the highest observed net carbon drawdown rates out of 
the four. The time series starts from the earliest t0 (year of start of the project) out of all aggregated projects. Light gray 
and dark gray shaded areas show intervals between [5%–95%] and [25%–75%] percentiles, respectively, and red curves 
represent median values. Horizontal black solid lines in the top row indicate zero credits, and horizontal red dashed lines 
in the bottom row indicate the 5% reversal risk threshold.
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discussions between academics, certifying organi
zations, and project developers will be instrumen
tal in helping bridge this gap and increasing 
appreciation for evaluating impermanence through 
the lens of social cost of carbon. The development 
of an easy-to-use toolkit that automates the mod
elling process will further facilitate the adoption of 
our approach by project developers.

In conclusion, our study proposes a novel yet 
simple way to anticipate risks of carbon release 
and evaluate permanence of carbon credits gener
ated by nature-based solutions, achieving a bal
ance between sustainable income flows and 
project credibility and incentivizing project 
improvement. Assuming that the social benefits of 
impermanent carbon credits are increasingly being 
valued, our findings offer a pragmatic solution to 
improve market confidence in NBS projects, paving 
the way for scaling up the implementation of this 
crucial climate mitigation strategy.

Acknowledgments

We would like to thank Charlotte Wheeler for providing 
comments on the manuscript, Michael Dales and Patrick 
Ferris for developing the pipeline and implementation 
code for the PACT Tropical Moist Forest Accreditation 
Methodology, as well as all authors of the methodology 
document [25]. We are grateful for the administrative, 
informatics and financial support provided by the 
Cambridge Centre for Carbon Credits (4C).

Authors’ contributions

S. K. and D. A. C. supervised the project. E-P. R., S. K., J. G. 
and D. A. C. conceived the research plan. S. K. and J. G. 
constructed the mathematical and theoretical models. T. S. 
assembled input data. E-P. R. wrote code, ran model simu
lations, and analyzed simulation outputs. E-P. R., S. K. and 
D. A. C. wrote the manuscript. All co-authors revised the 
manuscript.

Disclosure statement

A. B. is a trustee of the World Land Trust, a non-govern
mental organization that supports forest-based carbon 
projects. The Cambridge Centre for Carbon Credits (4C) 
has no commercial interest in carbon credits.

Funding

This research was partly funded by a donation from the 
Tezos Foundation (NRAG/719).

Data availability statement

The data that support the findings of this study are openly 
available in Apollo, the University of Cambridge repository, 
at https://doi.org/10.17863/CAM.110933.

References

01. The Paris Agreement. Accessed: 2023-12-12; Available 
from: https://unfccc.int/process-and-meetings/the-paris- 
agreement.

02. Dinerstein E, Vynne C, Sala E, et al. A global deal for 
nature: guiding principles, milestones, and targets. Sci 
Adv. 2019;5(4):eaaw2869. doi: 10.1126/sciadv.aaw2869.

03. Crowe O, Beresford AE, Buchanan GM, et al. A global 
assessment of forest integrity within key biodiversity 
areas. Biol Conserv. 2023;286:110293. doi: 10.1016/j. 
biocon.2023.110293.

04. Mitchard ETA. The tropical forest carbon cycle and 
climate change. Nature. 2018;559(7715):527–534. doi: 
10.1038/s41586-018-0300-2.

05. Canadell JG, Raupach MR. Managing forests for cli
mate change mitigation. Science. 2008;320(5882): 
1456–1457. doi: 10.1126/science.1155458.

06. Angelsen A, Martius C, Sy V, et al. Introduction: 
REDDþ enters its second decade. In: Transforming 
REDDþ: Lessons and new directions. Indonesia: Center 
for International Forestry Research; 2018. p. 1–13. doi: 
10.17528/cifor/007045.

07. Griscom BW, Adams J, Ellis PW, et al. Natural climate 
solutions. Proc Natl Acad Sci U S A. 2017;114(44): 
11645–11650. doi: 10.1073/pnas.1710465114.

08. Atmadja SS, Duchelle AE, Sy VD, et al. How do 
REDDþprojects contribute to the goals of the Paris 
Agreement? Environ Res Lett. 2022;17(4):044038. doi: 
10.1088/1748-9326/ac5669.

09. Laing T, Taschini L, Palmer C. Understanding the 
demand for REDDþ credits. Envir Conserv. 2016; 
43(4):389–396. doi: 10.1017/S0376892916000187.

10. Seddon N, Chausson A, Berry P, et al. Understanding 
the value and limits of nature-based solutions to cli
mate change and other global challenges. Philos 
Trans R Soc Lond B Biol Sci. 2020;375(1794): 
20190120. doi: 10.1098/rstb.2019.0120.

11. CDP. Harnessing the potential of the private sector to 
deliver REDDþ; 2018. Policy briefing https://www. 
greenindustryplatform.org/sites/default/files/down
loads/resource/REDD__Policy_Briefing_EN.pdf.

12. Joppa L, Luers A, Willmott E, et al. Microsoft’s million- 
tonne CO2-removal purchase—lessons for net zero. 
Nature. 2021;597(7878):629–632. doi: 10.1038/d41586- 
021-02606-3.

13. West TAP, Caviglia-Harris JL, Martins FSRV, et al. 
Potential conservation gains from improved pro
tected area management in the Brazilian amazon. 
Biol Conserv. 2022;269:109526. doi: 10.1016/j.biocon. 
2022.109526.

14. West TAP, Wunder S, Sills EO, et al. Action needed to 
make carbon offsets from forest conservation work 
for climate change mitigation. Science. 2023; 
381(6660):873–877. doi: 10.1126/science.ade3535.

14 E.-P. RAU ET AL.

https://doi.org/10.17863/CAM.110933
https://unfccc.int/process-and-meetings/the-paris-agreement
https://unfccc.int/process-and-meetings/the-paris-agreement
https://doi.org/10.1126/sciadv.aaw2869
https://doi.org/10.1016/j.biocon.2023.110293
https://doi.org/10.1016/j.biocon.2023.110293
https://doi.org/10.1038/s41586-018-0300-2
https://doi.org/10.1126/science.1155458
https://doi.org/10.17528/cifor/007045
https://doi.org/10.1073/pnas.1710465114
https://doi.org/10.1088/1748-9326/ac5669
https://doi.org/10.1017/S0376892916000187
https://doi.org/10.1098/rstb.2019.0120
https://www.greenindustryplatform.org/sites/default/files/downloads/resource/REDD__Policy_Briefing_EN.pdf
https://www.greenindustryplatform.org/sites/default/files/downloads/resource/REDD__Policy_Briefing_EN.pdf
https://www.greenindustryplatform.org/sites/default/files/downloads/resource/REDD__Policy_Briefing_EN.pdf
https://doi.org/10.1038/d41586-021-02606-3
https://doi.org/10.1038/d41586-021-02606-3
https://doi.org/10.1016/j.biocon.2022.109526
https://doi.org/10.1016/j.biocon.2022.109526
https://doi.org/10.1126/science.ade3535


15. Schleicher J, Eklund J, D Barnes M, et al. Statistical 
matching for conservation science. Conserv Biol. 
2020;34(3):538–549. doi: 10.1111/cobi.13448.

16. Guizar-Couti~no A, Jones JPG, Balmford A, et al. A glo
bal evaluation of the effectiveness of voluntary 
REDDþprojects at reducing deforestation and deg
radation in the moist tropics. Conserv Biol. 2022; 
36(6):e13970. doi: 10.1111/cobi.13970.

17. Matthews HD, Zickfeld K, Dickau M, et al. Temporary 
nature-based carbon removal can lower peak warming 
in a well-below 2 �C scenario. Commun Earth Environ. 
2022;3(1):1–8. doi: 10.1038/s43247-022-00391-z.

18. Matthews HD, Zickfeld K, Koch A, et al. Accounting 
for the climate benefit of temporary carbon storage 
in nature. Nat Commun. 2023;14(1):5485. doi: 10. 
1038/s41467-023-41242-5.

19. Anderegg WRL, Trugman AT, Badgley G, et al. 
Climate-driven risks to the climate mitigation poten
tial of forests. Science. 2020;368(6497):11. doi: 10. 
1126/science.aaz7005.

20. Anderegg WRL, Wu C, Acil N, et al. A climate risk ana
lysis of earth’s forests in the 21st century. Science. 2022; 
377(6610):1099–1103. doi: 10.1126/science.abp9723.

21. Busch J, Ferretti-Gallon K. What drives and stops 
deforestation, reforestation, and forest degradation? 
an updated meta-analysis. Rev Environ Econ Policy. 
2023;17(2):217–250. doi: 10.1086/725051.

22. Carrilho CD, Demarchi G, Duchelle AE, et al. 
Permanence of avoided deforestation in a transama
zon REDDþproject (par’a, brazil). Ecol Econ. 2022; 
201:107568. doi: 10.1016/j.ecolecon.2022.107568.

23. Badgley G, Chay F, Chegwidden OS, et al. California’s 
forest carbon offsets buffer pool is severely under
capitalized. Front For Glob Change. 2022;5:930426. 
doi: 10.3389/ffgc.2022.930426.

24. Swinfield T, Balmford A. Cambridge carbon impact: 
evaluating carbon credit claims and co-benefits; 
2023. Early or alternative research output on 
Cambridge Open Engage at https://www.cambridge. 
org/engage/coe/article-details/ 
6409c345cc600523a3e778ae.

25. Balmford A, Coomes D, Hartup J, et al. PACT tropical 
moist forest accreditation methodology. 2023; Early 
or alternative research output on Cambridge Open 
Engage at https://www.cambridge.org/engage/coe/ 
article-details/657c8b819138d23161bb055f.

26. Nordhaus W. Estimates of the social cost of carbon: 
concepts and results from the dice2013r model and 
alternative approaches. J Assoc Environ Resour Econ. 
2014;1(1/2):273–312. doi: 10.1086/676035.

27. Groom B, Venmans F. The social value of offsets. 
Nature. 2023;619(7971):768–773. doi: 10.1038/s41586- 
023-06153-x.

28. Balmford A, Keshav S, Venmans F, et al. Realising the 
social value of impermanent carbon credits. Nat Clim 
Chang. 2023;13(11):1172–1178. doi: 10.1038/s41558- 
023-01815-0.

29. Cacho OJ, Hean RL, Wise RM. Carbon-accounting meth
ods and reforestation incentives. Aus J Agri & Res Econ. 
2003;47(2):153–179. doi: 10.1111/1467-8489.00208.

30. Chan KK, Golub A, Lubowski R. Performance insur
ance for jurisdictional REDDþ: Unlocking finance and 

increasing ambition in large-scale carbon crediting 
systems. Front For Glob Change. 2023;6:1062551. doi: 
10.3389/ffgc.2023.1062551.

31. Rau EP, 2024. GitHub repository at https://github.com/ 
epingchris/assess_permanence. commit:a4d52f77f8043

32. Rau EP, Gross J, Coomes DA, et al. Research data 
supporting “Mitigating risk of credit reversal in 
nature-based climate solutions by optimally anticipat
ing carbon release. Apollo - University of Cambridge 
Repository. 2024; doi: 10.17863/CAM.110933.

33. Wickham H, François R, Henry L, et al. dplyr: a gram
mar of data manipulation; 2023; R package version 
1.1.3; Available from: https://CRAN.R-project.org/pack
age=dplyr.

34. Bache SM, Wickham H. magrittr: a forward-pipe oper
ator for R; 2022; R package version 2.0.3; Available 
from: https://CRAN.R-project.org/package=magrittr.

35. Wickham H. ggplot2: elegant graphics for data ana
lysis. New York: Springer-Verlag; 2016. Available from: 
https://ggplot2.tidyverse.org.

36. Fortmann L, Salas PC, Sohngen B, et al.; 2014 
Incentive contracts for environmental services and 
their potential in REDD. Policy Research Working 
Papers. (2419785).

37. Wunder S, Duchelle AE, Sassi C, et al. RREDDþ in the
ory and practice: how lessons from local projects can 
inform jurisdictional approaches. Front For Glob 
Change. 2020;3:499592. doi: 10.3389/ffgc.2020.00011.

38. Buchholz T, Gunn J, Springsteen B, et al. Probability- 
based accounting for carbon in forests to consider 
wildfire and other stochastic events: synchronizing 
science, policy, and carbon offsets. Mitig Adapt 
Strateg Glob Change. 2021;27(1):4. doi: 10.1007/ 
s11027-021-09983-0.

39. Verra. Summary of public comments: proposal to cre
ate a long-term reversal monitoring system. 
Accessed: 5-3-2024; Available from: https://verra.org/ 
wpcontent/uploads/LTRMS-summary-comments.pdf.

40. Brofeldt S, Theilade I, Burgess ND, et al. Community 
monitoring of carbon stocks for REDDþ: does accur
acy and cost change over time? Forests. 2014;5(8): 
1834–1854. doi: 10.3390/f5081834.

41. Andoh J, Oduro KA, Park J, et al. Towards 
REDDþ implementation: Deforestation and forest deg
radation drivers, REDDþ financing, and readiness 
activities in participant countries. Front For Glob 
Change. 2022;5:957550. doi: 10.3389/ffgc.2022.957550.

42. Chesney M, Gheyssens J, Troja B. Market uncertainty and 
risk transfer in REDD projects. J Sustainable For. 2017; 
36(5):535–553. doi: 10.1080/10549811.2017.1326940.

43. Calders K, Jonckheere I, Nightingale J, et al. Remote 
sensing technology applications in forestry and REDDþ. 
Forests. 2020;11(2):188. doi: 10.3390/f11020188.

44. De Sy V, Herold M, Achard F, et al. Synergies of mul
tiple remote sensing data sources for 
REDDþmonitoring. Curr Opin Environ Sustainability. 
2012;4(6):696–706. doi: 10.1016/j.cosust.2012.09.013.

45. Demarchi G, Subervie J, Catry T, et al. Using publicly 
available remote sensing products to evaluate 
REDDþprojects in Brazil. Global Environ Change. 2023; 
80:102653. doi: 10.1016/j.gloenvcha.2023.102653.

CARBON MANAGEMENT 15

https://doi.org/10.1111/cobi.13448
https://doi.org/10.1111/cobi.13970
https://doi.org/10.1038/s43247-022-00391-z
https://doi.org/10.1038/s41467-023-41242-5
https://doi.org/10.1038/s41467-023-41242-5
https://doi.org/10.1126/science.aaz7005
https://doi.org/10.1126/science.aaz7005
https://doi.org/10.1126/science.abp9723
https://doi.org/10.1086/725051
https://doi.org/10.1016/j.ecolecon.2022.107568
https://doi.org/10.3389/ffgc.2022.930426
https://www.cambridge.org/engage/coe/article-details/6409c345cc600523a3e778ae
https://www.cambridge.org/engage/coe/article-details/6409c345cc600523a3e778ae
https://www.cambridge.org/engage/coe/article-details/6409c345cc600523a3e778ae
https://www.cambridge.org/engage/coe/article-details/657c8b819138d23161bb055f
https://www.cambridge.org/engage/coe/article-details/657c8b819138d23161bb055f
https://doi.org/10.1086/676035
https://doi.org/10.1038/s41586-023-06153-x
https://doi.org/10.1038/s41586-023-06153-x
https://doi.org/10.1038/s41558-023-01815-0
https://doi.org/10.1038/s41558-023-01815-0
https://doi.org/10.1111/1467-8489.00208
https://doi.org/10.3389/ffgc.2023.1062551
https://github.com/epingchris/assess_permanence
https://github.com/epingchris/assess_permanence
https://doi.org/10.17863/CAM.110933
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=magrittr
https://ggplot2.tidyverse.org
https://doi.org/10.3389/ffgc.2020.00011
https://doi.org/10.1007/s11027-021-09983-0
https://doi.org/10.1007/s11027-021-09983-0
https://verra.org/wpcontent/uploads/LTRMS-summary-comments.pdf
https://verra.org/wpcontent/uploads/LTRMS-summary-comments.pdf
https://doi.org/10.3390/f5081834
https://doi.org/10.3389/ffgc.2022.957550
https://doi.org/10.1080/10549811.2017.1326940
https://doi.org/10.3390/f11020188
https://doi.org/10.1016/j.cosust.2012.09.013
https://doi.org/10.1016/j.gloenvcha.2023.102653


46. Lapola DM, Pinho P, Barlow J, et al. The drivers and 
impacts of Amazon forest degradation. Science. 2023; 
379(6630):eabp8622. doi: 10.1126/science.abp8622.

47. Herold M, Skutsch M. Monitoring, reporting and veri
fication for national REDDþprogrammes: two pro
posals. Environ Res Lett. 2011;6(1):014002. doi: 10. 
1088/1748-9326/6/1/014002.

48. Katz RW, Brush GS, Parlange MB. Statistics of 
extremes: modeling ecological disturbances. Ecology. 
2005;86(5):1124–1134. doi: 10.1890/04-0606.

49. Drupp MA, Freeman MC, Groom B, et al. Discounting 
disentangled. Am Econ J. 2018;10(4):109–134. doi: 10. 
1257/pol.20160240.

50. Valuation of greenhouse gas emissions: for policy 
appraisal and evaluation. Accessed: 2023-12-11; 
Available from: https://www.gov.uk/government/pub
lications/valuinggreenhouse-gas-emissions-in-policy- 
appraisal/valuation-of-greenhouse-gas-emissions-for
policy-appraisal-and-evaluation.

51. Klar B. A note on gamma difference distributions. 
J Stat Comput Simul. 2015;85(18):3708–3715. doi: 10. 
1080/00949655.2014.996566.

52. Verra VCS. Registry. Available from: https://registry. 
verra.org/app/search/VCS.

53. Verra VCS. Registry, project 944. Available from: 
https://registry.verra.org/app/projectDetail/VCS/944.

54. Verra VCS. Registry, project 1201. Available from: 
https://registry.verra.org/app/projectDetail/VCS/1201.

55. Verra VCS. Registry,. project1396. Available from: 
https://registry.verra.org/app/projectDetail/VCS/1396.

56. Verra VCS. Registry, project 934. Available from: 
https://registry.verra.org/app/projectDetail/VCS/934.

57. Vancutsem C, Achard F, Pekel JF, et al. Long-term 
(1990–2019) monitoring of forest cover changes in 
the humid tropics. Sci Adv. 2021;7(10):eabe1603. doi: 
10.1126/sciadv.abe1603.

58. Dubayah R, Blair JB, Goetz S, et al. The global ecosys
tem dynamics investigation: highresolution laser 
ranging of the earth’s forests and topography. Sci 
Remote Sens. 2020;1:100002. (doi: 10.1016/j.srs.2020. 
100002.

59. GEDI L4A footprint level aboveground biomass dens
ity, version 1. Accessed: 2023-12-11; Available from: 
https://daac.ornl.gov/GEDI/guides/ 
GEDIL4AAGBDensity.html.

60. Duncanson L, Kellner JR, Armston J, et al. 
Aboveground biomass density models for NASA’s 
global ecosystem dynamics investigation (GEDI) lidar 
mission. Remote Sens Environ. 2022;270:112845. doi: 
10.1016/j.rse.2021.112845.

61. Cairns MA, Brown S, Helmer EH, et al. Root biomass 
allocation in the world’s upland forests. Oecologia. 
1997;111(1):1–11. doi: 10.1007/s004420050201.

62. Penman J, Gytarsky M, Hiraishi T, et al. 2003; Good 
practice guidance for land use, land-use change and 
forestry. Institute for Global Environmental Strategies.

63. Martin AR, Thomas SC. A reassessment of carbon 
content in tropical trees. PLoS One. 2011;6(8):e23533. 
doi: 10.1371/journal.pone.0023533.

64. Large scale international boundaries (LSIB). Accessed: 
2023-12-11; Available from: https://data.humdata.org/ 
dataset/large-scale-international-boundaries-lsib?

65. Dinerstein E, Olson D, Josh A, et al. An ecoregion- 
based approach to protecting half the terrestrial 
realm. Bioscience. 2017;67(6):534–545. doi: 10.1093/ 
biosci/bix014.

66. Mahalanobis PC. On the generalized distance in sta
tistics. Sankhy�a: The Indian Journal of Statistics, Series 
A (2008-). 2018;80: S1–S7.

67. Jarvis A, Reuter HI, Nelson A, et al. 2008; Hole-filled 
SRTM for the globe version 4, Available from the 
CGIAR-CSI SRTM 90m database. https://research. 
utwente.nl/en/publications/hole-filled-srtm-for-the- 
globe-version-4data-grid.

68. Weiss DJ, Nelson A, Gibson HS, et al. A global map of 
travel time to cities to assess inequalities in accessi
bility in 2015. Nature. 2018;553(7688):333–336. doi: 
10.1038/nature25181.

69. Scrucca L, Fop M, Murphy TB, et al. 2016. mclust 5: 
clustering, classification and density estimation using 
Gaussian finite mixture models;.

70. Millard SP. EnvStats: an R package for environmental 
statistics. New York: Springer; 2013.

Appendices 
Appendix A provides formal definition of how credits and 
their equivalent permanence are calculated under the 
PACT Framework [28] and mathematical representations of 
the derivation of the optimal release schedules. Appendix 
B provides analytical solutions of the credit cache volume, 
the key quantity for the construction of optimal release 
schedule, for special cases when the carbon loss distribu
tions in the project area and in the counterfactual scenario 
of a project can be expressed as simple parametric distri
butions. Appendix C provides detailed information on the 
method used to quantifying annual carbon fluxes in the 
four real-life REDDþprojects examined. A complete and 
detailed description of the methods used can also be 
found in the PACT Tropical Moist Forest Accreditation 
Methodology document [25].

Appendix A. Mathematical representation 
of release schedule and 
equivalent permanence

A.1. Release schedule and equivalent 
permanence

It is widely assumed that carbon sequestration in NBS proj
ects is not permanent, but will be released back into the 
atmosphere over time: we can account for this by 
‘depositing’ the credits gained in the time period t to 
‘credit caches’ in the future years, and anticipating the 
amount to be released in future time periods tþ j to be 
r̂ tþj

t , j > 0: This set of variables is called the release sched
ule, and it is a set of free decision variables to be chosen 
by the project developer. The choice of a release schedule 
plays a critical role in three computations.

First, the actual number of credits issued in time period 
t, denoted ct, is equal to the drawdown in time period t, 
adjusted by the amount of total releases anticipated to 
happen in time period t, and thus depends on past release 
schedules through:
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ct ¼ at þ
X

t�j>0

r̂ t
t−j ¼ at þ rt (A1) 

If past releases were more conservative, then more 
credits are available to compensate future negative draw
down (release) events.

Second, the probability of reversal of the ith project at 
time step t depends on whether the observed release 
exceeds the sum of prior anticipated releases:

Pr rt
i þ ai

t > 0
� �

¼ Pr −ai
t < rt

i
� �

(A2) 

If the release schedule is not risk-averse enough, then a 
credit purchaser may not purchase the credits from the 
project due to their concerns about the high occurrences 
of reversal events.

Finally, the price paid to the project developer depends 
critically on the equivalent permanence (EP). Equivalent 
permanence is calculated based on the release schedule 
and the Social Cost of Carbon (SCC) associated with car
bon drawdown and release, and the discounting of future 
damage [28]. The equivalent permanence is the ratio 
between the value of a given amount of impermanent 
credits and that of the same amount of permanent credits, 
such as those from geological storage, and is bound 
between [0, 1]. under the PACT framework, carbon credits 
produced in year t (ct) needs to be adjusted downwards to 
become PACT by multiplying the amount of the credit by 
its Equivalent Permanence (EP).

Given a discount factor d, the current value of damage 
from future release and the Equivalent Permanence are 
given by:

dt ¼
P

j>0
SCCð̂r tþj

t Þ

ð1þ dÞ
j

EP ¼
SCC ctð Þ − dt

SCC ctð Þ

(A3) 

With a more rapid release schedule, the damage from 
releases would be discounted less, and the numerator will 
be smaller: this means that the equivalent permanence 
would be smaller, and the project developer would get a 
lower payment from the purchase of the same amount of 
credits.

In this study, we assumed d (discount factor) to be 0.03 
[49], and obtained SCC (Social Cost of Carbon) values from 
the central series of the carbon cost values modeled and 
provided by the UK government [50]. This dataset contains 
carbon cost values from 2010 to 2100, and we fitted the 
values to an exponential model using the lm function in R, 
and used it to extrapolate to values from 2000 to 2500.

A.2. Optimal release schedule

Due to the stochastic occurrences of forest disturbance 
and deforestation events, it is not realistic to expect pro
ject developers to produce credits that are completely free 
from reversal events (x¼ 0). Instead, we consider the opti
mal release schedule from the perspective of a risk-averse 
project developer, who determines future release sched
ules so that they limit reversal risk to 0 � x� 1. Lower val
ues of x refer to a more risk-averse project developer, i.e. 

with lower reversal risk but also lower equivalent perman
ence and hence lower credit pay outs.

The problem of computing the optimal release sched
ule can be formulated as a stochastic optimization prob
lem. We view a project as an asset that at time t 
generates drawdown, modeled as a random variable at 

that can be either positive or negative. This drawdown, 
when adjusted by prior anticipated releases at this time, 
rt, gives us the net credits available at time step t, ct. If ct 

is positive, a project developer can allocate some of these 
credits, in the form of a release schedule r̂ t

t−j, j> 0 with 
P

j r̂ tþj
t ¼ ct , to hedge against future times when it might 

be negative, so that the probability of reversal is bounded 
by x:

Pr ct < 0ð Þ < x 

Pr −at > rtð Þ < x (A4) 

Thus, if rt exceeds a certain quantity, ax, for every year 
t in the project lifetime, then Equation A4 can be satisfied, 
meeting the constraint. We now state and prove the opti
mal rule to achieve this goal.

We define the probability of having an drawdown of x 
tons in project i in year t to be pi

t(xi
t) i.e. pi

t is the prob
ability mass function of xi

t. For simplicity, we assume for 
now that this probability mass function is time-independ
ent and can be estimated from available observed data, so 
that:

pi
t xi

t

� �
¼ pi xi

t

� �
8 t (A5) 

Let the x-percentile value of the probability mass func
tion be ai

x, so that:
pi at < ai

x

� �
¼ x (A6) 

Let the corresponding cumulative mass function (i.e. 
probability that the drawdown is less than x in project i) 
be Pi(x)i

t, so that:
Pið−ai

xÞ ¼ x (A7) 

If rt
i of anticipated release have been allocated to this 

project in time period t, the probability that the drawdown 
is less than the number of previously anticipated releases 
is Pi(−rt

i), which is also the probability of having to report 
negative net drawdown (reversal event).

In essence, the allocation rule for the optimal release 
schedule, which maximizes equivalent permanence (EP) at 
each year while satisfying the boundary condition for max
imum reversal risk as much as is feasible, is to allocate all 
the net adjusted carbon drawdown (if any) to future years 
such that (a) the sum of allocated drawdown for each year 
in the project is at most ax and (b) this allocation is done 
sequentially for each successive year starting from the 
immediately following one.

Note that a special case arises when ai > 0: in this 
case, the boundary condition for maximum reversal risk is 
always satisfied, and we can view the project as having 
‘low risk’, meaning that we do not anticipate any releases 
to occur during the project, but only past the end of the 
project. In this case, the credit cache volume is defined to 
be zero.

As a proof, let the release schedule defined by the allo
cation rule (call it S) not be optimal. Let the optimal sched
ule, O, differ from S for the first time in year y. Then, O 
must allocate either less or more drawdown than S that 
year. If it allocates more, then it must allocate less to some 
future year than S, since both allocate the same total 

CARBON MANAGEMENT 17



amount of drawdown. This results in a lower EP in year y, 
and less credits issued, because EP increases when releases 
are anticipated to happen further in the future. This means 
S will have a higher overall credit payment than O, which 
means O is not optimal. On the other hand, if O allocates 
less drawdown than S in year y, then the allocation for 
that year is less than ax

i. But ax
i is the minimum amount 

that needs to be allocated to meet the boundary condition 
of the reversal risk. Hence, O will have a higher probability 
of reversal than S. But S is the schedule that has the low
est reversal risk, by construction, so O must have a reversal 
risk that is higher than S, which means it is not optimal. 
This shows that any schedule other than S is not optimal, 
which means S is indeed optimal, as claimed.

This analysis is easily generalized to account for a set of 
projects in a project developer’s portfolio. If the project 
developer has a set of projects indexed by i, then we can 
compute ci

t for each project for each year t. We can then 
compute the optimal allocation of Ct ¼

P
i ci

t credits as 
releases across projects and project years, where the pro
ject developer wants to limit the upper bound of the 
probability of reversal to x each year. Note that the defin
ition of reversal event for a set of projects, compared to a 
single project, is when the net total drawdown across all 
projects is negative.

We assume that the releases allocated to future years 
are fully interchangeable, so net negative credits in any 
project can be compensated by anticipated releases in 
excess of actual releases in any other project in the set. 
For example, if projects 1 and 2 both have 100 credits 
available in year 1, and project 1 had a release schedule of 
[0, 50, 0, 50] and project 2 had a release schedule of [50, 
0, 50, 0] in years 2-5, then as long as a1

t þ a2
t > −50 for t 

2 2,3,4,5, neither project would need to report negative 
credits in those years.

In this case, the total drawdown in year t is 
P

i ai
t: Since 

the probability mass function of each ai
t is known, it is 

possible to compute the probability mass function of their 
sum. Let Ax be the x-percentile value of this sum. Then, it 
is obvious that the optimal allocation rule from above con
tinues to hold, with Ax taking the role of ax, since we can 
view the aggregation of projects as a single project, albeit 
with a more complex probability mass function.

Appendix B. Finding credit cache volume 
analytically

A x-averse strategy in the release schedule computation 
can only be realized if corresponding values for ax can be 
found, such that Pr(at þ ax � 0) ¼ x, where at represents 
the random variable of net carbon drawdown that can be 
either positive or negative. This, in turn, depends on know
ing the distributions of the yearly carbon loss of the pro
ject and the counterfactual.

In this section, we consider two cases for these distribu
tions, one special case where both distributions are 
assumed to be exponential, and one arbitrary case. For the 
exponential distributed case, we derive in a straightfor
ward fashion closed-form representations for determining 
ax < 0. In the case of the arbitrary distribution, we can at 

least determine bounds through the application of 
Chernoff inequality.

B.1. Exponentially distributed yearly carbon 
losses

B.1.1. Single project
Let us start with the case of an individual project and its 
counterfactual scenario, and assume that the random varia
bles corresponding to the amount of carbon loss in project i 
and in its counterfactual denoted li

p and li
c are independent 

random variables with exponential distributions of parame
ters ki

p and ki
c respectively. The drawdown results from the 

difference of these two random variables as ai
t ¼ li

p − li
c with 

the probability density function given as:

p að Þ ¼
ki

pk
i
c

ki
p þ ki

c

ea�ki
p if a < 0 

p að Þ ¼
ki

pk
i
c

ki
p þ ki

c

e−a�ki
c if a > 0 (B1) 

For the case where ax < 0, we can furthermore obtain 
the distribution function as:

FA xð Þ ¼ P A � xð Þ ¼

ðx

-1

ki
pk

i
c

ki
p þ ki

c

� eaki
p � da ¼

ki
c

ki
p þ ki

c

� eaki
p

(B2) 

Given the definition of ax, namely that P(A � ax) ¼ x, 
we obtain in a straightforward way a closed-form expres
sion for ax:

ax ¼
1

ki
p

� ln x �
ki

p þ ki
c

ki
c

 !

(B3) 

B.1.2. Aggregated projects
The general case with n projects and corresponding coun
terfactuals is more involved, even under the assumption of 
the special case with exponential distributions for all carbon 
loss processes. It is well known that for the sum of n expo
nentially distributed random variables, the resulting random 
variable is Gamma distributed if each individual exponen
tially random variable is i.i.d. Assuming the i.i.d. exponential 
parameters to be equally k, the resulting Gamma distribu
tion follows with shape parameter n and scale parameter 1

k
:

However, the distribution of the resulting difference 
between two Gamma-distributed random variables is 
involved. Given two independent Gamma-distributed ran
dom variables X,Y with X � C(a1,b1) and Y � C(a2,b2), the 
random variable Z¼ X − Y follows a Gamma difference dis
tribution [51]. For the case of interest Z< 0, the corre
sponding density results to:

f zð Þ ¼
~c

Cða2Þ
� −zð Þ

a1þa2
2 −1e

b1þb2
2 � −zð ÞWa2 −a1

2 , 1−a1−a2
2

b1 þ b2ð Þ � −zð Þ
� �

(B4) 

where W() is the Whittaker’s W function. Note that this 
density holds for different scale parameters b1, b2. This 
implies the possibility to investigate the drawdown risk 
characterization also for cases where all projects have the 
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same exponential rates kp while all counterfactuals have a 
different (but homogeneous) exponential rate kc.

B.2. Arbitrarily-distributed yearly carbon losses

We now generalize the above model to the case where 
the random variables corresponding to the amount of car
bon loss in project i and in its counterfactual denoted lp

i 

and li
c are independent random variables with arbitrary 

distributions Fp and Fc (i.e. we start again with a single 
project and counterfactual carbon loss process, and then 
expand to the general case with n projects and counter
factuals in the portfolio).

B.2.1. Single project
As above, the drawdown results from the difference of 
these two random variables as ai

t ¼ li
p − li

c and we are 
interested in the value ax such that P(A <¼ ax) ¼ x. The 
(left-tail) Chernoff bound of a random variable X is given 
by

P½X � a� � inf
t<0

MXðtÞ � e−ta (B5) 

with Mx(t) being the moment-generating function of X:

MX tð Þ ¼ E½etX � (B6) 

Likewise, for the difference of two random variables 
X1,X2 with moment-generating functions MX1(t),MX2(t) we 
obtain:

P X1 − X2 � a½ � � inf
t<0

MX1ðtÞ
MX2ðtÞ

� e−ta (B7) 

From this Chernoff bound identity, we can derive a 
generic formula to determine an upper bound on ax. We 
have:

P A � a½ � ¼ P Xp − Xc � a½ � � inf
t<0

MXp tð Þ

MXc tð Þ
� e−tax ¼ x (B8) 

From this, with some manipulations we obtain the 
implicit equation:

inf
t<0

ln
MXp tð Þ

MXc tð Þ
− tax

 !

¼ ln x (B9) 

where MXp (t) and MXc (t) represent the moment-generat
ing functions of the carbon loss of the project and 
counterfactual.

B.2.2. Aggregated projects
In extending to the case of the project portfolio with n 
projects and counterfactual carbon loss processes, the 
above identity is easily adapted. Consider the MGF of the 
sum of independent random variables Y ¼ X1, … Xn, which 
is simply given by the product of the individual MGFs of 
the random variables, i.e.:

MYðtÞ ¼ MX1ðtÞ � . . . � � �MXnðtÞ (B10) 

We can thus obtain the implicit identity:

inf
t<0
ðln

Q
iMXpi

tð Þ
Q

iMXci
tð Þ

− taxÞ ¼ ln x (B11) 

where MXpi(t) and MXci(t) represent the moment-generating 
functions of the i-th carbon loss of the project and 
counterfactual.

Appendix C. Quantifying carbon loss for 
real-life projects

C.1. Study sites

We selected four ongoing REDDþprojects located in 
South America and West Africa, two of the three world
wide tropical regions (Table C1). All four projects are over 
20,000 hectare in size, scheduled to run for 20-30 years, 
and are registered in the Verra VCS Registry [52]. The proj
ects differ in their land ownership status, historical land 
use, and main deforestation drivers. The Rio Pepe y ACABA 
(RPA) project (VCS 1396) is organized by local communities 
which hold property rights that are protected by law, and 
agriculture and illegal logging are its main deforestation 
drivers [53]. The Gola project (VCS 1201) is situated within 
a national park, and small-scale agriculture is its main 
deforestation driver [54]. The Alto Mayo project (VCS 944) 
is a nationally recognized protected area, and coffee pro
duction and subsistence farming are its main deforestation 
drivers [55]. The Mai Ndombe project (VCS 934) area con
sists of previous commercial logging concessions, and log
ging remains its main deforestation driver [56]. The 
projects were selected based on the following criteria:

1. Projects categorized as ”reducing deforestation and 
degradation”, with an available polygon of project 
boundary

2. Projects whose boundary falls entirely within the 
extent of the tropical moist forest (TMF) biome [57]

3. Ongoing projects, with a VCS Registry status that is 
not ”withdrawn”, ”on hold”, or ”inactive”

4. Projects that have started between 1990 and 2018: 
this is to ensure that the project duration falls within 
the coverage of the land use class time series, and 
that the project has been ongoing for at least five 
years.

We acknowledge that some of these projects, such as in 
Gola, include areas with historical forest degradation and 
deforestation that occurred before the start of the project, 
and in some cases before the start of the availability of 
the land use class time series. These projects usually also 
include areas with forest undergoing regrowth after histor
ical degradation and deforestation. We did not use the 
presence or extent of these areas as exclusion criteria.

C.2. Tracking forest cover change and carbon 
flux

To quantify how forest cover changes over time in NBS 
projects, we used the annual change collection in the JRC- 
TMF dataset [57], which provides the spatial extent and 
the annual change of the tropical moist forest (TMF) 
biome at the 0.09-hectare (30 m� 30 m pixels) resolution 
from 1990 to 2022, derived from the L1T archive imagery 
(orthorectified top of atmosphere reflectance). The six fol
lowing land cover classes were mapped: (1) undisturbed 
forest, (2) degraded forest, (3) deforested land, (4) forest 
regrowth, (5) permanent and seasonal water, and (6) other 
land cover.

To use information on forest cover to quantify how car
bon stock changes over time in NBS projects, we assume 
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that for each project, we can calculate a reference carbon 
density value for each land cover class that is stable over 
time. For this, we used the GEDI Level 4 A dataset, which 
contains footprint-level aboveground biomass density (AGBD) 
estimates (Mg ha−1) for each 25-m GEDI shot [58]. The AGBD 
estimates are generated from models linking GEDI wave
form-derived canopy height metrics with field AGBD esti
mates for multiple regions and plant functional types [59,60].

We selected GEDI shots occurring from 1st January 
2020 to 1st January 2021 and falling within the project 
area plus a 30-km buffer around it. The inclusion of a 30- 
km buffer around the project area is to ensure that 
enough GEDI shots can be found for each land cover class. 
For each land cover class, we selected the subset of GEDI 
shots associated with it as shots that overlap with a JRC- 
TMF pixel (1) that belongs to the land cover class in ques
tion and (2) whose eight neighboring pixels also belong to 
the land cover class in question. The second condition was 
included to account for the potential geolocation error up 
to 10 m of GEDI shots [58]. For each land cover class, we 
calculated the median AGBD value of all the GEDI shots 
associated with it. We then estimated belowground bio
mass and deadwood biomass to be 20% and 11% of AGB, 
respectively, calculated the total biomass as the sum of 
aboveground, belowground and deadwood biomass, and 
converted total biomass to total carbon density by multi
plying it by the average carbon density of biomass, taken 
to be 0.47 for this study [61–63].

It is to be noted that we did not consider leakage (dis
placement of carbon release to areas outside of the pro
ject area) in this study.

C.3. Pixel matching and calculating carbon 
drawdown

The carbon drawdown of an NBS project of the avoided 
emission type is the difference between the carbon loss in 
the project area and the carbon loss in the counterfactual 
scenario. In order to find the counterfactual scenario, we 
adopted a pixel-based matching approach [16]: this has the 
advantage of being transparent, non-arbitrary and replicable. 
Specifically, we followed the PACT Tropical Moist Forest 
Accreditation Methodology document, where a complete and 
detailed description of the methods used can be found [25].

Specifically, we sampled pixels in the project area at a 
density of 0.25 points/ha for smaller projects (� 250k ha) 
and 0.05 points/ha for large projects (> 250k ha). We then 
sampled candidate matching pixels from the match destin
ation to the amount of ten times the number of sampled 
project pixels. The match destination is defined as the area 
of a 2000-km buffer around the project that falls within the 
project’s country boundary (from the LSIB dataset [64]) and 
the RESOLVE ecoregion boundaries for all the ecoregions 
that lie within the project [65], excluding all other NBS 

project areas and a 5-km leakage buffer around each of 
the NBS projects (including the project being matched).

For each project pixel in a 10% sample of the sampled 
project pixel set, we matched it to one candidate match
ing pixel which has the exact same value for the following 
categorical variables:

1. Land cover class at t−10, t−5, and t0 (where t0 is the 
project start year)

2. Country
3. Ecoregion

, and which has the minimum Mahalanobis distance [66] 
across the following continuous variables:

1. Elevation (from the SRTM data [67])
2. SRTM-derived slope
3. Accessibility [68]
4. Coarsened proportional cover of undisturbed forest 

and deforested land, at 1200 m � 1200 m resolution, 
within a 1-km radius buffer around the pixels at t−10, 
t−5, and t0.

We deemed the matching results valid if all the standardized 
mean differences (SMD) of each continuous matching vari
able between the sampled project pixels and the matched 
pixels is smaller than 0.2 (unless if a continuous matching 
variable with an SMD > 0.2 is distributed in the range [0, 1], 
and the value in one of the pixel sets is close to 0 or 1: this 
is because near those values SMD becomes misleading). We 
performed 20 repetitions of the matching process, each 
time using an independent sample of the project pixels as 
input and producing a set of matched pixels as output. The 
matched pixel sets are the” counterfactual scenarios” of the 
project area, and can be considered to be representative of 
the trajectory of forest cover change and carbon flux in the 
project area if the project had not existed.

We then evaluated the carbon losses of both the pixels in 
the project area and the pixels in the counterfactual scenarios, 
at a yearly interval. For each year within the JRC-TMF time 
series (1990–2021), for both the project area and the counter
factual scenarios, we calculated the proportion of pixels in 
each JRC-TMF land cover class, and used the GEDI L4A- 
derived estimates of total carbon density for each land cover 
class, described in the previous section, to calculate the total 
carbon stock (Mg CO2), and calculated the mean total carbon 
stock value of all 100 counterfactual repetitions. We then 

Table C1. Basic description of the NBS projects examined in this study.
VCS ID Full name Country Total area (ha) Start year (t0) Scheduled end year

1396 Rio Pepe y ACABA REDDþ Project Colombia 48,177 2014 2044
1201 Gola REDD project Sierra Leone 69,714 2012 2042
944 Alto Mayo Conservation Initiative Peru �182,000 2008 2028
934 The Mai Ndombe REDDþ Project DRC 299,640 2011 2041

Table C2. Kolmogorov-Smirnov Goodness-of-fit test sta
tistics and p-value of empirical distributions of annual 
carbon loss fitted using gaussian mixture model (GMM). 
Bold texts indicate empirical distributions that are signifi
cantly different from the GMM fitted distributions.

RPA Gola Alto Mayo Mai Ndombe

Project 0.029 (1) 0.068 (0.32) 0.043 (0.7) 0.094 (0.033)
Counterfactual 0.14 (0.003) 0.094 (0.063) 0.45 (< 0.001) 0.1 (0.012)
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calculated carbon losses (lt) of each year t in both the project 
area (p) and the counterfactual (c) as the difference between 
the carbon stock of that year (bt) and that of the previous 
year (bt−1): lt ¼ bt−1 − bt. Finally, we calculated annual carbon 
drawdown (at) as the difference between the project carbon 
loss (lt

p) and counterfactual carbon loss (lt
c): at ¼ lt

c − lt
p.

C.4. Fitting observed carbon loss distributions

As visual examinations showed that the carbon loss distribu
tions often exhibited a multi-modal shape in many projects, 
especially for the counterfactual scenarios, we performed 

model-based clustering based on parameterized Gaussian 
mixture models [69], fitting the empirical distributions as 
the proportional mixture of two Gaussian components, 
using the Mclust function in the R package mclust [69]. To 
evaluate the goodness of fit, we generated random samples 
of equal size to the original empirical distribution from each 
fitted distribution, and performed chi-squared tests using 
the gofTest function in the R package EnvStats [70], and 
reported the test statistics and p-value of each fitting result 
(Table C2). A lower bound of zero was used to remove nega
tive values from the sampled values before the goodness- 
of-fit test.
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