
1 

 

Harnessing temporal and spectral dimensionality to map and identify 1 

species of individual trees in diverse tropical forests 2 

James G C Ball1,2, Sadiq Jaffer3, Anthony Laybros2, Colin Prieur2, Toby Jackson1, Anil 3 

Madhavapeddy3, Nicolas Barbier2, Gregoire Vincent2, David A Coomes1 4 

 5 

1 Conservation Research Institute, Department of Plant Sciences, University of Cambridge, Cambridge, UK 6 

2 UMR AMAP, INRAE, CIRAD, IRD, Montpellier, France 7 

3 Department of Computer Science and Technology, University of Cambridge, Cambridge, UK 8 

 9 

 10 

Keywords: tree crown delineation; multi-date remote sensing; convolutional neural networks; tropical 11 

forests; hyperspectral; imaging spectroscopy; tree species identification 12 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2024. ; https://doi.org/10.1101/2024.06.24.600405doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.24.600405
http://creativecommons.org/licenses/by-nc/4.0/


2 

 

Abstract 13 

To understand how tropical rainforests will adapt to climate change and the extent to which their diversity 14 

imparts resilience, precise, taxonomically informed monitoring of individual trees is required. However, the 15 

density, diversity and complexity of tropical rainforests present considerable challenges to remote mapping 16 

and traditional field-based approaches are limited in scale. This study introduces a new approach for 17 

mapping tree species linking a multi-temporal implementation of the convolutional neural network method, 18 

detectree2, to segment tree-crowns from aerial photographs to machine learning classifiers to identify species 19 

from hyperspectral data (416 - 2500 nm). We build upon previous work in two ways. Firstly, we aimed to 20 

improve the accuracy of crown delineations by surveying the same patch of forest with UAV-RGB ten times 21 

over six months and fusing multi-date information on the location and shape of individual trees. Secondly, we 22 

extended the scope of species identification to include far more species than has been previously attempted 23 

(169 compared to 20 previously). We trained and tested our algorithms on subsets of a database of 3500 24 

ground truth, labelled tree crown polygons representing 239 species in French Guiana that we had delineated 25 

by hand and field verified. We assessed how well our segmentation approach could locate and delineate 26 

individual tree crowns and how well our classification approach predicted the species of those crowns. We 27 

extracted information on waveband importance for distinguishing species from our classification model. 28 

Based on an existing phylogeny of the trees in our dataset, we tested for phylogenetic signal across the 29 

hyperspectral bands and probed how species were being classified by comparing the phylogenetic signal to 30 

the importance of bands for separating species. The accuracy of delineations increased gradually as 31 

additional dates of tree crown maps were stacked and combined. Stacking increased the F1-score from 0.69 (a 32 

single date) to 0.78 (all dates). The overall (weighted) F1-score for species classification was 0.75. A total of 33 

65 species were predicted from the hyperspectral data with F1-score > 0.7. The performance for classifying a 34 

species increased with the number of crowns in the database available for that species: 8 training crowns 35 

were needed to achieve an expected F1-score = 0.7 for crown level classification. With this new approach, we 36 

assessed that 70% of tree crown area at landscape-scale was accurately mapped. The most important 37 

wavebands for discriminating species were narrowly clumped on the NIR side of the red edge region (748 - 38 

775 nm). While most wavebands showed some phylogenetic signal, waveband importance for species 39 

classification was negatively correlated with phylogenetic signal. Our integrated approach makes a significant 40 

contribution to the ongoing development of efficient and accurate methodologies for mapping canopy tree 41 

species in tropical forests, providing a framework for mapping trees in diverse tropical forests that is far 42 

more comprehensive than its predecessors. 43 

1. Introduction 44 

Tropical moist forests are renowned for their species richness. The ability to map tree 45 

species using remote sensing data is of value to ecologists and practitioners of a broad 46 

range of other disciplines (Fassnacht et al. 2016). It enables real-time assessment and 47 

monitoring of biodiversity and species compositions (Shang and Chisholm 2014) and can 48 

provide insights into habitats (Pausas, Austin, and Noble 1997; Jansson and Angelstam 49 

1999; Kennedy and Southwood 1984), tree community dynamics and ecosystem 50 

function (Chambers et al. 2013; Ewijk et al. 2014). Such data can support conservation 51 
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efforts, by locating species of interest (Baldeck et al. 2015), improving estimates of stored 52 

carbon (Bredin, Peres, and Haugaasen 2020), tracking invasive species (Chance et al. 2016; 53 

Sabat-Tomala, Raczko, and Zagajewski 2020), helping to manage water stress (Asner et al. 54 

2004; Watt et al. 2021), monitoring the spread of pests and disease (Y. Liu et al. 2021; Chan 55 

et al. 2021), and improving our understanding of migration patterns (McGrath, Riper, and 56 

Fontaine 2009). Maps of canopy trees are also valuable for assessing the extent to which 57 

the extraordinary diversity of tropical forests influences ecosystem processes (Reichstein 58 

et al. 2013), including resilience to climate change (Malhi et al. 2008; Corlett 2011) through 59 

the presence of species with varied climatic tolerances (Lewis et al. 2009). However, 60 

although it is now established that diversity can promote ecosystem stability (Loreau and 61 

Mazancourt 2013), it remains unclear whether such diversity is necessary, because of 62 

functional redundancy among species (Biggs et al. 2020). Hence, an integrative 63 

understanding of the distribution of tree species diversity is vital in understanding the 64 

impacts of anthropogenic change and crafting effective strategies for the sustainable 65 

management of these globally significant ecosystems (Goetz et al. 2009). From a 66 

commercial standpoint, remote sensing of tree species can improve the speed, scope and 67 

precision of forestry inventories (Aardt and Wynne 2007; Laybros et al. 2020) which aid in 68 

calculating available resources and planning sustainable harvests (Vauhkonen et al. 2014). 69 

Together, these insights can support evidence based policy for sustainable forest 70 

management, balancing human activity and ecological preservation (FAO 2020). 71 

Mapping individual tree crowns and identifying their species at large scale in diverse and 72 

dense tropical forests presents a significant challenge (Asner and Martin 2011), requiring 73 

accurate delineation of tree crowns and classification of pixels within those crowns. The 74 

first step of locating and delineating individual tree crowns in densely packed tropical 75 

forests from above is difficult as crowns can interweave and overlap in complex ways. 76 

Remote sensing of individual trees has mostly focused on airborne lidar data, but this is 77 

most successful for temperate and boreal forests (Dalponte and Coomes 2016; Hastings et 78 

al. 2020) while complex tropical canopies have presented a greater challenge (Aubry-79 

Kientz et al. 2019). RGB photographs offer colour and texture information to distinguish 80 
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trees, even if they are structurally similar, but agreement on tree location and crown shape 81 

between human analysts is variable (see Section S.1). Mask R-CNN (He et al. 2017) based 82 

approaches have shown promise in their ability to harness the colour and texture 83 

information of RGB images to precisely separate irregular edges of neighbouring tree 84 

crowns (Ball et al. 2023; Gan, Wang, and Iio 2023). However, differences in illumination 85 

(resulting in variably shadowed trees), the sway of trees and branches, phenological 86 

discrepancies and irregularities in the orthomosaicking process often reveal inconsistent 87 

arrangement/delineation of crowns for aerial imagery across dates. Therefore, methods 88 

that can draw on consensus between datasets and are tested against a robust ground truth 89 

are required. 90 

Assigning species labels to the tree crowns is also challenging due to high species diversity, 91 

the rarity of most species, and commonalities between species. Tropical forests have 92 

approximately log-normal species abundance distributions: a few species are common, 93 

while most are represented by only a few individuals per hectare. A pan-Amazonian study 94 

based on 640,000 trees (DBH ≥ 10 cm) in 1100 ha of forest plots, 36 % of species were 95 

modelled to have a population size of fewer than 1000 individuals across the whole of the 96 

Amazon, while 1.4 % of species were estimated to account for half of all trees (Steege et al. 97 

2013). This skewed distribution presents challenges for biodiversity conservation efforts, 98 

as it means that many species are always at risk of extinction due to their small 99 

populations. It also complicates efforts to identify and study individual tree species using 100 

remote sensing techniques, as the large number of rare species (with few training 101 

examples) can be difficult to reliably detect and classify. While there is considerable species 102 

diversity, the presence of chlorophyll and other photosynthetic pigments is ubiquitous 103 

across trees. This further complicates remote species identification, as distinguishing 104 

between individual species based on their pigmentation alone is not feasible. Closely 105 

related species often share certain chemical, physiological and morphological 106 

characteristics that can influence their spectral properties (Meireles et al. 2020; Cavender-107 

Bares et al. 2016). For instance, the leaf structure and chemical properties (e.g. 108 

concentrations of chlorophyll and cellulose) can vary between families which in turn can 109 
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affect their spectral properties (Serbin et al. 2016). However, there can still be considerable 110 

variability in the spectral properties of plants within the same family due to differences at 111 

the genus and species level, as well as due to environmental factors (e.g. soil type, water 112 

availability, and light exposure) and plant health status or phenological stage (Ollinger 113 

2011). So, while it is possible that members of the same plant family might exhibit some 114 

similarities in their spectral properties, these are not definitive, and a comprehensive 115 

classification of plant species based on spectral data would likely need to take into account 116 

more specific characteristics and use sophisticated machine learning algorithms to capture 117 

these complex patterns (Fassnacht et al. 2016). 118 

Hyperspectral remote sensing (imaging spectroscopy), a technique that measures the 119 

intensity of incident radiation with many narrow spectral bands across a wide spectrum, is 120 

often applied to mapping tree species in forests (Ghiyamat and Shafri 2010; Fassnacht et al. 121 

2016). The spectral properties of plants are influenced by numerous factors, including their 122 

evolved biochemical and structural characteristics (Ustin et al. 2004; Ustin 2013; Ollinger 123 

2011; Meireles et al. 2020). Many studies have shown that subtle differences in spectral 124 

reflectance arising from these biophysical differences can be detected in hyperspectral 125 

data, allowing species to be mapped and their health monitored in low diversity (often 126 

temperate) systems (Fassnacht et al. 2016). However, distinguishing species in diverse 127 

tropical forests has proven more challenging; Clark, Roberts, and Clark (2005) used 128 

hyperspectral data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) to 129 

differentiate seven species in a tropical rainforest in Costa Rica, paving the way for further 130 

research in this domain. Féret and Asner (2013) were able to distinguish 17 species in the 131 

lowland humid tropical forest of Hawaii. Laybros et al. (2019, 2020) showed that a 132 

classification rate of around 80% was achievable when classifying within a pool of 20 well 133 

represented species in an Amazonian forest in French Guiana. Greater scope has been 134 

shown with proximate, leaf level hyperspectral species identification (e.g. 46 species at a 135 

tropical wetland in Jamaica (Prospere, McLaren, and Wilson 2014) highlighting the 136 

potential for a broader scope with aerial hyperspectral data at the crown level. However, 137 

leaf traits are incorporated into spectra in complex ways (Jacquemoud and Baret 1990; 138 
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Ollinger 2011; Féret and Asner 2011) and multiple traits can overlap in a given spectral 139 

region (Curran 1989). This is further complicated when spectra are measured from a 140 

distance as signals of relevant traits are confounded with structural characteristics. 141 

Radiative transfer models have shown that signals from canopy structure can dominate 142 

over the leaf optical properties and biochemical properties of the vegetation (Knyazikhin et 143 

al. 2013; Béland and Kobayashi 2024). However, elsewhere they have been used to show 144 

that incorporating the fraction of non-photosynthetic vegetation as leaf brown pigments 145 

rather than as woody material gives the better match between simulated and observed 146 

canopy spectra (Ebengo et al. 2021). The degree to which these uncertainties place limits 147 

on the predictability of tree species from hyperspectral data is as yet unclear. Structural 148 

properties such as leaf density, clumping and angle distribution, as well as leaf 149 

biochemistry, may, to some extent, be considered functions of species. Rather than attempt 150 

to reconstruct a physical representation of the canopy (as in radiative transfer 151 

approaches), we can test the separability of species through a data driven analyses. 152 

Unpicking the spectral signals in relation to the evolved traits and how species relate to 153 

each other is a key challenge in progressing towards robust, transferable remote 154 

identification of species in diverse tropical forests (Schweiger et al. 2021). 155 

Applying computer vision approaches in a way that combines information across time may 156 

lead to improved detection and segmentation of canopy trees (Shamaoma et al. 2023; 157 

Martin et al. 2018). While RGB data lack the spectral resolution of hyperspectral data, its 158 

spatial resolution is typically superior, especially when acquired from a drone that can fly 159 

close above the forest canopy. This means that textural information can be observed and 160 

outlines of individual tree crowns can be distinguished precisely. The relatively low cost of 161 

the sensors and UAV systems also means that regular surveys of the same area become 162 

feasible. Differences in the canopy (including phenological states), atmosphere, and 163 

illumination can mean that predicted crown maps vary considerably across dates. To 164 

address this temporal variability, we implemented a consensus-fusion approach to 165 

combine tree crown polygons detected on different dates. The tree crown polygons from 166 

individual dates were spatially matched and the vertices of their parameters averaged , 167 
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generating output crowns maps that represented the inter-date consensus on the location 168 

and shape of tree crowns. Our hope is that this approach would help to mitigate the effects 169 

of temporal fluctuations, enhancing the consistency and accuracy of crown delineation. 170 

In this study, we propose a novel approach to rainforest tree mapping that (1) generates 171 

precise delineation of individual tree crowns and (2) classifies the species of each tree. The 172 

automatic delineation of individual tree crowns was performed with detectree2, a tool 173 

based on the Mask R-CNN architecture (He et al. 2017; Ball et al. 2023). For the first time, 174 

we combine delineated tree maps generated from repeated airborne surveys and analyse 175 

whether identifying consensus across stacked tree-crown maps improves segmentation 176 

accuracy. Our species identification model was trained and tested using a database of 3256 177 

manually delineated tree crowns, each meticulously verified through several field missions. 178 

This dataset, in combination with our novel approach, sets the stage for a more accurate 179 

and inclusive tree mapping and species classification system. This two-step approach 180 

leverages the strengths of both technologies - the spatial resolution of UAV RGB imagery 181 

and the spectral resolution of hyperspectral data - achieving a high level of accuracy in 182 

tropical forest mapping. 183 

We address the following research questions: 184 

1. Can the accuracy of tree crown maps from aerial imagery be improved by combining 185 

information from segmentations at different dates to build a consensus-based map? 186 

2. Can we accurately classify a representative range of tropical tree species from 187 

hyperspectral data? 188 

a. Which type of machine learning classifier most accurately predicts the 189 

species of tree crowns from hyperspectral data? 190 

b. How many mapped individuals of a given species are needed to achieve a 191 

‘good’ classification accuracy? 192 

c. Which wavebands are the most important for determining species? 193 
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3. How do species’ crown reflectance spectra relate to their phylogenetic 194 

relationships? 195 

a. Do spectra observed within tree crowns exhibit phylogenetic signal? 196 

b. Are the most important wavebands for species classification those that have 197 

the strongest phylogenetic signal? 198 

c. Are closely related species more often confused in their classification than 199 

distantly related species? 200 

Through a novel integration of ground validated manual tree crown generation and 201 

machine learning algorithms, we developed a robust and accurate methodology to 202 

delineate tree crowns and predict their species. Our methodology combines traditional 203 

fieldwork, advanced machine learning techniques, high-resolution remote sensing data, 204 

and phylogenetic insights offering an innovative approach to species-level forest mapping. 205 
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2. Materials and Methods 206 

2.1 Study site and overview of methods 207 

 208 

Figure 1: Site map of Paracou, French Guiana, with crowns and hyperspectral imagery. The manually 209 

delineated, labelled crowns are in white. The colourful background scan that covers the entire site is a 210 

representation of the hyperspectral data (selected projected PCA bands for illustration). The repeat survey UAV-211 

RGB region is shown in the northwest around the site’s flux tower. Within this region the segmentation test data 212 
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areas are delineated in blue - the crowns within these areas were excluded from all training of the segmentation 213 

delineation. The black boxes show the plots in which inventories are conducted.  214 

The research was conducted in forests at Paracou Field Station, French Guiana (5N 52 W) 215 

(see Fig. 1). The lowland tropical rainforests grow mostly on shallow ferralitic soils 216 

underlain by a variably transformed loamy saprolite (Gourlet-Fleury, Guehl, and 217 

Laroussinie 2004). The mean annual rainfall is approximately 3200 mm with a three-218 

month dry season from mid-August to mid-November where rainfall is typically less than 219 

50 mm per month (Bonal et al. 2008; Wagner et al. 2011). The field station has 27 220 

permanent plots ranging in size from 0.5 ha to 25 ha (see Fig. 1) which contain 221 

approximately 76,000 trees of DBH ≥ 10 cm consisting of over 800 different 222 

species (Gourlet-Fleury, Guehl, and Laroussinie 2004). In these plots, inventories are taken 223 

every 1-5 years with the species, precise geographic location and DBH of each trunk 224 

recorded. The ten most common species account for just over 30% of the inventory’s 225 

individuals. 90% of the species present have been placed within a time calibrated 226 

phylogeny by Baraloto et al. (2012). 227 

Our study uses a combination of remote sensing data from a UAV-mounted camera and a 228 

plane-mounted imaging spectrometer both co-registered to a LiDAR-derived Canopy 229 

Height Model (CHM; see Table 1). A CNN approach applied to UAV-RGB data recorded with 230 

10 surveys over 6 months was used to locate and delineate the individual tree crowns. 231 

Hyperspectral imagery was used to classify the species of the crowns. Each tree species 232 

absorbs and reflects light in a specific way across wavelengths in the 416-2500 nm range, 233 

generating a spectral ‘signature’ that can be used to distinguish between species (see Fig. 234 

6). The predictions were evaluated against strict, unseen test sets of manual tree crowns 235 

that were not exposed to the algorithms during training, providing a robust assessment of 236 

model accuracies. 237 
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 238 

Figure 2: Simplified schematic of the crown mapping approach showing input data and the intermediate steps 239 

to producing a labelled tree crown map. In the centre is an illustration of the process of temporal polygon fusion. 240 

The top image shows the overlapping tree crown polygons predicted over multiple dates. Where polygons have a 241 

high degree of overlap, each will still have a slightly different shape due to differences in the RGB orthomosaics 242 

through time. The bottom image depicts the polygons after the fusion process, effectively averaging the positions 243 

of the vertices of the original polygons and discarding those without good consensus through time. 244 
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2.2 Remote sensing data acquisition and co-registration  245 

Table 1. Remote sensing data sources used in the study (location Section 2.1). Resolution is given as ground 246 

resolution for the RGB orthomosaic and as the processed CHM resolution for the lidar scans. Altitude is given as 247 

height above the forest canopy.  248 

Scan date(s) Modality Resolution Altitude Spectral range Sensor 

23-Oct-

2020—06-

Apr-2021 

RGB 5 cm 70 m 421-617 nm (3 

bands) 

1" CMOS 

(Phantom4 

Pro) 

19-Sep-2016 Hyperspectral 1 m 900 m 416-992 nm 

(160 channels) 

Hyspex VNIR-

1600 

19-Sep-2016 Hyperspectral 2 m 900 m 930-2500 nm 

(288 channels) 

Hyspex SWIR-

384 

15-Nov-2019 LiDAR 0.5 m 

(CHM) 

800 m 1550 nm 

(active) 

RIEGL LMS-

Q780 

 249 

UAVs (DJI Phantom 4 Advanced and DJI P4 Multispectral) were employed to collect high-250 

resolution RGB imagery, with a scan approximately every three weeks over a 6-month 251 

period (10 surveys in total) of the region shown in Fig. 1. The RGB orthomosaics were 252 

compiled from the raw geotagged UAV photographs using structure from motion (SfM) 253 

photogrammetry in AgiSoft Metashape. To improve spatio-temporal coherency, instead of 254 

processing each date separately, five date blocks were supplied for the alignment and 255 

initial sparse point cloud formation steps establishing a common geometry between dates 256 

(Feurer and Vinatier 2018). Details of this processing are given in Section S.2. 257 

Hyperspectral preprocessing is described in detail by Laybros et al. (2019, 2020) and 258 

summarised here. Two sensors mounted to an aircraft side-by-side were used to cover the 259 

full 416-2500 nm wavelength (see Table 1). To merge the data from the two hyperspectral 260 

sensors without degrading the spatial resolution of the VNIR imagery, we resampled the 261 
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SWIR imagery to 1 m using nearest-neighbour interpolation. Images were orthorectified 262 

and georeferenced at 1 m spatial resolution with the PARGE software using the canopy 263 

Digital Surface Model (DSM) produced from the LiDAR point cloud. Bands in the SWIR with 264 

a low signal to noise ratio due to water absorption peaks were removed leaving 378 of the 265 

448 total bands (see Fig. 6). Per pixel illumination was calculated using the shadow 266 

detection method of Schläpfer, Hueni, and Richter (2018). Spectral information used to 267 

train and make predictions with the species classifiers was extracted from the overlapping 268 

flight lines rather than from a mosaic. This allows for valuable information to be retained as 269 

multiple views of individual crowns within the overlapping flight lines which has been 270 

shown to improve the classification performance (Laybros et al. 2019). Reflectance 271 

spectrum normalization was applied to each pixel. The normalization consisted of dividing 272 

the reflectance value of each band by the spectrum of a pixel, by the sum of all reflectance 273 

values, which has been shown to improve tree species classification (Dalponte et al. 2014). 274 

Some machine learning classifiers are sensitive to the scale in which each feature (band in 275 

this case) is supplied with features that have a higher absolute variability tending to 276 

dominate. To address this, we applied the ‘standard’ scaling approach which standardizes 277 

features by removing the mean (centring on zero) and scaling to unit variance (see Fig. 6). 278 

Additional details are given in Section S.2. 279 

Accurate co-registration of data from RGB and hyperspectral imagery was important to 280 

ensure spatial alignment. We used the LiDAR-derived Canopy Height Model (CHM) as the 281 

baseline layer, with all other data registered against it. This choice was due to the CHM’s 282 

stability and precision in representing the physical landscape, providing a solid reference 283 

for co-registration. Eight control points were manually assigned across the different 284 

datasets, using identifiable features within the LiDAR CHM, such as the flux tower, roads 285 

and dominant trees, affine transformations were applied based on these. This co-286 

registration process ensured that the crowns represented across the datasets 287 

corresponded to the same geographical location, serving as the foundation for subsequent 288 

analysis steps, including tree crown delineation and species classification. 289 
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2.3 Field-derived tree crown database 290 

To train and validate our models we generated a set of hand delineated, ‘ground truth’ 291 

crowns with species labels; this database was built and curated between 2015 and 2023 292 

and validated over eight field missions in this period. An initial delineation of tree crowns 293 

was performed in QGIS using a combination of RGB, multispectral, hyperspectral, and 294 

LiDAR remote sensing data (see Table 1). The LiDAR CHM was used as the foundational 295 

base layer on which the crowns were drawn as it provides the greatest stability and spatial 296 

precision for the outlines. We overlaid the RGB, multispectral and hyperspectral data 297 

layers, and examined and compared between them to use as much of the spectral, textural 298 

and shape information as possible. Where the crowns fell within the inventory plots, an 299 

initial guess as to which individual the crown belonged to, based on the location and size of 300 

the trunk, was assigned to the polygon. Two provisional confidence scores were assigned 301 

to the polygons: (1) a ‘crown integrity’ score describing the certainty with which the 302 

outline defines the complete crown of a single individual (rather than a partial crown or 303 

multiple crowns), (2) a ‘trunk match’ score describing how confident we were that a crown 304 

had been correctly assigned to an individual in the inventory. Where there were changes to 305 

the crowns through mortality or branch fall events, the date of change was encoded so that 306 

the crowns could be filtered to match the remote sensing data source that they are paired 307 

with. Subsequent fieldwork further refined and updated the tree crown delineations. By 308 

comparing in situ observations with the remote sensing data, we either matched the 309 

identified crowns to individual trees present in the site inventory (Gourlet-Fleury, Guehl, 310 

and Laroussinie 2004), or in cases where crowns were located outside of the known plots, 311 

we engaged botanists to assign the appropriate species. We updated the crown outlines 312 

and confidence scores based on the field observations and noted where there were liana 313 

infestations in the crowns. Unlike in previous studies (Laybros et al. 2019, 2020), we 314 

decided to retain infested crowns throughout the analysis despite the risk that it would 315 

introduce noise into the crown spectra. Crown infestation is an unavoidable obstacle in 316 

practical tree species mapping and this should be reflected in the landscape-scale 317 

performance evaluation of such methods. Additional details can be found in Section S.3. 318 
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2.4 Automated delineation and fusion of results from repeat surveys 319 

The field-delineated tree crowns were partitioned into a training and testing set based on 320 

their geographic location (see Fig. 1). The regional partitioning ensured clear spatial 321 

separation between training and testing datasets, thus negating potential inflation of 322 

reported accuracy induced by spatial autocorrelative effects providing more reliable and 323 

independent assessment of delineation performance (see Kattenborn et al. 2022). 324 

We used detectree2, a tool based on the Mask R-CNN deep learning architecture for 325 

automated tree crown delineation (Ball et al. 2023), which has been shown to outperform 326 

another leading CNN method for tree crown detection (Gan, Wang, and Iio 2023). 327 

Detectree2 was trained on the manual crown delineations and corresponding RGB images 328 

from the training dataset (see Fig. 1). Researchers seeking to map trees in their landscape 329 

of interest may have some ground truth crowns and RGB surveys to train a model on or 330 

they may not have training data available. To reflect this, we tested models trained under 331 

different regimes: 332 

1. The first was a ‘base’ model. This was not trained on the UAV RGB imagery and was 333 

just exposed to the plane mounted data and crowns from the range of sites 334 

described in Ball et al. (2023). This meant it had been exposed to the Paracou forest 335 

but with a different sensor, different resolution imagery and four years separation. 336 

This pre-existing model is openly available for anyone to use1. 337 

2. The ‘1 date’ model took the ‘base’ model and further trained the model on just the 338 

first date of the UAV RGB imagery and manual crowns. 339 

3. The ‘5 date’ model took the ‘base’ model and further trained the model on the first 340 

five dates of the UAV RGB imagery and manual crowns. 341 

 

1 https://zenodo.org/records/10522461  
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Comparing the performance of these models provides an idea of what level of accuracy 342 

would be expected for researchers aiming to map their landscape with differing amounts of 343 

training data. 344 

Does the fusing of multi-date crown information improve segmentation accuracy? 345 

The trained models were then used to detect and delineate the tree crowns across the 346 

entire region of the UAV RGB scans for all 10 acquisitions in the range 23-Oct-2020 to 06-347 

Apr-2021. The RGB images were first tiled, predicted upon and recombined to generate a 348 

set of polygons representing tree crowns from each date (see Ball et al. 2023 for details of 349 

the detection/delineation method). Each predicted crown polygon was associated with a 350 

confidence score (0-1) indicating the reliability of each tree crown prediction. Where 351 

spatial overlap between predictions existed (𝐼𝑜𝑈 ≥ 0.2), the most confident prediction was 352 

retained, and the less confident predictions removed. 353 

The predictions at the individual dates were then combined into ‘fused’ (or consensus) 354 

delineations. This aimed to find a temporal consensus on crown locations and shapes. The 355 

fused sets of crowns went from combining just two dates up to combining the full ten dates. 356 

This was done to determine the marginal benefit of adding additional dates of data, each of 357 

which comes with an associated cost of the survey. 358 

To combine the polygon sets across dates, each individual date polygon was compared to 359 

every other predicted polygon to identify significant matches (𝐼𝑜𝑈 ≥ 0.75). Accordingly, in 360 

the largest combined predictions set (10 dates), a single polygon could have a maximum of 361 

nine matches (in the case of strong agreement across dates) and a minimum of zero 362 

matches (where there is no confirmation of the polygon across any of the other dates). 363 

Where polygons had been assigned to a matched, inter-date group, the group of polygons 364 

was then ‘averaged’ to produce a single, representative polygon. This was done by 365 

normalising the polygons to have 300 boundary vertices, matching vertices across 366 

polygons based on their position and taking a weighted average of the x- and y-coordinates 367 

(weighted by the confidence score of the individual polygons; details in Section S.4). An 368 

outputted polygon would be assigned a summed confidence (i.e. the sum of each individual 369 
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polygon output confidence scores) to provide an estimate of the reliability of each 370 

prediction, taking into account both the confidence of the original predictions and the 371 

degree of agreement between them. 372 

A space filling algorithm iteratively selected the fused polygons of highest summed 373 

confidence to fill regions of the landscape. A polygon could not be assigned to the landscape 374 

if it overlapped (IoU < 0.2) with a polygon of higher summed confidence. The resulting set of 375 

averaged polygons provided a spatial-temporal integration of the tree crown predictions, 376 

with each polygon representing the average location and outline of a tree crown across 377 

multiple time steps. The algorithm parameters, including confidence thresholds, 𝐼𝑜𝑈 378 

threshold for matching, and number of vertices on a normalised polygon, were tuned on 379 

the training crowns prior to testing on the unseen test regions - the optimised values are 380 

those given above. Details of the fusion algorithm and landscape filling approach are given 381 

in Section S.4. 382 

To evaluate the performance of the segmentation algorithm, we measured the overlap 383 

between predictions and reference crowns. An 𝐼𝑜𝑈 of an overlapping pair of more than 0.5 384 

was considered a match. This is a standard threshold used in the comparison of tree crown 385 

segmentation algorithms (Aubry-Kientz et al. 2021) that allows for small discrepancies in 386 

alignment and outline. These true positives, as well as the unmatched predictions (false 387 

positives) and unmatched manual crowns (false negatives), were used to calculate the 388 

precision, recall and F1 score of the predictions. To determine whether combining tree 389 

crown segmentation predictions across dates improved the segmentation accuracy through 390 

consensus building, we assessed the F1-score of each combination of dates, from each 391 

single date prediction to the combination of all ten dates. By taking all possible date 392 

combinations we estimated a mean and standard deviation for the F1-score for each level of 393 

multi-date combination (single date through to ten dates). 394 

2.5 Tree species classification 395 

Once we had mapped tree crowns as objects in the landscape it was necessary to assign 396 

them a species label. The aim was to train a classifier that could, based on the spectral 397 
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bands of the hyperspectral data, classify tree crowns by species. Of the 3500 manual 398 

crowns in the database, 3256 were labelled down to species level (239 total species) and 399 

delineated, with sufficient confidence to use as a reference for species classification. Within 400 

this set, 169 species had at least two crowns which meant these species could have at least 401 

one crown for training and one crown reserved for independent testing. Crowns that were 402 

the sole representative of their species (70 in total) were dropped from training and testing 403 

of the models but their proportional representation in the overall population was 404 

accounted for in the final evaluation of the performance metrics, correcting any potential 405 

inflation in reported performance from dropping them. Specifically, the weightings of the 406 

weighted F1-scores were adjusted (based on the original, unfiltered dataset) to account for 407 

the fact these species were missing from the test set allowing for a representative estimate 408 

of the landscape level classification accuracy (as opposed to performance metrics evaluated 409 

within a subset of species in the landscape). Due to the scarcity of data, particularly for the 410 

less well represented species, it was necessary to take a pixel-based approach for training 411 

and prediction that would then be aggregated for crown-level predictions (as opposed to 412 

taking each crown as an individual unit). Taking a pixel level approach was also likely to 413 

improve the spatial transferability across a landscape which may have different 414 

atmospheric and illumination conditions. Each pixel was labelled with a class (species) and 415 

contained a reflectance value for each hyperspectral band. Pixels with an illumination of 416 

less than 60% were discarded. The problem was approached as a supervised learning 417 

problem so pixels without a class label were not included in model training. 418 

Whereas the crown delineation required a regional partitioning of crowns between train 419 

and test sets to give a robust estimate of performance, for tree species identification, a 420 

species-stratified crown level partitioning was more suitable. Due to the diversity and 421 

mixing of the forest the average distance between crowns of the same species was large 422 

enough to not require additional spatial constraints that would control for spatial 423 

autocorrelation. Therefore, a test set containing a (stratified) random sample of 20% of 424 

crowns for each species (except where a species had just four individuals or less, in which 425 
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case a single test crown was randomly selected) was separated and withheld until the final 426 

performance evaluations. 427 

Which machine learning classifier has the greatest predictive power? Classifier 428 

models were trained using the hyperspectral data extracted from the delineated tree 429 

crowns. In line with commonly practised methodologies, we evaluated several algorithms 430 

such as Multi-Layer Perceptrons (MLPs), Linear Discriminant Analysis (LDA), Random 431 

Forest (RF), Linear SVM, k-Nearest Neighbours and Logistic Regression due to their 432 

widespread implementations and adaptability. The hyperspectral pixel-data proved 433 

challenging to train on, having 378 spectral bands and spanning 169 species, 99 genera, 434 

and 41 families. The dataset exhibited significant imbalance; for instance, the most 435 

populous tree species boasted 55,448 pixels while the least populated class possessed just 436 

223. Fig. S.5 plots the pixel count by species, illustrating the imbalance. Techniques exist for 437 

boosting the classification accuracy of less well represented classes (e.g. data resampling, 438 

class weight adjustments) but typically at the expense of overall classification accuracy. 439 

Rather than target the identification of rare species, we aimed to generate a map of the 440 

canopy that was comprehensive and representative of observed population species 441 

prevalence so we chose not to employ these methods. While classifiers were ultimately 442 

evaluated at crown level via pixel-wise majority voting, the scarcity of crown labels 443 

required training at the pixel level. Such an approach, however, encounters pitfalls: 444 

adjacent pixels may exhibit local effects that risk leakage between training and validation 445 

sets when naive cross validation is applied. An uninformed species-stratified split at the 446 

pixel level yielded classifiers with high pixel-level accuracy but low crown-level accuracy 447 

on unseen data. To counter this, a stratified group k-fold (k=5) cross-validation strategy 448 

was adopted. Here, pixels were grouped by crown (each pixel was associated with a crown 449 

ID) and stratified by training target, ensuring that (for any fold) pixels within any singular 450 

crown only appeared in either the validation or training set, avoiding the impression of 451 

high performance achieved through fitting to local effects (i.e. not transferrable between 452 

crowns). 453 
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Further complicating matters, the data exhibits significant inter-crown and intra-species 454 

noise. Fig. S.6 depicts the spectral value distribution for the two largest tree crowns of 455 

species Pradosia cochlearia, illustrating noteworthy variance. Meanwhile, Fig. S.7 shows the 456 

standard deviation across each spectral band of the top ten species (by pixel frequency) in 457 

the training dataset, alongside the standard deviation spanning all pixels from those 458 

species. Note that these spectra underwent standardized scaling, ensuring unit variance 459 

across all pixels. 460 

After cross-validation, models were trained on the full training set and used to predict 461 

species classes across the entire landscape. Crown-level classifications were determined by 462 

majority vote of pixels comprising the crown. A more complex approach that averaged 463 

pixel wise class predictions was tested but this gave almost identical results to the simpler 464 

majority-vote approach and so was not taken further. Final performance evaluations were 465 

conducted using the held-out test set (as described above), using the (weighted average) 466 

F1-score for model performance comparisons. Additionally, weighted average precision, 467 

recall, and the macro-average F1-score were recorded, the latter assisting in gauging 468 

performance for less prevalent classes. 469 

How does classification accuracy depend on the number of training crowns? To 470 

understand how many individual training crowns from a species were required to achieve 471 

a good classification accuracy we modelled the relationship between F1-score and training 472 

crown number with a beta regression. As scores could take 0 or 1 values, this was done as a 473 

Bayesian zero-and-one-inflated beta regression with the zoib-1.6 R package (F. Liu and 474 

Kong 2015; F. Liu and Li 2016). We assigned a threshold of F1-score ≥ 0.7 for a ‘good’ 475 

performance. At this value, we could be confident that we correctly identify the majority of 476 

the individuals of a species present without assigning many trees of a different species a 477 

label of that species. This would be important in cases where tree species mapping is used 478 

to expand the sample size in a way that improves the signal-to-noise ratio to answer 479 

species specific ecological questions (e.g. monitoring rates of mortality and phenological 480 

patterns). The expected minimum number of training crowns required to achieve this 481 

performance was recorded. 482 
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Which wavebands are the most important for determining species? To determine 483 

which wavebands were most important for distinguishing species, we selected the best 484 

predictive model (based on the test set F1-score) and extracted feature importance in a 485 

method suitable for that model type. In the case of LDA, this was done by extracting the 486 

scalings (or loadings) for each waveband across all linear discriminant functions. The 487 

scalings determine how each feature contributes to the axes that are constructed to 488 

maximise the separation between classes in the transformed space. They are useful for 489 

understanding which features contribute most to the separation between classes along 490 

each discriminant axis. A larger absolute value suggests a feature is important for 491 

separating the classes and a value near zero suggests that the feature does little to separate 492 

classes. The average absolute scaling value at each band across discriminants gave an 493 

overall importance value for classification, aggregating how important each feature is for 494 

separating the classes in the dataset. 495 

To understand how the resultant waveband importances transferred to prediction 496 

accuracy we performed ablation experiments. Ablation involves systematically removing 497 

(ablating) parts of the model and observing how this affects its performance. We 498 

progressively removed the number of bands (in increments of 10 bands) available to the 499 

classifier by setting their standardised values to 0 prior to model training with four 500 

removal procedures. The first removed bands in a ranked order of importance, starting 501 

with the most important through to the least important. The second reversed the order (i.e. 502 

removing from least to most important). The third shuffled randomly 15 (k-means) 503 

clusters of band importance (retaining band order within the clusters and therefore a 504 

realistic data structure as feature importance tended to cluster in specific regions). The 505 

fourth, removed bands after a random shuffle, which meant all spectral regions were 506 

available to the classifier for longer than in the other methods. 507 

Do spectra observed within tree crowns exhibit phylogenetic signal? To test for 508 

phylogenetic signal in the hyperspectral data, we calculated the mean and standard error of 509 

the standardised reflectance for the pixels belonging to each species, and, using the time 510 

calibrated phylogeny of Baraloto et al. (2012) and the phytools R package (Revell 2012), 511 
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calculated Pagel’s 𝜆 (Pagel 1999), and Blomberg’s 𝐾 (and test) (Blomberg, Garland, and 512 

Ives 2003) on each of the bands of the hyperspectral data included in the species 513 

classification. Pagel’s 𝜆 and Blomberg’s 𝐾 are statistical measures that quantify the degree 514 

of phylogenetic signal in continuous trait data. Pagel’s λ measures the extent to which trait 515 

variation among species is correlated with their phylogenetic relationships, with λ scaling 516 

from no phylogenetic signal (0) to a signal that matches the expected pattern under a 517 

Brownian motion model of evolution (1). Blomberg’s 𝐾 quantifies how the observed trait 518 

variance among species deviates from what would be expected under a Brownian motion 519 

model of trait evolution. A 𝐾 value greater than 1 suggests that closely related species are 520 

more similar than would be expected under a Brownian motion model, while a 𝐾 value less 521 

than 1 suggests less similarity among related species than expected under a Brownian 522 

motion model. Of the 169 species tested in the classifier task, 153 were represented in the 523 

phylogeny and could be used to test for signal. 524 

Are the most important wavebands for species classification those that have the 525 

strongest phylogenetic signal? We tested the correlation (Spearman’s rank 𝜌) between 526 

the strength of the phylogenetic signal (𝜆 and 𝐾) of each spectral band to the feature 527 

importance values of each band. This was to test whether those bands that were helpful in 528 

discriminating species also contained a stronger phylogenetic signal. 529 

Are closely related species more often confused in their classification than distantly 530 

related species? To test whether more closely related species were more likely to be 531 

confused with one another than distantly related species we tested the correlation between 532 

pairwise phylogenetic distance (as Myr of independent evolution between pairs of plant 533 

taxa as provided in the time calibrated phylogeny of Baraloto et al. 2012) and pairwise mis-534 

classification rate. This was done with the rank coefficient as the distributions were highly 535 

non-normal. 536 
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3. Results 537 

3.1 Diversity of Paracou’s canopy 538 

We labelled with confidence crowns of 3,256 individuals to species level. The dataset 539 

comprised 239 unique species, 124 genera and 43 families. We removed 70 of these species 540 

from subsequent analyses because they were only encountered once in our survey, so 541 

could not be included in the classifier training and testing (see Fig. 3). The 70 species 542 

represented just 2% of the crowns we recorded. The filtering process left 169 species for 543 

further analysis. 544 
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 545 

 546 

Figure 3: Abundance of 153 species in the ground validated tree crown dataset mapped onto the phylogeny 547 

of Baraloto et al. (2012). Bars represent the total number of individuals sampled in the field. The legend is 548 

arranged in the order families appear on the tree (anti-clockwise from 3 o’clock). Species with just a sole 549 

representative crown record (70 in total) were not included in the classification task and are not presented here. 550 
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3.2 Tree crown segmentation 551 

Does the fusing of multi-date crown information improve segmentation accuracy? 552 

The accuracy of the tree crown segmentation was improved by combining multiple dates of 553 

tree crown segmentation predictions and retaining crowns that had good confidence and 554 

agreement between dates (see Fig. 4). We compared the accuracy of segmentation from 555 

using a single time step and multiple time steps with an unseen test set of 169 test crowns 556 

across two spatially separate test zones. The accuracy of delineations increased as more 557 

dates were combined. The best performing model overall was the one trained on five dates’ 558 

worth of imagery. The accuracy of its delineation was boosted significantly by combining 559 

information from different time steps from mean F1-score of 0.68 for a single date 560 

prediction, to a peak at the combination of nine time steps with a mean F1-score of 0.78. In 561 

terms of total crown area, approximately 86% of the test region had well located and 562 

delineated crowns (see Fig. 5). Accuracy tended to increase with tree crown area. 563 

The ‘base’ model and the model trained on additional single date of UAV data had a 564 

comparable performance at a single date prediction and combinations of less than seven 565 

dates (see Fig. 4). However, after combining seven dates, the combined delineations of the 566 

‘base’ model became substantially better, surpassing the single time step prediction 567 

accuracy of the model trained on five dates. The model trained on a single time step failed 568 

to improve in accuracy by combining dates to the same degree as the other two models, 569 

suggesting it became overfitted to the limited available data. The ‘base’ model was trained 570 

on a range of non-UAV RGB imagery (see Ball et al. 2023) without the additional focused 571 

training on UAV data; this seemingly led to better temporal transferability than was 572 

achieved with the additional focused training on just a single date. 573 
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 574 

Figure 4: The performance of the tree crown delineations with the number of individual date crown maps that 575 

were combined to form the output ‘consensus’ map. Researchers may or may not have training crowns available 576 

and a varying number of RGB surveys. To reflect this we tested three models trained under different data 577 

regimes: (1) the ‘base’ which was freely available online (trained on different crowns and imagery) (2) the ‘1 578 

date model’ - the base model then trained on manual crowns with a single date of RGB imagery; (3) the ‘5 date 579 

model’ - the base model then trained on manual crowns with five UAV-RGB surveys of the same location. The 580 

mean and standard deviation of the F1-score was calculated by taking all possible date combinations. Note that 581 

only a single combination of dates was possible for the 10-date combination.  582 
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 583 

Figure 5: Predictions and ground truth crowns in the unseen test regions. The reference set of crowns are shown 584 

with black border and their fill colour depends on whether a crown was matched (green) or unmatched (grey) 585 

with a prediction crown. The predictions that match with a reference crown have a green border and those that 586 

did not match a reference crown have a blue border. A match was granted in the case that a reference crown and 587 

a prediction crown had 𝐼𝑜𝑈 ≥ 0.5. 588 

3.3 Tree species classification 589 

Which type of machine learning classifier can most accurately predict the species of 590 

tree crowns from hyperspectral data? The LDA classifier performed best at classifying 591 

the species of the test set of tree crowns from their hyperspectral signal (weighted average 592 

F1- score = 0.75; see Table 2). Of the 169 species included, 65 of the species (38%) were 593 

classified with an F1-score of over 0.7. The logistic regression model had a slightly lower 594 

overall performance than the LDA but with a substantially lower macro-average F1-score 595 

suggesting it struggled with less well represented classes. The more flexible (and expensive 596 

to train) MLP and SVM classifiers failed to match the performance of the LDA classifier, 597 

highlighting that the LDA’s approach to separating the classes led to more robust 598 

transferability between crowns. Furthermore, the LDA classifier was also far quicker taking 599 

20 seconds to train whereas the SVM took more than 7 hours. 600 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2024. ; https://doi.org/10.1101/2024.06.24.600405doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.24.600405
http://creativecommons.org/licenses/by-nc/4.0/


28 

 

As a percentage of total crown area of the test set, about 81% was assigned with the correct 601 

species. By combining the percentage of the total crown area that was well located and 602 

delineated (86%) and the percentage of the total crown area that was assigned the correct 603 

species (81%), we estimate conservatively (given that incorrect areas of each step are 604 

more likely to coincide than not) that 70% of the landscape’s crown area was mapped 605 

correctly. For reference, the crowns of the top 20 most abundant species make up less than 606 

60% of the total crown area of the reference dataset. 607 

 608 

Figure 6: The observed spectrum of five common species which together comprise 31% of the total crowns in 609 

this study. The median line of pixel values is plotted and the IQR is shaded to show spread. (a) Shows the 610 

reflectance spectrum where pixels have been normalised by dividing the reflectance intensity by the summed 611 

reflectance over all bands. (b) The mean value is subtracted from the standardised reflectance, and the resulting 612 

value is divided by the standard deviation for each band across valid tree crown pixels, so that all bands are 613 

shown on the same scale. The plots illustrate how species might be identified from spectral information (spectral 614 

signatures). The two gaps in the SWIR region are the result of removing bands influenced by air humidity. A grey 615 

band at 748 nm to 775 nm shows the spectral region in which bands were most important for classification. 616 
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How many mapped individuals of a given species are needed to achieve a ‘good’ 617 

classification accuracy? We distinguished 65 species with an F1-score of at least 0.7, 618 

which is a far more species than previous studies which are typically limited to no more 619 

than 20 species (Féret and Asner 2013; Laybros et al. 2019, 2020). We were particularly 620 

successful at distinguishing the commoner species. The accuracy of classification increased 621 

with the number of training crowns in the class (see Fig. 7) in agreement with similar 622 

patterns observed by Baldeck and Asner (2014) and Féret and Asner (2013). There was a 623 

sharp increase between 1 and 10 training crowns, after which the performance improved 624 

more gradually. Species with at least 8 training crowns could reasonably be expected to be 625 

classified with an F1-score of 0.7. 626 

Table 2. The accuracy statistics for the classification models based on the unseen test set of crowns (169 627 

species). The weightings for the (weighted average) precision, recall and F1-score were adjusted to reflect 628 

species occurrence in the crown dataset prior to the removal of species with a single representative and the 629 

train-test split thereby correcting any potential inflation in performance from dropping these species. Train time 630 

is the amount of time it took to train the final tuned model of the model class on a 128 core 2 x AMD EPYC 9534 631 

with 1.5TB of ram and NVIDIA A30 GPU. 632 

Classifier Precision Recall 

Weighted

F1-score  

Macro-av. 

F1-score  

Classification 

accuracy Train time 

LDA 0.74 0.79 0.75 0.49 0.78 20s 

MLP 0.65 0.74 0.68 0.37 0.72 2m26s 

Logistic 0.66 0.74 0.68 0.35 0.72 45m20s 

LinearSVM 0.64 0.71 0.65 0.33 0.70 7h11m6s 

QDA 0.52 0.58 0.53 0.21 0.57 14s 

RdmForest 0.41 0.43 0.35 0.11 0.42 41s 

kNN 0.35 0.39 0.31 0.08 0.38 3s 
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 633 

Figure 7: Classifier performance for individual classes (species) in relation to the number of training crowns in 634 

the class. Each dot represents the F1-score for the classification of an individual species. A zero-and-one inflated 635 

beta regression was performed to find the expected F1-score by number of classes (the black dashed line). Dots 636 

are slightly transparent so where they appear darker there are several overlapping species with that score. This 637 

is common with low numbers of training crowns as there are fewer discrete scores that can be attained. The 638 

dotted line at x=8 shows the minimum number of training crowns required before an expected classification 639 

performance of F1-score = 0.7 is acquired for a species. 640 
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 641 

Figure 8: A portion of the finalised crown map overlaid on three selected bands of the PCA projection of the HSI. 642 

The PCA projection of the HSI is purely a means to visualise the hyperspectral data and was not used at any stage 643 

of the analysis. Crowns identified are outlined in black and labelled with predicted species. The black squares are 644 

forest plots. 645 
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Figure 9: The relative feature importance (bars) and phylogenetic signal (points) of each band used in the 646 

classifications. The blue circles indicate where the phylogenetic signal is statistically significant (at 𝑝 ≤ 0.05 ) 647 

while orange circles show values that are not statistically significant.  648 

Which wavebands are important for determining species? Eight bands between 748 649 

and 775 nm, on the edge of the “red edge” transition between the red and near-infrared 650 

ranges, dominated in terms of relative feature importance for separating species (see Fig. 651 

9). The next most important region was 640-660 nm which fell in the red region of the 652 

visible spectrum. The 560-575 nm (green), 1630-1680 nm (SWIR) and 1000-1100 nm 653 
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(NIR) regions were also relatively important for discriminating between the species. While 654 

the importance peak at 748-775 nm appeared stark, ablation tests demonstrated that 655 

removal of the ten most important bands did not lead to an immediate, dramatic drop in 656 

classifier performance with the removal compensated for elsewhere in the spectrum. 657 

However, progressive band ablation showed that removal of the most important bands did 658 

lead to a more substantial drop in performance than by removing bands after shuffling the 659 

clusters of band importance and removing bands in reverse feature importance order (see 660 

Fig. S.4).  Removing bands in a randomised order maintained classifier performance for the 661 

longest as it left all spectral regions available until later in the ablation process (and there 662 

was shared information between adjacent bands). 663 

Do spectra observed within tree crowns exhibit phylogenetic signal? Most 664 

standardised and normalised bands showed a statistically significant phylogenetic signal 665 

(𝑝 ≤ 0.05; see Fig. 9). Out of a total of 378, Pagel’s 𝜆 test gave 310 significant bands while 666 

Blomberg’s 𝐾 test gave 239 (whereas one would expect 19 significant bands by random 667 

chance). This indicated that closely related species were more likely to have similar 668 

reflectance values at spectral bands than distantly related species along most of the 669 

spectrum included in this analysis. 670 

Are the most important wavebands for species classification those that have the 671 

strongest phylogenetic signal? From inspecting Fig. 9, there was no obvious relationship 672 

between feature importance and phylogenetic signal of the bands. However, both 𝜆 (𝜌 =673 

−0.14, 𝑝 = 0.005) and 𝐾 (𝜌 = −0.16, 𝑝 = 0.001) had a statistically significant negative 674 

correlation with feature importance suggesting that the more phylogenetic signal 675 

presented by a band the less helpful it was to discriminate between species. 676 

Are closely related species more often confused in their classification than distantly 677 

related species? By comparing phylogenetic distances between pairs of species with their 678 

pairwise mis-classification rates, we determined that the more closely related the species 679 

the more likely they were to be confused with one another in the classification (𝜌 =680 
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−0.0437, 𝑝 = 0.0008). The confusion matrix of the species is given in Fig. 10. Note where 681 

confusion between species occurs within genera. 682 
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 683 

Figure 10: Normalised confusion matrix for predictions on the test set crowns. The families are ordered by the 684 

number of species included in the study that they contain. Deeper blue values show higher proportions (closer to 685 

1) and the faint colours show proportions closer to 0.  686 
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4. Discussion 687 

Mapping tropical forest canopy species is essential for gaining a granular understanding of 688 

large-scale ecological processes. We have extended the scope and reliability of species 689 

identification from aerial hyperspectral data in diverse tropical forests, surpassing prior 690 

levels of identification accuracy for a far greater variety of species. Previous studies have 691 

managed to map around 20 species with accuracy (Féret and Asner 2013; Laybros et al. 692 

2019; Garzon-Lopez and Lasso 2020) with greater scope in diverse tropical forest species 693 

classification only coming from direct leaf spectroscopy (Prospere, McLaren, and Wilson 694 

2014; Harrison, Rivard, and Sánchez-Azofeifa 2018). Since tropical forests typically contain 695 

several hundred species per hectare (Lee et al. 2002; Duque et al. 2017), of which around 696 

30%-60% make it to the canopy (Bohlman 2015), many of the crowns have been left 697 

unidentified. By extending this number to aim to map comprehensively (178 species with 698 

64 species F1 > 0.7) we get much closer to complete landscape mapping of upper canopy 699 

trees. In our study, the top 20 species covered less than 60% of the total crown area. 700 

Assuming perfect segmentation and classification accuracy, this would be the upper limit of 701 

accuracy (by area) that could be achieved at a landscape scale if only those 20 species were 702 

included in the mapping process. Assuming realistic classification and segmentation 703 

accuracies of 80% (Laybros et al. 2020; Aubry-Kientz et al. 2021) this drops to less than 704 

40% correct crown area mapping at the landscape-scale. In comparison, by expanding the 705 

pool of species (to 169), we were able to achieve an F1-score > 0.7 in 65 species and 706 

accurately map over 70% of the total crown area of the landscape. This more complete 707 

coverage is not the result of more sophisticated species classification algorithms, as we 708 

found that the well-established LDA approach transferred better between crowns than 709 

more flexible methods (SVM, MLP; in agreement with Féret and Asner, 2013). Instead, 710 

improvements were achieved by (1) creating a large reference database of labelled geo-711 

located crowns; (2) improving training/testing datasets by careful mapping and 712 

identification of trees in the field; (3) high-quality hyperspectral imagery that accurately 713 

co-aligned with tree crown maps, allowing species to be distinguished from upper red edge 714 

bands; (4) improved methods for segmenting tree crowns, which is vital for mapping 715 
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across landscapes. We discuss these improvements, the fundamental basis for species 716 

identification based on knowledge of the evolution of plant physiology and morphology, 717 

then consider the obstacles to achieving affordable, easy-to-use and transferable 718 

approaches to tree species identification. 719 

Abundant high quality field data. The field dataset was developed, curated and ground 720 

validated over a number of years. The careful mapping of what was observed from above to 721 

the reality on the ground was labour intensive but the resulting database of 3500 crowns 722 

provided a robust basis upon which this study could be built. Without substantial, high 723 

quality ground datasets, remote sensing is limited in the inferences it is able to 724 

make (Chave et al. 2019; Davies et al. 2021). Despite this, there are few studies that provide 725 

benchmark data upon which tropical tree species mapping approaches can be 726 

tested (Laliberté, Schweiger, and Legendre 2020). 727 

The importance of high-quality hyperspectral imagery. Aerial hyperspectral data 728 

captures spectral intensities across hundreds of contiguous, narrow wavelengths, allowing 729 

signals of biochemical and morphological properties in foliage, such as chlorophyll, water 730 

content and leaf structure to be observed (Clark and Roberts 2012). This depth of 731 

information is indispensable for the remote identification of species, particularly in diverse 732 

tropical forests where conventional, broader band multispectral imagery falls short (Zhang 733 

et al. 2006). The hyperspectral images used in this study were collected close to nadir, 734 

ensuring minimal distortion and noise. Additionally, these images were co-aligned with 735 

ground-truthed tree crown maps, thereby significantly enhancing the reliability and 736 

precision of species identification. Through this approach we identified the narrow upper 737 

red edge band range of 748 to 775 nm as the most important region for discriminating 738 

species (Fig. 9) but that it is valuable to retain information across a broad spectrum (Fig. 739 

S.4). 740 

Improved segmentation of tree crowns. The emergence of CNN methods has allowed for 741 

considerable progress in automatic processing of images across a range of fields. By 742 

integrating geospatial features with the sophisticated Mask R-CNN architecture (He et al. 743 
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2017), the detectree2 Python package (Ball et al. 2023) can harness subtle spectral and 744 

textural clues to delineate trees precisely achieving state-of-the-art performance on tree 745 

detection in aerial RGB data (Gan, Wang, and Iio 2023). Even humans struggle to agree 746 

where trees are located when looking at the same data layers (Section S.1). By allowing a 747 

machine to learn on a carefully validated manual (field verified) dataset, it has synthesised 748 

past human attempts to produce quicker and more consistent predictions. Accuracy of 749 

segmentation can be significantly increased by combining maps of segmented tree crowns 750 

over time. However, forest canopies can appear very different across dates due to 751 

atmospheric perturbations, differences in illumination (resulting in variably shadowed 752 

trees), the sway of trees and branches, phenological changes, death of individual trees and 753 

branches and irregularities in the orthomosaicking process. UAV RGB sensors are cheap 754 

and provide a source of repeated, high-resolution scans over the course of a few months 755 

(during which there are few mortality events and little growth). We found that, by 756 

combining predictions across dates, a model that had never been exposed to the 757 

specification of imagery that it was predicting on (in this case UAV RGB) in training could 758 

reach a comparable accuracy to a model trained on a high volume of the specific imagery 759 

(Fig. 4). There is no substitute for gathering high quality training data but, if this is not 760 

available, repeat predictions with a pre-trained, freely available model can give excellent 761 

tree crown delineations on a new site. This can support the establishment of new studies to 762 

track tree growth, mortality and phenology over large areas. This was the first time that 763 

information across dates has been combined to improve the accuracy of tree crown 764 

delineations. 765 

Towards a spectral-taxonomic understanding of species differentiation 766 

We found upper red edge bands in the 748 to 775 nm range were the most important 767 

bands for discriminating species (Fig. 6), a finding not picked up in Laybros et al. (2019) as 768 

predictors were not standardised prior to model training which is an important step if 769 

model scalings are to translate into feature importance. However, it aligned 770 

with Badourdine et al. (2023)’s assessment of band importance for assessing canopy 771 

taxonomic diversity at the same site. This pattern has not been picked up explicitly in other 772 
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previously published studies but is not precluded by them as importance has generally 773 

been assessed over broader regions of the spectrum (with red edge to NIR generally being 774 

considered important) (Clark, Roberts, and Clark 2005; Dalponte, Bruzzone, and Gianelle 775 

2012; Marconi et al. 2022; Fassnacht et al. 2016; Hennessy, Clarke, and Lewis 2020). Leaf 776 

traits are incorporated into spectra in complex ways (Jacquemoud and Baret 1990; Féret 777 

and Asner 2011) and multiple traits can superimpose in a given spectral region (Curran 778 

1989). The red edge, defined loosely as the 700-750 nm region, is widely recognised as an 779 

important region for classifying vegetation and is linked to chlorophyll content, leaf area 780 

density, water content and overall plant health (Thomas and Gausman 1977; Horler, 781 

Dockray, and Barber 1983; Filella and Penuelas 1994; Boochs et al. 1990; Gitelson, Gritz, 782 

and Merzlyak 2003; Hennessy, Clarke, and Lewis 2020). However, the red edge is usually 783 

defined as the 700-750 nm range. Here we found that the region immediately beyond the 784 

red edge (748-775 nm) was particularly sensitive to differences among species in a tropical 785 

forest. The “upper red edge” is at the transition zone between chlorophyll absorption (in 786 

the red) and cellular structure scattering (in the NIR), potentially capturing information 787 

from both the biochemical and structural aspects of the vegetation. The wavelengths 788 

adjacent to this range are not showing strong feature importance, which means the unique 789 

reflectance in the 748-775 nm range could be capturing some species-specific anatomical 790 

features, possibly related to internal leaf structure affecting scattering of near-infrared 791 

light (Ustin et al. 2009). 792 

Other wavelengths were also of secondary importance. In the visible range, red 793 

wavelengths of 640-660 nm were relatively important: Chlorophyll a and b have peak 794 

absorbance at different wavelengths of red light (660-680 nm vs 640-660 nm respectively), 795 

suggesting that variation in Chlorophyll-b may be important for discriminating 796 

species (Gitelson, Gritz, and Merzlyak 2003). Bands within the green region of 560-575 nm 797 

showed some importance which could be due to chlorophyll reflectance 798 

differences (Gitelson, Gritz, and Merzlyak 2003) but could equally be due to leaf structure, 799 

carotenoids and anthocyanins (Sims and Gamon 2002), or even stress (Carter and Knapp 800 

2001). Water has strong absorption features in the SWIR region. The relative importance of 801 
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bands in the 1630-1700 nm region suggests detection of variation in leaf water content 802 

(Ceccato et al. 2001; Gao 1996) and/or differences in cellulose and lignin 803 

composition (Kokaly et al. 2009; Serrano, Peñuelas, and Ustin 2002). 804 

We found “crown reflectance spectra” (i.e. spectra influenced by leaf reflectance spectra 805 

plus influences of absorption, reflectance and transmission by leaves in a multi-layered tree 806 

crown) showed phylogenetic structure. Madritch et al. (2014) showed the capacity for 807 

aerial hyperspectral imagery to characterise genotypic identity while Schweiger et al. 808 

(2021) showed a correlation between leaf level spectral dissimilarity with phylogenetic 809 

distance (Schweiger et al. 2021). Other studies have shown phylogenetic structure of foliar 810 

spectral traits (Cavender-Bares et al. 2016; Meireles et al. 2020) including for leaves in 811 

tropical forest canopies (McManus et al. 2016). For the first time, we have linked crown 812 

reflectance spectra to the phylogenetic signal to help explain species classification from 813 

aerial hyperspectral data. Most bands exhibited some phylogenetic signal but the 814 

importance for classification was negatively correlated to the signal. This could be for a 815 

number of reasons including spectral overlap between closely related species, the 816 

importance of ecological, environmental and stress factors, and convergent adaptive traits 817 

that occur broadly across the phylogeny. Looking within lineages instead of across the 818 

whole phylogeny may be a way to probe this relationship further (Meireles et al. 2020). 819 

Traits may vary in their degree of phylogenetic conservation depending on a variety of 820 

factors including environmental pressures, mutation rates, and the evolutionary history of 821 

the species in question. Of those traits discussed above, some might be expected to be more 822 

conserved than others. Polymers including lignin and cellulose are critical for plant 823 

structure, and their relative concentrations are generally highly conserved within 824 

lineages (Weng and Chapple 2010). Additionally, leaf structure, including traits such as leaf 825 

thickness or specific leaf area, is conserved to some extent within phylogenetic 826 

lineages (Ackerly and Donoghue 1998). Other traits may be more labile and lack 827 

phylogenetic conservatism. For instance, while the ability to retain water might be 828 

conserved within specific lineages adapted to particular environments, there can be 829 

significant variability in this trait both within and between species based on immediate 830 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2024. ; https://doi.org/10.1101/2024.06.24.600405doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.24.600405
http://creativecommons.org/licenses/by-nc/4.0/


41 

 

environmental conditions (Donovan et al. 2011). Other traits are highly plastic and have 831 

weak phylogenetic signals. Although chlorophyll is essential for photosynthesis in all 832 

plants, the specific amount and ratio between Chla and Chlb concentration can vary greatly 833 

even within a single species based on a variety of factors, including age, health, and 834 

immediate environmental conditions like light and nutrient availability (Gitelson, Gritz, and 835 

Merzlyak 2003). Stress responses are highly variable traits that can differ significantly even 836 

within a species based on environmental pressures and are likely to be among the least 837 

conserved traits phylogenetically. Furthermore, the classifier may be getting clues from soil 838 

and other external factors that the plant interacts with, rather than intrinsic traits of the 839 

plant. With this in mind, it may be that the classifier is basing its decisions more on how 840 

species are responding to environmental conditions rather than on their intrinsic 841 

biophysical properties. Analyses of functional traits variation (e.g. Asner et al. 2014; Asner 842 

2014; Schmitt et al. 2022) may hold the key to understanding the extent to which 843 

hyperspectral sensing is detecting interspecific vs intraspecific variation in biophysical 844 

traits (e.g. see Nunes, Davey, and Coomes 2017). 845 

Our species-focused approach differs from biodiversity metric approach adopted by many 846 

studies, which focuses on mapping taxonomic diversity using spatial variance in the 847 

hyperspectral signal (Laliberté, Schweiger, and Legendre 2020; Vaglio Laurin et al. 2014; 848 

Jucker et al. 2018; Kamoske et al. 2022). Mapping diversity in this way is challenging 849 

because of uneven spectral distances among species (e.g. because related species have 850 

more similar spectra), and the large variance in spectral properties of single species when 851 

compared across landscapes (Badourdine et al. 2023). 852 

Future work 853 

Improvements in classification. Accurate classification of species from hyperspectral 854 

data required learning the spectral features exhibited across crowns of the same species. 855 

To close the gap between realised and intrinsic predictability of species classification we 856 

need to understand the sources of error. Simple mis-classifications due to the misalignment 857 

of data sources or mistakes in the field labelling, are trivial to address. External sources of 858 
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signal variation (e.g. atmospheric disturbance, sun-sensor geometry) may be addressed 859 

with improved data processing based on physical models. Variation of crown spectra 860 

within species driven by biological factors such as water stress, or phenology may be 861 

addressed with more informed feature selection/engineering and more sophisticated 862 

classification approaches. 863 

The more flexible models, including MLP and SVM were better able to fit the local features 864 

of the pixels within crowns, but this failed to transfer to performance across crowns where 865 

the simpler LDA did best. This highlights the challenge in applying cutting-edge machine 866 

learning methods to this task. More work needs to be done on understanding how best to 867 

constrain the more advanced methods so they can learn to encode the key crown-level 868 

features from limited training data. 869 

Addressing transferability. The ultimate aim is to train classifiers that can accurately 870 

predict the species of tree crowns when transferred in time (e.g. different seasons) and 871 

space (e.g. new forest locations). While we were able to identify a wide range of species at a 872 

single date and location from hyperspectral data, we have not demonstrated that it is 873 

possible to transfer this to other locations. It is known that classification degrades with 874 

time between training and prediction scans (Laybros et al. 2019) and if applied to new 875 

regions. 876 

Trees exhibit temporal variability in their spectral signatures due to seasonal phenological 877 

changes (Hesketh and Sánchez-Azofeifa 2012; Chen et al. 2022) and external stressors like 878 

pests or drought, complicating year-to-year or season-to-season species identification. 879 

Even at a fixed point in time, individuals of the same species can be at different 880 

phenological stages (Reich 1995) and can have different spectral signatures based on 881 

geographical factors like soil type, local climate and topographic position (see e.g. Fig. S.6). 882 

Atmospheric conditions, from clouds, gases constitution, to airborne particulates, further 883 

modify the spectral data acquired by airborne sensors (Theiler et al. 2019; Arroyo-Mora et 884 

al. 2021; Schläpfer, Hueni, and Richter 2018). This problem is exacerbated by variations in 885 

atmospheric conditions between airborne sensor and the Earth’s surface, which can modify 886 
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the spectral signatures, making hyperspectral data from different times and locations 887 

difficult to compare directly (Theiler et al. 2019; Prieur et al. 2024, manuscript submitted 888 

for publication). Additionally, spectral responses can differ between sensors, and even the 889 

same sensor can vary over time due to calibrations or degradations (Baumgartner et al. 890 

2012), complicating data comparison. Finally, the spectral data acquired can be influenced 891 

by the illumination (Theiler et al. 2019; Arroyo-Mora et al. 2021; Schläpfer, Hueni, and 892 

Richter 2018) and viewing geometry (Theiler et al. 2019; Schläpfer and Richter 2014; 893 

Montes and Ureña 2012; Duthoit et al. 2008; Schläpfer, Richter, and Feingersh 2015; 894 

Lyapustin et al. 2012), including the angle of sunlight and sensor viewing angle, introducing 895 

additional variability across space and time and necessitating more sophisticated data 896 

handling and analysis approaches. 897 

More work needs to be done on collecting hyperspectral data (and labelled tree crowns) at 898 

different dates with a broader range of locations but also across a wider range of 899 

acquisition conditions. With this it may be possible to identify features/encodings that 900 

remain stable through time and space so that models may be flexible enough to be applied 901 

broadly across an ecosystem. Most features could have some innate biochemical 902 

explanation, or have an explanation more indicative of different levels of stress among 903 

different species. Indeed, there are likely many interacting effects between bands that we 904 

have analysed here. However, it is also possible that machine learning models applied to 905 

real data may find importance in specific spectral ranges due to noise or collinearity in the 906 

data that may not have an easy biological explanation. Without further analyses, 907 

explanations are speculative. Confirming the reason for the peaks in feature importance 908 

would likely require controlled studies involving leaf-level spectroscopy, coupled with 909 

biochemical assays to identify the specific compounds or structure responsible for these 910 

spectral features. 911 

Conclusions 912 

Three key ingredients were required to achieve the accuracy and comprehensiveness of the 913 

mapping presented here: images collected across several dates providing alternate views of 914 
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trees within a dense, complex canopy; high-quality field data that matches botanical and 915 

structural information against remotely sensed spectral information; a precise, automated 916 

segmentation approach capable of imitating human perceptiveness while drawing on rich 917 

information across different dates. With this detailed mapping, we began to probe the 918 

relationship between evolutionary histories and spectral separability of species. Mapping 919 

species in this detail, across large forest extents, opens opportunities for addressing 920 

persistent ecological questions around the current and future states of tropical forests. 921 

With the advent of freely available, high spectral (e.g. EnMAP, CHIME, HYPXIM) and spatial 922 

resolution satellite imagery imagery (e.g. PlanetLabs), the local approaches presented in 923 

this study can give a foundation from which methods for pan-tropical analyses can be 924 

developed. We move towards being able to monitor entire biomes down to the granularity 925 

of individual trees (see e.g. Reiner et al. 2023), potentially ushering in a new era for 926 

studying forest dynamics, including tree growth and mortality, biodiversity, and phenology. 927 
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