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Abstract 

Wise use of evidence to support efficient conservation action is key to tackling 

 biodiversity loss with limited time and resources. Evidence syntheses provide key 

recommendations for conservation decision-makers by assessing and summarising 

evidence, but are not always easy to access, digest, and use. Recent advances in 

Large Language Models (LLMs) present both opportunities and risks in enabling 

faster and more intuitive systems to access evidence syntheses and databases. 

Such systems for natural language search and open-ended evidence-based 

responses are pipelines comprising many components. Most critical of these compo-

nents are the LLM used and how evidence is retrieved from the database. We eval-

uate the performance of ten LLMs across six different database retrieval strategies 

against human experts in answering synthetic multiple-choice question exams on the 

effects of conservation interventions using the Conservation Evidence database. We 

found that LLM performance was comparable with human experts over 45 filtered 

questions, both in correctly answering them and retrieving the document used to 

generate them. Across 1867 unfiltered questions, LLM performance demonstrated a 

level of conservation-specific knowledge, but this varied across topic areas. A hybrid 

retrieval strategy that combines keywords and vector embeddings performed best by 

a substantial margin. We also tested against a state-of-the-art previous generation 

LLM which was outperformed by all ten current models – including smaller, cheaper 

models. Our findings suggest that, with careful domain-specific design, LLMs could 

potentially be powerful tools for enabling expert-level use of evidence syntheses and 

databases in different disciplines. However, general LLMs used ‘out-of-the-box’ are 

likely to perform poorly and misinform decision-makers. By establishing that LLMs 

exhibit comparable performance with human synthesis experts on providing restricted 
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responses to queries of evidence syntheses and databases, future work can build on 

our approach to quantify LLM performance in providing open-ended responses.

Introduction

To maximise our chances of bending the curve of biodiversity loss [1] with lim-
ited time and resources, we need to use the best available evidence to increase 
the effectiveness of conservation efforts whilst also reducing harmful impacts to 
both nature and local communities [2–5]. Whilst evidence syntheses are key to 
informing more effective practice and policy by distilling the scientific literature 
[6–8], they are not always easy for decision-makers to access, digest and use 
[9–11]. However, recent advances in the capabilities of Large Language Models 
(LLMs), statistical models typically optimised to predict and generate text that 
should appear next in a sequence, have made it easier than ever to gain access 
to summaries of information and on-demand answers to specific questions across 
a variety of domains [12–15]. LLMs clearly have considerable potential to sum-
marise information efficiently from vast corpuses of literature, but their use in 
rigorously supporting effective decision-making remains controversial and fraught 
with potential pitfalls and dangers, including the risk of misinformation from biases 
and errors [16,17].
There is particular concern that the proliferation of natural language interfaces 
or ‘chatbots’ (e.g., OpenAI’s ChatGPT, Microsoft Co-Pilot, and Google’s Gemini) 
could misinform decision-makers who may be attracted to LLMs for their ability to 
rapidly and flexibly answer their questions [20–25], particularly in crisis disciplines 
such as biodiversity conservation [26]. LLM usage by those providing advice to 
decision-makers (e.g., consultants and scientists) could also further compound 
poor quality decision-making without properly considering the quality and rele-
vance of evidence [16,23,27,28]. For example, LLMs used ‘out-of-the-box’ have 
the potential for hallucinations, false references and citations, out-of-date and 
biased information based on inherent biases in the training data used to build 
these models [29]. It is therefore vital to determine whether reliable implementa-
tions of LLMs that derive their information from robust evidence syntheses and 
databases can be developed that enable rapid access to evidence bases without 
misinforming decision-makers.

Few studies have quantitatively evaluated the reliability of using LLMs for decision 
support [12,20] and none, to our knowledge, in conservation have made comparisons 
with human experts. It is also unclear how recent advances in fine-tuning and text 
retrieval techniques (e.g., Retrieval Augmented Generation: RAG; Box 1), designed 
to improve the performance of LLMs in specific contexts and reduce errors, may 
help to minimise the risks of misinforming decision-makers [30,31]. We also lack an 
understanding of the subject-specific information that different LLMs possess across 
different topic areas and therefore whether certain LLMs might provide more reliable 
decision support for certain fields.
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Box 1. Glossary of terms used in this study

- Large Language Models (LLMs) are neural networks trained on large quantities of text. Given a block of text, called 
the context, they are optimised to predict the small piece of text that follows. Adding this small piece of text to the con-
text and repeating the process enables text generation. With tuning, these models can follow instructions and carry 
out multi-turn conversations.

- Context is the initial set of text given to a LLM that contains instructions and potentially data for it to use. LLM 
responses to long contexts are expensive (resources scale quadratically with size of the context or ‘context window’ 
for most state-of-the-art models) and so techniques have been developed to focus on only including relevant informa-
tion in the context.

- Retrieval-Augmented Generation (RAG) is one such technique for identifying relevant information to populate the 
context. In this approach, a user’s query is used to retrieve potentially relevant documents from a corpus, and these 
are then added to the context along with the query and sent to the LLM.

- Retrieval strategies are methods for finding relevant information from a corpus:- Sparse retrieval uses 
 keyword-based metrics, which can work well when there is significant keyword overlap between queries and docu-
ments, but can fail when semantically related documents do not share keywords.

- Dense retrieval uses a small language model to embed documents (or document chunks) as datapoints in a high 
dimensional space and is optimised to minimise the distance of semantically related text in the embedding space. 
The user query is embedded and the closest documents in the corpus are returned as relevant.

- Hybrid retrieval using a small language model called a reranker to compare documents retrieved from dense and 
sparse retrieval methods with the query. This can increase performance as the reranker model has access to the full 
text of potentially relevant documents.

- The Conservation Evidence database [18,19] contains over 8858 studies, at time of writing, that test the effective-
ness of conservation actions on biodiversity outcomes – currently 3890 conservation actions have been identified, of 
which 2,250 are tested by a study. Summaries of the evidence for each conservation action are organised into topic 
areas called synopses (e.g., Amphibian, Peatland, and Bird Conservation). For each action, key message paragraphs 
summarise study findings and background paragraphs provide contextual information on the action, whilst an effec-
tiveness category (derived from structured expert elicitation) gives a likely indication of the benefits and/or harms of 
the action whilst accounting for the certainty of the evidence.

Before evaluating how LLMs perform at providing open-ended, free-text responses to questions, we first need to under-
stand their performance at providing restricted responses to questions and retrieving the correct information. We expect 
LLM performance to decline as tasks become more complex and so we first need to establish where performance issues 
occur. Once a performance threshold is determined, we can design systems accordingly to ensure the risk of misinforming 
decision-makers is minimised, with comparable or lower levels of error than humans. Here we begin this process by first 
testing LLM performance on relatively simple tasks with restricted responses.

In this study, we ask ten different state-of-the-art LLMs to provide answers to conservation-related multiple-choice 
questions, including identifying the relevant source document used to answer each question (Fig 1). We use the Con-
servation Evidence database as a case study (Box 1), asking LLMs and human experts (who compiled the database) 
questions on the effects of conservation interventions for which evidence exists in this database (Fig 1). We adapt and 
apply an automated method [32] to measure the task-specific accuracy of Retrieval-Augmented LLMs using automatically 
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generated synthetic exams composed of multiple-choice questions based on a given corpus of documents (Fig 1; Meth-
ods). We generate a large unfiltered dataset of questions to ask LLMs to gain a broad overview of their performance using 
different document retrieval strategies and on different conservation topics, as well as a smaller, filtered set of questions to 
conduct a comparative evaluation between LLMs and human experts (Fig 1). These evaluations represent a cost-efficient, 
interpretable, and robust strategy to select optimal components for an initial RAG system that can provide an intelligent 
search function for users of the Conservation Evidence database.

To determine the robustness of LLMs to errors, we ask whether each LLM performs better at answering questions 
and retrieving the correct source document (containing the answer) compared to: 1. random guessing; 2. human experts 
that curated the Conservation Evidence database; 3. other LLMs; and 4. a predecessor of one of the LLMs - i.e., to see 
whether there has been improvement over time. Our approach could be applied across fields and disciplines to evaluate 
the suitability of different LLMs and retrieval strategies for providing decision support on specific subjects.

In the next section, we document our study’s methodological approach, including information about the Conservation 
Evidence database that we used as the basis of the study, how we generated and filtered synthetic exam questions for 
LLMs and human experts, and how we conducted our statistical analyses. We then describe our results, first in terms of 

Fig 1. A Large Language Model (LLM), Claude 3.5 Sonnet, was used to generate a multiple-choice exam for each of the 2,250 actions using an 
automated method30, (Panel A and B) excluding questions that solely asked questions based on the effectiveness categories in the Conserva-
tion Evidence database. This formed a larger set of 1867 unfiltered questions. We also refined these down to a filtered set of 45 questions to enable a 
comparison with human experts, ensuring that filtered questions were clear and could be answered with a single, accurate answer. Ten LLMs were then 
asked to provide answers under six different exam conditions for each question within the unfiltered and filtered sets (Panel B). These exam conditions 
included three different types of retrieval strategies: sparse, dense, and hybrid retrieval (Box 1).

https://doi.org/10.1371/journal.pone.0323563.g001

https://doi.org/10.1371/journal.pone.0323563.g001
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comparing the performance of LLMs and human experts on a smaller, filtered dataset of questions. This is followed by 
comparing how different LLMs and retrieval strategies performed against each other and across different fields of con-
servation on a larger dataset of questions. Finally, we discuss our key findings, the limitations of our current study and 
future research directions, as well as the potential risks and opportunities posed by using LLMs for decision support using 
evidence databases.

Materials and methods

We evaluated the performance of different Large Language Models (LLMs) in answering questions based on the evidence 
contained within the Conservation Evidence database as a case study. Our methodology was adapted from a previously 
published automated approach [32], which is designed to measure the task-specific accuracy of Retrieval-Augmented 
Generation (RAG) LLMs using automatically generated synthetic exams composed of multiple-choice questions based on 
a given corpus of documents (Fig 1).

Conservation Evidence corpus

The Conservation Evidence database comprises a collation of studies testing the effects of conservation interventions on 
biodiversity outcomes for 26 topic areas (called synopses) structured around various species and habitat groups (e.g., 
Birds, Bees, Terrestrial Mammals). Each synopsis contains a range of actions (22–400 per synopsis), with each action 
including an action title and number, background information, key messages, and evidence summaries – this text consti-
tuted a ‘document’ for the purposes of our study (S1 Fig in S2 File), if any evidence has been found to test that action. For 
this study, we focused on the 2,250 actions that had at least one associated study. See S1 Fig and S2 Fig in S2 File for 
examples of summaries of the evidence for different actions.

Exam generation

We used Claude-3.5 Sonnet for exam question generation, as it was the strongest publicly available LLM at the time of 
the study. The exam generation process involved several steps:

1. Corpus Preparation: We reduced the action documents to key messages and removed actions without supporting 
evidence.

2. Question Generation: We generated 3–4 questions per action using Claude-3.5 Sonnet (see S1 Table in S2 File for 
prompt).

3. Filtering Process: We applied several filters to ensure question quality:

- Shuffled answer options to prevent bias.

- Removed questions referring directly to actions (for closed book testing).

- Applied Jaccard similarity thresholds to ensure we generated high quality incorrect answers (or discriminators [32]) 
– i.e., we removed questions that contained multiple rephrased correct answers (intra-candidate similarity), or where 
the phrasing of the correct answer reflected that of the question, giving away the answer (extra-candidate similarity).

- Removed questions solely based on effectiveness ratings from the CE database (e.g., “How effective is..”).

We deviated from an automated evaluation method30 by not applying Item Response Theory for iterative question filtering 
due to using all post-filtering questions across evaluated LLMs. This gave a large dataset of 1867 unfiltered questions, 
which whilst potentially containing inaccuracies, provided a basis for comparing relative performance across different 
LLMs, retrieval strategies, and conservation topic areas (Fig 1).
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Human evaluation

We also curated a filtered dataset of 45 questions (checked for clarity and accuracy – see below) to measure the abso-
lute performance of different LLMs and retrieval strategies and provide a human evaluation benchmark. To produce this 
filtered dataset, we:

1. Randomly sampled three actions from each synopsis.

2. Applied automated filtering as described above.

3. Iterated the process to ensure each synopsis had at least one question.

4. Manually filtered the questions down to a final subset of 45 questions by two reviewers, who were researchers from the 
Conservation Evidence project team and did not take part in answering the survey questions. The filtering was based 
on three main criteria: 1. the clarity of the question, 2. the accuracy of the answers, and 3. that there was one clear 
correct answer. Both reviewers independently selected questions to reject and then met to discuss any disagreements. 
The final subset of 45 questions were then reviewed again by both researchers to check they met all three criteria.

To establish a human evaluation benchmark, we formed a human expert comparison group that represented the Conser-
vation Evidence project team (six experts, after excluding two experts who filtered the questions - see above) based at the 
University of Cambridge. These experts were uniquely qualified to answer questions and retrieve information on the Con-
servation Evidence database. Their experience in curating and using the online database [18,19] to retrieve information to 
answer practitioner questions on conservation interventions provided the ideal human comparison for this evaluation. This 
human expert group set a benchmark representing highly expert use and querying of the database with which to compare 
LLMs and retrieval strategies against, which could not be achieved by sourcing experts from a wider group of conserva-
tion experts.

The recruitment period for participants ran from 26th August 2024–25th October 2024. We obtained written informed 
consent via series of questions in a Qualtrics survey form that all participants had to complete before answering the 
multiple choice questions for this study. Please see Participant Information Sheet and Consent Forms in the Supporting 
Information for more details. All participants’ data were also anonymised. We obtained ethical approval from the University 
of Cambridge Computing Science Ethics Committee (review no. #2324).

Each human expert answered all 45 multiple choice questions using an online anonymous survey implemented via 
Qualtrics survey software. The questions recorded the responses of these participants to these questions and asked 
them to provide a link to the action webpage (source document) that they used to answer the question (i.e., where they 
retrieved the evidence from). We also timed how long it took each participant to answer each question using a built-in 
timing function in Qualtrics survey software. We used the median time per question and its interquartile range as conser-
vative measures as a small number of extreme values were generated, probably caused by participants taking breaks 
during questions.

Retrieval strategies

We evaluated three retrieval strategies (Box 1) that are commonly used in RAG systems to retrieve relevant information:

1. Dense Retrieval: We used Nomic Embed Text v1.5 through the SentenceTransformers (SBERT) module for embed-
ding. This method represents documents and queries as dense vectors in a high-dimensional space, allowing for 
semantic similarity comparisons.

2. Sparse Retrieval: We employed BM25, a probabilistic retrieval function that ranks documents based on the appear-
ance of query terms, considering term frequency and document length.
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3. Hybrid Retrieval: We used a cross-encoder (ms-marco-MiniLM-L-6-v2) for re-ranking. This approach combines the 
strengths of both dense and sparse retrieval, using an initial retrieval step followed by a more computationally intensive 
re-ranking step.

All retrieval strategies selected two action source documents that were added to the prompt sent to the LLM (S1 Table in 
S2 File).

LLM evaluation

We evaluated the following state-of-the-art LLMs at the time of conducting the study:

- Llama 3.1 8B Instruct-Turbo (FP8)

- Llama 3.1 70B Instruct-Turbo (FP8)

- Gemma2 Instruct - 9B (BF16)

- Gemma2 Instruct - 27B (BF16)

- Mixtral 8x22B Instruct (BF16)

- Gemini 1.5 Flash (gemini-1.5-flash-001)

- Gemini 1.5 Pro (gemini-1.5-pro-001)

- Claude 3.5 Sonnet (claude-3-5-sonnet-20240620)

- GPT-4o (gpt-4o-2024-08-06)

- GPT-4o mini (gpt-4o-mini-2024-07-18).

We used Google Cloud’s Vertex AI for Gemini 1.5 Pro and Gemini 1.5 Flash, OpenAI for GPT-4o and GPT4o mini, 
Claude for Claude 3.5 Sonnet and Deepinfra for all other models. To maximise the repeatability of LLM responses, we 
set the temperature hyperparameter to the minimum value of 0 – this effectively minimises the randomness of LLM 
responses and maximises predictability as much as possible (i.e., almost deterministic). See S1 Table in S2 File for 
the prompt structure used and examples of prompts. We tested these LLMs under six different exam conditions (Fig 1) 
reflecting different retrieval strategies (or lack of them):

1. Closed book (no source documents provided). This scenario represents the inherent knowledge encoded in the weights 
of the LLM (also called its parametric or ‘base’ knowledge; [32]).

2. Oracle (using the singular source document used to generate the question). This scenario provides the LLM with 
access to the ground truth information.

3. Confused (oracle document plus one random document from an action with evidence in the same synopsis). This 
scenario provides the LLM with access to the ground truth information, like the oracle, but adds a potentially confusing 
document as extra information.

4. Dense retrieval (two documents retrieved via a dense model – see Retrieval Strategies section or Box 1).

5. Sparse retrieval (two documents retrieved via a sparse model – see Retrieval Strategies section or Box 1).

6. Hybrid retrieval (top 5 documents via dense retrieval added to top 5 documents via sparse retrieval, which are reranked 
to two top documents; Box 1).

Closed book and oracle scenarios act as lower and upper bounds, respectively, on the quality of the information that an 
LLM can be served with from the corpus [32]. The confused scenario acts as an upper bound on the realistic performance 
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of an LLM because a retrieval strategy must be used to work out how to serve the LLM with the correct source document 
(rather than just being given it in the oracle scenario). The ’confusion’ document is so-called as it is unlikely to provide 
useful information to help the LLM answer the question. This is because the questions being asked related to a specific 
conservation action, given the structure of the Conservation Evidence database, and an action document is a written sum-
mary of the evidence for a discrete conservation action. Therefore, the confused scenario helped us to assess whether an 
additional unrelated document decreases performance or not (i.e., is performance for confused worse than oracle?). We 
also investigated the difference between the three retrieval strategy scenarios (dense, sparse, and hybrid) and the con-
fused scenario, since this will reflect how well they can serve the LLM with the correct source document (unlike confused 
and oracle that guarantee this).

Statistical testing

First, we tested the null hypotheses that there was no difference in the accuracy of each LLM (using a hybrid retrieval 
strategy) and a random guesser (with a 25% chance) at correctly answering the 45 multiple-choice questions. We used a 
modified permutation test, with a similar approach to a sign test, whereby we directly compared the correct and incorrect 
answers given by each LLM versus a random guesser. For questions, where the random guesser gave a correct answer 
and the LLM gave an incorrect answer, a value of -1 was assigned. For the converse, a value of + 1 was assigned (i.e., 
positive values = LLM wins, negative values = random guesser wins). For cases where both the LLM and random guesser 
got the questions right or wrong (i.e., a draw), a value of 0 was assigned. As there was a 25% chance of there being a 
draw for each question, we subtracted the number of draws that might have occurred by chance across the 45 ques-
tions – this was done by randomly sampling from the numbers 0 and 1 (0 = no draw, 1 = draw, with a probability of 0.75 of 
no draw and 0.25 of a draw) with replacement 45 times and taking the sum. We calculated a test statistic by taking the 
sum of the -1s, + 1s, and remaining 0s across the 45 questions as in a conventional sign test. This process was repeated 
10,000 times to produce a raw p-value by calculating the proportion of test statistics equal to zero. Since we tested ten 
null hypotheses (one for each LLM) separately, we used the Holm adjustment to correct p-values for multiplicity. We also 
calculated the mean, standard deviation, and 95% Confidence Intervals of the permutation test statistic.

Second, we repeated the permutation test described previously to test the null hypotheses that there was no differ-
ence in the accuracy of each LLM and a randomly selected human expert at answering multiple-choice questions. This 
approach enabled us to account for: 1. the probability that a human expert and LLM may give the same answer by chance 
based on the four possible answers to the multiple choice question; and 2. the fact we were interested in draws, cases 
where LLMs outperform a human expert and vice versa. We used paired data for both six human experts and each LLM 
(using a hybrid retrieval strategy) for all the 45 filtered questions. For each question, we randomly selected one of the six 
human expert’s answers (allowing us to effectively bootstrap our sample and test our null hypothesis directly), comparing 
its correctness to the correctness of the given LLM’s answer. This process was repeated 1,000,000 times given the large 
number (645) of possible combinations to ensure we obtained robust test statistics, associated error, and p-values. Our 
bootstrapping approach helped to improve the robustness of our human-LLM comparison, given that the expert group 
(with intimate knowledge of the Conservation Evidence database) that we required for this evaluation was relatively small 
and unsuitable for more conventional tests such as McNemar’s test.

Third, we repeated the permutation test for the null hypotheses that there was no difference in the retrieval accuracy 
of each of the three retrieval strategies (sparse, dense, and hybrid) and a randomly selected human expert (for the same 
reasons as before). However, as the number of possible retrieval answers was large (2250 potential action pages to 
retrieve), we did not need to adjust for the probability of draws by chance as we did previously for the multiple-choice 
answers. For each question, we randomly selected one of the six human expert’s retrieval responses, comparing its cor-
rectness to the correctness of the given retrieval strategy’s response. This process was repeated 1,000,000 times given 
the large number (645) of possible combinations.
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Finally, we used two separate logistic regression Generalised Linear Models (GLMs) to test the null hypotheses that 
there were no differences in 1.) the accuracy of different LLMs at answering questions; and 2.) the retrieval accuracy of 
sparse, dense, and hybrid retrieval strategies. GLM selection was carried out via likelihood ratio tests of nested GLMs 
using the ‘anova’ function and Aikake Information Criterion corrected for small sample sizes (threshold of > 2 ΔAICc). Our 
initial GLM consisted of two interaction terms: LLM accuracy ~ Synopsis*LLM + LLM*Exam Type to test whether certain 
LLMs performed better for certain synopses, and whether certain LLMs performed better for certain types of exams (e.g., 
closed book, oracle, hybrid retrieval, etc.). The best GLM selected contained all the explanatory variables but without any 
interactions: LLM accuracy ~ Synopsis + LLM + Exam Type. GLMs for each possible combination of variables were also 
tested, including a null intercept-only GLM. For the second GLM, we initially started with an interaction term: Retrieval 
accuracy ~ Synopsis*Retrieval Strategy, but the best GLM selected contained both variables but without an interaction 
(Retrieval accuracy ~ Synopsis + Retrieval Strategy). GLMs for each possible combination of variables were also tested, 
including a null intercept-only GLM.

Statistical significance of covariates in the best GLMs were assessed with an analysis of deviance test (Type II)  
using the ‘Anova’ function from the R package car (Fox and Weisberg 2019). We conducted pairwise tests between the 
levels of the categorical explanatory variables using the emmeans package with a Tukey adjustment for multiplicity  
(Lenth 2021).

Results

Comparison with human experts for filtered dataset

Open book performance of LLMs demonstrates competitiveness with human expert performance. Across all 45 
selected questions, three LLMs, GPT-4o (97.8%), Llama 3.1 70B (97.8%), and Gemma 2 27B (95.6%) had a higher raw 
average performance than human experts (mean = 94.8%; median = 95.6%; IQR = 93.8–95.6%; Range = 91.1%-97.8%) 
when provided access to the Conservation Evidence corpus and using a hybrid retrieval strategy, but these differences 
were not statistically significant (see below and Table 1). All LLMs performed significantly better than a random guesser 
(means of 27.8–32.8 more correct answers versus a random guesser; p = 0 for all LLMs; S2 Table in S2 File), reflecting 
the fact that the LLM percentage accuracy was substantially higher than the 25% expected by chance.

Most LLMs had a comparable level of performance at correctly answering questions to the average human expert 
(Table 1). Mean test statistic values were typically small with narrow 95% Confidence Intervals (CIs) that overlapped with 
zero, indicative of the large number of draws observed in our datasets (beyond those expected by chance) and thus the 
highly similar performance of each LLM and a randomly selected human across the 45 questions (Table 1). Therefore, 
for most LLMs, we could not reject the null hypothesis (p > 0.05; Table 1) that there was no difference in the head-to-head 
performance of the LLM and a randomly selected human expert, except for Llama 3.1 8B Instruct Turbo which performed 
significantly worse than the human experts (mean = 3.7 fewer correct answers; 95% CIs = 2–5 fewer correct answers; 
p = 0.008; Table 1). Gemma2 - 9B Instruct also appeared to perform worse than a random human expert (mean = 2.7 
fewer correct answers; 95% CIs = 1–4 fewer correct answers; Table 1), but we could not reject the null hypothesis at the 
0.05 significance level after adjusting p-values for multiple comparisons. Conversely, GPT-4o and Llama 3.1 70B Instruct 
Turbo almost always matched or exceeded human experts (mean = 1.3 more correct answers; 95% CIs = 0–3 more correct 
answers; Table 1).

Comparison of retrieval strategy performance with expert retrieval. The hybrid strategy’s overall retrieval accuracy 
(i.e., identifying the correct source document to answer the question) was 88.9%, narrowly outperforming the raw average 
of human experts (mean = 87.8%; median = 88.9%; IQR = 85.6–88.9%; Range = 82.2–93.3%).

Using equivalent permutation tests as before, we found that the per-question retrieval accuracy of dense and sparse 
retrieval strategies was significantly worse than a randomly selected human expert (Table 1 – Dense: mean = 3.5 fewer 
correct retrievals, 95% CIs = 1–6 fewer correct retrievals, p = 0.029; Sparse: mean = 7.5 fewer correct retrievals, 95% 
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CIs = 5–10 fewer correct retrievals, p < 0.001). However, we could not reject the null hypothesis (of no difference in retrieval 
accuracy versus a random expert) for the hybrid retrieval strategy and found comparable levels of accuracy with human 
experts (mean = 0.5 more correct retrievals, 95% CIs = 2 fewer to 3 more correct retrievals; p = 0.271; Table 1). This was 
again associated with large numbers of draws between human experts and the hybrid retrieval strategy.

The median time taken to answer each question by a human expert was 139.5 seconds (IQR 90.9–269.1 seconds) 
versus practically instantaneous responses from any LLM, given retrieval had already been completed and documents 
effectively cached.

Model comparisons with unfiltered dataset

Question accuracy across synopses, exam conditions, and retrieval strategies. We found that for the larger 
dataset of questions, LLM accuracy differed significantly between synopses, LLMs, and exam conditions (S3 Table in S2 
File, S4 Table in S2 File). The accuracy of LLMs was significantly higher for the Biodiversity of Marine Artificial Structures 
and Natural Pest Control synopses than almost all other synopses – differences were non-significant with each other 
and the Bat and Bee synopses (S5 Table in S2 File, Fig 2). Synopses that LLMs performed worst for included Reptile 
Conservation, Control of Freshwater Invasives, and Butterfly and Moth Conservation (Fig 2; S4 Table in S2 File, S5 Table 
in S2 File).

Generally, LLMs had significantly higher accuracy under oracle conditions than all other exam types, followed by con-
fused, hybrid retrieval, dense retrieval, sparse retrieval, and closed book in descending order (Fig. 2; S3 Fig in S2 File) – 
all differences were statistically significant (S6 Table in S2 File).

Table 1. Results of a paired comparison of question accuracy of Large Language Models using a hybrid retrieval strategy versus human 
experts, as well as comparing retrieval accuracy of different retrieval strategies versus human experts for the filtered 45-question set. Test 
statistics are from a permutation test used to test two null hypotheses: 1. LLM: no difference in multiple-choice question accuracy of the 
given LLM and a randomly selected human expert; 2. Retrieval strategies: no difference in retrieval accuracy of a retrieval strategy and a ran-
domly selected human expert. The test statistic can be interpreted as follows: negative values = random guesser or randomly selected human 
expert answered more questions correctly; positive values = LLM/retrieval strategy answered more questions correctly, and zero = all draws or 
equal numbers of wins and losses. The test statistic accounts for the number of draws expected by chance for the multiple-choice questions. 
*denotes statistically significant Holm-adjusted p-value at 0.05 significance level.

Large Language Model Overall percentage 
question accuracy

Holm-adjusted 
p-value

Mean permutation 
test statistic

SD permutation 
test statistic

Lower 95% CI Upper 
95% CI

GPT-4o 97.80% 1.000 1.331 1.000 0.000 3.000

Llama 3.1 70B Instruct 
Turbo

97.80% 1.000 1.335 1.000 0.000 3.000

Gemma2 - 27B Instruct 95.60% 1.000 0.333 0.999 -1.000 2.000

GPT-4o Mini 93.30% 1.000 -0.667 1.000 -2.000 1.000

Mixtral 8x22B 93.30% 1.000 -0.667 1.000 -2.000 1.000

Claude 3.5 Sonnet 93.30% 1.000 -0.665 1.001 -2.000 1.000

Gemini 1.5 Flash 91.10% 0.801 -1.667 1.000 -3.000 0.000

Gemini 1.5 Pro 91.10% 0.801 -1.668 1.000 -3.000 0.000

Gemma2 - 9B Instruct 88.90% 0.135 -2.666 1.000 -4.000 -1.000

Llama 3.1 8B Instruct Turbo 86.70% 0.008* -3.668 1.000 -5.000 -2.000

Retrieval strategy Overall percentage 
retrieval accuracy

Holm-adjusted 
p-value

Mean permutation 
test statistic

SD permutation 
test statistic

Lower 95% CI Upper 
95% CI

Dense 80.0% 0.029* -3.500 1.404 -6.000 -1.000

Sparse 71.1% 0.000* -7.501 1.407 -10.000 -5.000

Hybrid 88.9% 0.270 0.500 1.404 -2.000 3.000

https://doi.org/10.1371/journal.pone.0323563.t001

https://doi.org/10.1371/journal.pone.0323563.t001


PLOS One | https://doi.org/10.1371/journal.pone.0323563 May 15, 2025 11 / 19

Fig 2. Logistic regression Generalised Linear Model (GLM) predictions of the accuracy of LLMs across different synopses, under different 
exam types (mean and 95% Confidence Intervals). The results for confused, sparse, and dense retrieval are found in S3 Fig in S2 File.

https://doi.org/10.1371/journal.pone.0323563.g002

https://doi.org/10.1371/journal.pone.0323563.g002


PLOS One | https://doi.org/10.1371/journal.pone.0323563 May 15, 2025 12 / 19

GPT-4o had significantly higher accuracy than all other LLMs - although the difference was non-significant for Llama 
3.1 70B Instruct Turbo (OR = 1.118, z = 2.807, p = 0.134; S7 Table in S2 File). Llama 3.1 8B had significantly lower accu-
racy than all LLMs, whilst next worst was Mixtral 8x22 which had significantly lower accuracy than the rest of the LLMs 
(S7 Table in S2 File).

LLMs exhibited lower performance in closed book conditions compared to open book scenarios (Fig. 2; S3 Fig in S2 
File; Table 2). When presented with only the correct document all LLMs showed high levels of performance (Table 2) with 
some, such as GPT-4o and Llama 3.1-70B, reaching 100% answer correctness across the human filtered questions (S8 
Table in S2 File). Performance declined across all LLMs when an extraneous, irrelevant document was introduced in the 
‘confused’ scenario as expected (S3 Fig in S2 File; Table 2).

Retrieval accuracy across synopses, exam conditions, and retrieval strategies. Retrieval accuracy 
significantly differed across both synopses and retrieval strategies (Fig. 3; S9 Table and S10 Table in S2 File). Across 
all LLMs, hybrid retrieval accuracy was significantly better than both dense and sparse retrieval (Table 3; S10 Table 
in S2 File, S11 Table in S2 File), as overall there was an increase in retrieving the correct document from 61.8% and 
75.2% to 83.2% from sparse and dense to hybrid, respectively. This aligns with the increased accuracy of LLMs with 
the hybrid retrieval strategy compared to LLMs with dense or sparse retrieval strategies (Fig. 3; S3 Fig in S2 File; S6 
Table in S2 File).

Across all synopses, hybrid retrieval accuracy was significantly greater than both dense (OR = 1.66, z = 6.17, p < 0.0001; 
S11 Table in S2 File) and sparse retrieval (OR = 3.14, z = 14.5, p < 0.0001; S11 Table in S2 File), as was found for LLM 
accuracy (Fig. 2; S6 Table in S2 File). Dense retrieval accuracy was also significantly greater than sparse retrieval 
(OR = 1.89, z = 8.75, p < 0.0001; S11 Table in S2 File). Dense retrieval resulted in the correct source document (used to 
generate the question) for 75.2% of questions, whilst this was only 61.8% for sparse retrieval (Table 3). Notably, in 85.8% 
of questions, dense retrieval returned at least one document from the same synopsis as the source document, for sparse 
this was 62.7% – only marginally higher than returning the correct source document.

For synopses, the poorest retrieval accuracy was found for the Mediterranean Farmland synopsis and significantly 
lower than more than half of the synopses (Fig. 3;S9 Table in S2 File). Several synopses (e.g., Marine and Freshwater 
Mammals, Marine Artificial Structures, Subtidal Benthic Invertebrates) had significantly higher retrieval accuracy than 
some of the synopses with the lowest retrieval accuracies (e.g., Reptile Conservation and Mediterranean Farmland; Fig 3; 
S12 Table in S2 File).

Table 2. Overall Large Language Model (LLM) accuracy across different exam conditions on the unfiltered dataset. The table is sorted by 
LLM performance under the hybrid retrieval strategy. Results for the filtered 45-question dataset are presented in S8 Table in S2 File. We also specify 
whether LLMs are open or closed source.

LLM Closed Book Oracle Confused Dense Sparse Hybrid Open/closed source

GPT-4o 69.8% 95.3% 94.4% 86.1% 83.2% 90.2% Closed

Llama 3.1 70B Instruct Turbo 68.7% 94.3% 92.7% 85.3% 82.5% 87.9% Open

Gemini 1.5 Pro 65.5% 94.9% 92.8% 84.4% 81.3% 87.9% Closed

Gemma2 - 27B Instruct 66.1% 93.7% 92.3% 83.6% 80.7% 87.2% Open

GPT-4o Mini 66.5% 92.4% 91.3% 83.4% 81.1% 86.5% Closed

Gemma2 - 9B Instruct 63.2% 92.5% 91.4% 81.7% 79.0% 85.9% Open

Gemini 1.5 Flash 64.3% 93.4% 91.7% 82.5% 80.0% 85.9% Closed

Claude 3.5 Sonnet 65.4% 93.4% 91.4% 80.7% 78.1% 83.9% Closed

Mixtral 8x22B 64.3% 91.2% 90.1% 79.2% 75.2% 83.0% Open

Llama 3.1 8B Instruct Turbo 62.6% 90.4% 86.1% 77.8% 73.9% 80.1% Open

https://doi.org/10.1371/journal.pone.0323563.t002

https://doi.org/10.1371/journal.pone.0323563.t002
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Generational progress. To assess the improvement of cutting-edge LLMs over time, we tested GPT-3.5 Turbo Instruct 
(released in September 2023 but derived from GPT-3.5 originally released in November 2022) on 679 unfiltered questions 
(S13 Table in S2 File). Performance in the oracle scenario was notably low for GPT-3.5 Turbo Instruct compared to all ten, 
more recent LLMs (Fig 2; Table 1).

Fig 3. Logistic regression Generalised Linear Model (GLM) predictions of the retrieval accuracy of different retrieval strategies across differ-
ent synopses (mean and 95% Confidence Intervals).

https://doi.org/10.1371/journal.pone.0323563.g003

https://doi.org/10.1371/journal.pone.0323563.g003
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Discussion

Our key finding is that most LLMs using a hybrid retrieval strategy, in particular GPT-4o and Llama 3.1 70B Instruct Turbo, 
demonstrated comparable performance at answering multiple choice questions with a randomly selected human expert 
and far better than random guessing. In addition, retrieval accuracy for the hybrid strategy was also competitive with 
human expert retrieval. The retrieval performance was found to be lower than answer correctness for both LLMs and 
humans, likely due to overlapping key messages between actions, which enables related actions to inform responses to 
other questions. An example of this phenomenon is provided in S1 Fig in S2 File.

Our findings also suggest that the closed book performance of LLMs (without any retrieval strategy) demon-
strated a level of conservation-specific knowledge, as evidenced by the fact that all LLMs performed better than 
random guessing under all exam conditions. This varied by topic area (Conservation Evidence synopses) but results 
remained high enough to suggest that the pre-training corpora incorporated relevant conservation literature – whilst 
many studies are published behind paywalls, the Conservation Evidence database website [       18] and synopses are 
freely available online.

We also found that the performance of LLMs was consistent between the following exam conditions: oracle (provid-
ing the correct source action document) and confused (providing both a correct source action document with a random 
one). The confused exam condition is expected to outperform all other conditions (except oracle) since the correct action 
document is always provided (albeit with a random document, hence the term ‘confusion’), whereas it is not in other sce-
narios, which should mean it is more likely to select the correct answer. Since retrieval in our study always results in two 
documents being provided to the LLM, the confused exam condition sets a ceiling for their performance – as expected, 
all LLMs have lower open book performance (using hybrid, dense, or sparse retrieval) than in oracle or confused perfor-
mance across the larger unfiltered dataset. The hybrid retrieval strategy was found to perform substantially better than 
both dense and sparse retrieval strategies in terms of both question and retrieval accuracy, with dense also outperform-
ing sparse. We also found that although the dense retrieval strategy’s performance was higher when only considering 
whether it returned at least one document from the same synopsis as the source document, the sparse strategy's perfor-
mance was negligibly higher. This is likely attributable to actions within the same synopsis being semantically similar and 
dense embeddings being able to capture this.

Finally, our findings also suggest there has been substantial generational improvement in LLM performance over a 
period of approximately two years, given that GPT-3.5 Turbo Instruct (derived from GPT-3.5 released in 2022) performed 
notably poorer than all ten more recently developed LLMs that we tested. This includes against models such as GPT-4o 
mini and Gemini 1.5 Flash which are considerably smaller and cheaper. Therefore, there does appear to be the potential 
for further improvements to the models we tested over the next few years, and emphasises the importance of our vali-
dation pipeline approach to rapidly test new models as they are released and calibrate them against expert-level training 
data.

Table 3. Overall retrieval accuracy of different retrieval strategies across the unfiltered dataset of questions.

Measure Retrieval strategy

Dense Sparse Hybrid

Percentage of questions where source action document was retrieved correctly 75.20% 61.80% 83.20%

Percentage of questions where document from same synopsis was retrieved (considers 
both selected documents)

85.80% 62.70% 84.70%

Percentage of questions where source action document was selected first (if one of two 
documents selected was correct)

80.00% 82.60% 78.20%

https://doi.org/10.1371/journal.pone.0323563.t003

https://doi.org/10.1371/journal.pone.0323563.t003
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Limitations and future research

These findings need to be considered in the context of certain limitations. First, our results relate to LLMs’ specific per-
formance on the Conservation Evidence database, which may not generalise to questions on other conservation ques-
tions. For example, the database structure and nature of questions we asked about specific conservation actions meant 
that there was usually only one correct source document and it was unlikely another source document could be used to 
answer the question correctly – hence why our confused exam condition served the LLM two documents, one correct 
and one to 'confuse'. However, in other databases or use cases this may not be true and so future research may find it 
valuable to test whether there is a saturation point for performance in relation to the number of documents provided to the 
LLM (i.e., using more of the context window available and using different confused scenarios).

We also may not have captured the full range of questions that decision-makers have as the questions were derived from 
the Conservation Evidence database and generated by a LLM – thus any gaps and biases in the CE database and the LLM’s 
pre-training data, including geographic, taxonomic, and language bias [33–35] may influence the questions set and thus the 
observed performance of LLMs. Nevertheless, we found that the observed performance of LLMs was broadly similar between 
the human-filtered questions and the larger dataset of unfiltered questions. However, LLMs are ultimately black box models, 
and we have a poor understanding of the pre-training data used to build them and their associated biases – thus further testing 
across different subject areas and domains remains important. Our results suggest that performance for certain synopses was 
poorer than others, although this did not necessarily follow an obvious taxonomic or biogeographical pattern. Our approach 
could be used to test LLM performance when retrieving information from databases, repositories and syntheses that already 
exist in other disciplines and topic areas – e.g., web databases such as the IUCN Red List and Education Endowment Founda-
tion Toolkits that could be treated in a similar way to how the Conservation Evidence database was in our study.

It is also important to note that our evaluation method used Claude 3.5 Sonnet to generate the questions and answers 
and so all our questions should have been framed in a manner answerable by LLMs. However, Claude 3.5 Sonnet only 
performed in the middle to lower end of other LLMs tested, suggesting that it received no significant advantage in answer-
ing questions over the others. We must also acknowledge that despite setting the hyperparameter ‘temperature’ of all 
LLMs to zero, we cannot completely guarantee that LLM responses were 100% deterministic. However, whilst it is pos-
sible that LLMs may have provided a different response to a small number of questions if repeatedly prompted a large 
number of times, this is unlikely to have altered our major findings.

The human expert group we used was also limited in its sample size because we focused on testing LLMs against 
human experts that were highly familiar with navigating and answering questions using the Conservation Evidence 
database. However, this means that the human expert group we used is likely to represent an extremely high threshold 
of human performance compared to that of a more diverse group of experts – with general conservation expertise but 
less expertise on using the database or synthesising evidence on conservation interventions. In this context, however, the 
LLM performance we observed is even more impressive. We also suggest in the future that Item-Response Theory (IRT) 
is used to refine estimates of human expert versus LLM performance – for example, more extensive questions sets and 
larger, more diverse human groups could be used help to capture and account for variability in the difficulty of the ques-
tions and the participants’ skill levels.

We may have also underestimated the retrieval times for human experts given that the questions we generated were 
based on a single conservation action and thus had a relatively high level of specificity – it may have taken experts longer 
to answer questions that rely on synthesising information across multiple conservation actions, and certainly would have 
taken a wider group of conservation experts without specific knowledge of the database more time too. Therefore, there 
are considerable potential time savings to be achieved by querying the Conservation Evidence database via a LLM-based 
RAG system over asking a human expert.

Finally, our exam-style evaluation scheme was designed to provide a plausible upper bound on LLMs’ performance 
at answering questions, as a first step to evaluating their suitability for decision support when drawing upon evidence 
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databases and syntheses. There is likely to be more potential for errors when answering questions using free text gen-
eration as opposed to the constrained multiple-choice answers we examined. Furthermore, our evaluation only included 
a single task: answering a multiple-choice question on a single conservation action from a single synopsis. Now that 
we have demonstrated LLMs using a hybrid retrieval strategy are competitive with human experts at simple retrieval 
and question answering tasks, future research should investigate at which point LLM performance declines as tasks 
become more complex in terms of both questions and responses (e.g., questions requiring more synthesis across mul-
tiple actions or synopses with nuanced answers). Once this performance threshold with task complexity is identified, 
future systems should then be designed to stay above that threshold to avoid the risk of misinforming decision-makers. 
Our hypothesis would be that LLMs performance on more complex, nuanced questions and/or using free-text, open-
ended answers would be lower than the results presented in our study, but it remains to be seen how much lower (if at 
all) and the types of errors that are made – for example, are they biased in a particular way, or do they provide overcon-
fident or vague answers? Importantly, it is also crucial to understand whether these errors can be removed or mitigated 
against. For instance, there is also the potential to test whether more advanced prompt engineering can improve the 
performance of LLMs, as well as more computationally expensive embedding approaches that might improve retrieval 
performance.

Risks

It is also important to consider the ethics and clear associated risks of using LLMs in a decision support capac-
ity to answer conservation questions based on evidence databases. First, equitable access to using LLMs for 
these purposes is important – any implementation should ideally be free and open access. This may also place an 
important constraint on which LLMs can be used in terms of cost – therefore, it is important to consider the relative 
 cost-effectiveness of LLMs by comparing their performance to their cost. Indeed, we found that many open-source 
LLMs performed just as well as closed source LLMs (Table 2). Furthermore, access to LLMs will always be con-
strained, at least in part, by access to technology, expertise, power, and stable internet connections – although most 
decision support tools should be able to be run on relatively cheap devices, such as mobile phones. Therefore, the 
power dynamics between Global North and Global South institutions and organisations owning and using these 
tools should be carefully considered and recognised to avoid unequitable relationships at the research-practice and 
research-policy interfaces [36].

It is also important to recognise that the training of LLMs comes with substantial embodied environmental costs. 
These environmental costs have already occurred prior to the release of these models (i.e., in their initial training) 
and so there is arguably an ethical case that once developed LLMs should be used as much as possible for tasks 
that might mitigate these environmental costs. However, there are still costs associated with LLM inference via 
APIs (although these are a fraction of the original training costs) and so efficiency in the design of LLM-based RAG 
systems needs to be prioritised. Therefore, we should make sure that if there is a choice between using models with 
similar levels of performance, that we select the simpler, computationally cheaper models with lower environmental 
costs whenever possible.

There is also a risk that LLMs may lead to de-skilling of conservation practitioners and scientists in searching for, and 
assessing, the evidence. Although the goal is to make accessing and interpreting evidence databases and syntheses 
easier and more efficient, there is the risk that practitioners and scientists may think less critically about the evidence, its 
limitations, source, and validity. This could also lead to a lack of accountability in the use of evidence, including biased 
evidence use to support self-serving lines of argument and political rhetoric (e.g., by organisations for greenwashing). 
Therefore, it will be important to carefully design AI-assisted decision support systems to ensure they prompt users to 
understand the uncertainty and limitations associated with the evidence base, including its reliability and local relevance 
and transferability [5,16,33,37,38].
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Conclusion

We have shown that LLMs have comparable performance as human experts at providing restricted responses and 
retrieving relevant information to conservation intervention questions using the Conservation Evidence database. This 
first step in evaluating the performance of LLMs at decision support tasks now enables research to move on to establish-
ing where any performance issues may occur when LLMs answer more complex, nuanced questions with open-ended, 
free-text responses. We stress that if performance issues are observed, we should design systems accordingly above 
this threshold to ensure the risk of misinforming decision-makers is minimised (with comparable or lower levels of error to 
human experts). For the Conservation Evidence database, our current findings suggest that it is justifiable to implement 
an LLM capable of providing an intelligent search function, to help direct users of the website to the most suitable page 
where evidence exists to answer their question. Our findings currently suggest that general LLMs used ‘out-of-the-box’ are 
likely to perform poorly at giving evidence-based advice or recommendations for decision-making. Any decisions based 
on such information are likely to be misinformed. Therefore, we urge those thinking of using general LLMs ‘out-of-the-box’ 
to provide decision support within their organisation or to end users, to spend time and effort to carefully consider how to 
responsibly design and evaluate LLM-based systems using retrieval augmented generation (RAG) and a hybrid retrieval 
strategy.

Looking to the future, if the rapid pace of improvements to underlying models continue, better performing LLMs coupled 
with further refinements of prompts and retrieval strategies could enable the development of RAG systems capable of 
expert-level, evidence-based advice using databases and syntheses. However, careful evaluation of LLM-based decision 
support systems is essential to ensure that more rapid and intuitive access to relevant evidence to inform practice and 
policy does not come at the cost of misinforming decision-makers with biased, erroneous, or misleading information.
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