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About this document

This PACT draft document describes in detail the methodology developed by the Cambridge Center
for Carbon Credits (4C) for estimating the number of credits to be issued to a project in the tropical
moist forest (TMF) biome. It expands on the methodology outlined in (Balmford et al. 2023). For a
higher-level introduction to the methodology then please see the explainer at
https://tinyurl.com/PACTTMFexplainer.

We welcome comments and suggestions for this document.

There is a reference implementation of this methodology, which can be found at
https://github.com/quantifyearth/tmf-implementation/tree/methodology-v2.1

PACT Drafts are working documents of the Cambridge PACT consortium valid for a maximum of six
months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to
use PACT Drafts as reference material or to cite them other than as "work in progress."

This PACT Draft will expire on the date specified above.

This work is released under the CC BY 4.0 licence.
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1.Glossary of acronyms and terms

Term

Tracking carbon and landcover change

AGB Above Ground Biomass

BACI Before-after control-impact

BGB Below Ground Biomass

GEDI NASA Global Ecosystem Dynamics Investigation space-borne LiDAR

AFC Annual Forest Change product from Vancutsem et al 2021

LUC Land Use Class. These are undisturbed forest, degraded forest, deforested,
regrowth forest, water and other (agriculture, urban etc.).

TMF Tropical moist forest - these receive high rainfall which is not seasonal,
supporting evergreen trees

REDD+ Project terminology

REDD+ Reducing Emissions from Deforestation and Forest Degradation

PDD Project design document, prepared in preparation of REDD+ project

Economic terms

SCC Social Cost of Carbon

RCP IPCC Representative Concentration Pathway

Technical terms

Carbon
density

Amount of carbon storage in AGB, BGB and soil per unit land area (typically Mg
C per hectare). A hectare is 100 x 100 m

LUC carbon
density

The average carbon density of a LUC; setting this as a constant allows carbon
stock changes to be calculated by simply tracking land use change.

Evaluation
period

The time period for which carbon credits are being assessed.
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2. Assumptions

Assumption Justification Comments

Carbon measurement

A1 We consider the next 500 years
when carbon accounting.

With a discount rate of 3%, the
present value of damages 500 years
in the future are 1 millionth of the
damages today.

The lower the discount rate, the
longer we need to model carbon
releases.

A2 We can estimate project risk as
being low or high.

Projects are currently allocated as
being low- or high-risk according to
our knowledge of the reputation of
proponents, how long the project has
been running for, and qualitative
appraisal of the resilience of the
project.

We have developed a quantitative
measure for project risk that will be
rolled out in the next version of the
methodology.

A3 LUC carbon density does not
change appreciably over time.
We use LUC carbon density
from 2020.

A reasonable first-order assumption. This may not be accurate, as carbon
density increases each year after the
last episode of deforestation or
disturbance and carbon density of
undisturbed forest is falling over time
as a result of global warming (Hubau
et al. 2020; Brienen et al. 2015). Our
method will be upgraded to reflect
this.

A4 AGB per LUC that is measured
in a 30 km region around the
project area (as opposed to the
project area alone) is
representative of the project.

Rare land use classes have only a
few GEDI shots, so we needed to
sample outside the project area.

A 30 km buffer around the project
was chosen as it ensured that a large
enough set of GEDI points were
available to assess land use class
carbon densities..

This may not be accurate as small
patches of “undisturbed” forest
outside project areas are likely to
have lower AGB as they are affected
by edge effects and historical
disturbance. Preliminary sensitivity
analyses have shown that median
carbon density of the undisturbed
class is fairly insensitive to including
the 30 km buffer (vs. project only).
This may be tested formally in future.
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A5 The GEDI L4A product from
from 2020/1/1 to 2021/1/1 is
an accurate measure of AGB
for each LUC

This is the state of the art for tropical
moist forests and can be replaced by
better estimates as they become
available (e.g. from improved GEDI
allometries)

Nb, Estimates seem particularly bad
for dry forests with open canopies but
reasonable for TMF.

A6 GEDI L4A shots are correctly
filtered using degrade_flag ==
0, beam_type == 'full',
l4_quality_flag == 1, leaf_off = 0

This is the best publicly-known
setting right now according to the
GEDI team (Personal
communication)

Need to upgrade to better filtering as
it becomes available

A7 Land use/forest change
classification by Annual Forest
Change map (AFC) (Vancutsem
et al. 2021) is accurate for
tropical moist forests

This is currently the best known
source for tracking annual gains,
losses and degradation of the
tropical moist forests.

Building our technology on the AFC
product makes us dependent on its
continued existence - the long-term
commitment of the JRC to resourcing
its annual update needs to be
checked .

Mapbiomas is an appropriate source
for Brazil and Indonesia and uses the
same classes.

A8 Carbon density for each LUC is
the same in the project and its
counterfactual areas

A reasonable first-order assumption Also see comments on A4. This
could be refined if necessary. We
should do a sensitivity analysis to
estimating AGB from the
project+buffer vs. 2000 km in-country
zone.

A9 Belowground biomass (BGB)
and deadwood biomass are
assumed to be 20% and 11% of
AGB respectively.

(Cairns et al. 1997)
(IPCC 2003)

When a forest loses x% of its AGB
due to degradation, it also loses x%
of its BGB and deadwood biomass.
Soil carbon is assumed to remain
unchanged.

A10 Total biomass values are
converted to carbon densities
by multiplying by the average
carbon density of 0.47

(Martin and Thomas 2011) This is known to vary somewhat
between ecosystems. Martin and
Thomas found a standard deviation
of 0.025 across their Panamanian
sample

A11 Matches can be found for all
pixels that are sampled from the
project area and its leakage
buffer

Poor matches will be reflected in
standardised mean differences
greater than 0.2.

Matching the unique areas
(especially inaccessible areas) within
the project area may be impossible.
A simple method for excluding
inaccessible areas has been
developed which assumes zero
additionality in these areas. To avoid
bias, the project area has to be
reduced accordingly. A better
approach would be to break up the
evaluation of the project into
standard units which can be
automatically excluded if matching
fails.

A12 Potential match pixels must be
within a 2000 km buffer around
the project as well as match on
ecoregion and country

Restricts matching to a similar
vegetation type within the same
geographic region

For projects under pressure from
international threats it may be
important to match globally, but this
introduces further complications.
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A13 Local leakage only occurs in a
5km buffer around the project

A 5-km buffer is grounded in the
notion that forest protection has an
effect on behaviour of people living
close to its boundary. The choice of
5 km versus 10 or 15 km is
somewhat arbitrary.
A paper on deforestation leakage
undermining the conservation value
of tropical and subtropical protected
areas (Ford et al. 2020) looked at
leakage in a 10 km zone for 120
protected areas. Guizar-Coutiño
(2022) evaluated the effectiveness of
40 REDD sites at reducing CO2
emissions using a 15 km buffer.

Quantifying local leakage and
attributing causality to the project is
challenging: first, actions beyond the
control of the project can cause
changes in leakage area carbon
stock; second, for small projects, the
leakage area can be many times
larger than the project area and even
small changes in stocks relative to
the leakage counterfactual are
amplified over the large area, so that
the additionality signal is exceeded.
Consequently, we take the view that
the maximum amount of leakage that
can occur is limited by the total
quantity of additionality generated; in
other words the food or fibre
production attributable to leakage,
can not exceed the amount displaced
by the project. Local leakage can
potentially be ignored but only
through evidence that the actors,
labour and finance involved were
completely different from those
involved in the project.

A14 Only REDD+ project areas
(both Verra and non-Verra)
should be excluded from
counterfactual matches

Guizar-Countiño et al. 2022 found
inclusion of other types of protected
areas made little difference to
additionality estimates

There may be arguments to match
on specific land use management
classes (e.g. community forest or
industrial forest) or by ownership.
This is not currently implemented.

Need to expand this to include all
REDD sites from VCS + Plan Vivo
scrape

A15 CO2 fluxes following a land
cover class change are equal to
the difference in carbon stocks
between those classes
expressed in CO2 units (by
multiplying carbon stock by the
ratio of the molecular masses of
CO2 (44) to C (12) = 3.667) and
this change is instantaneous

This assumption is satisfactory for
estimates of fluxes arising from
deforestation of undisturbed forest
and provides estimates that are close
to or as good as those used by most
carbon projects which parameterise
land cover class carbon density
estimates from field plots.

The approach is naive for tracking
land cover changes between other
classes, particularly where complex
degradation or regeneration
dynamics are at play.

In reality carbon stocks in different
pools are drawn down or released at
different rates (i.e. they are not
instantaneous). Applying simple time
lags to emissions is a straightforward
improvement for future versions.

A16 Because each counterfactual
point is forced to be the same
land cover class as its paired
project point at project start,
additionality is assumed to be
equal to the simple difference at
the end of the evaluation period

This is for simplicity. Selection bias could result in
under-estimating the counterfactual
loss trajectory in the pre-project
period. This would materialise as a
divergence of the counterfactual from
the project line rather than vice versa
as expected.

This issue can be reduced by
working with aggregated pixel blocks
(as per Garcia and Heilmeyer, 2023).

Permanence
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A17 The annual discount rate of the
SCC is 3%.

This discount rate is compatible with
an increase in the SCC of 2% per
year as well as the implied Ramsey
discount rate using the mean pure
time preference rate and elasticity of
marginal utility of the expert survey
reported in Drupp et al. (2018).

Balmford et al. (2023) provide
sensitivity analysis of eP to discount
rate choice.

A18 Relative concentration pathway
(RCP) 4.5 is used to project
atmospheric carbon
concentration.

RCP 4.5 is more conservative than
RCP 2.6.

This assumes a moderately fast
decarbonization, not as fast as RCP
2.6 but not as slow as RCP 8.5

A19 Subjective assessments of
project risk are reflected in
release rates during the project
term and, importantly, that
release schedules reflect credit
value without exposing buyers
to unanticipated reversal risk.

In the absence of better data this
allows us to value impermanent
storage of NBS credits, factoring
some qualitative perception of risks.

There can be a significant difference
in EP depending on whether the
project is assessed as low- or
high-risk.

We have developed a stochastic
analysis that will be incorporated into
the next revision of the methodology.

Matching

A20 A sampling density of 0.05-0.25
randomly generated spatial
pixels per hectare over the
project area is sufficient

This is currently set to generate a
reasonably dense sample at the
scale of most REDD+ projects.

For larger projects we have reduced
the sampling density due to the run
time required on GEE. For smaller
projects we want to establish a
higher sample density to ensure
precision in the treatment set.

Ideally, we should choose a target
number of pixels based on statistical
sampling theory. This will be
incorporated into the next revision of
the methodology.

A21 The significant factors driving
deforestation are covered by
the following matching
variables: jurisdiction (country),
ecoregion, land use class,
elevation, slope, accessibility
[time to health care as a proxy
for time to town], proportionate
land cover in a 1km radius. We
assume that matching using
BACI + Mahalanobis distance
sampling without replacement
and without callipers gives
reliable estimates of
additionality.

These are well known proximal
causes applied to “unplanned”
deforestation (Geist and Lambin
2001). However, the ultimate causes
may be “planned” deforestation for
commodity production for
international markets
https://ourworldindata.org/drivers-of-
deforestation

Population density is so coarse that it
is currently not found to be a useful
matching variable.

Soil types are a categorical hierarchy
but currently too fine to be used
effectively for matching. A better
layer should be sought.

Including recent history of
deforestation in 1 km radius around
points improves matching but needs
more thought to consider if this
creates bias in outcomes.

Additionality estimates are very
sensitive to decisions about the
choice of matching algorithm and its
parameters (Guizar-Coutiño 2022)

A22 Counterfactual matches are
only made within the same
country

Political decisions are key to success
of REDD+; matching by country is
reasonable because reference areas
are typically in the same region
(VM0009) and subject to the same
policies, legislation and regulation
(VM0015).There is precedent for
matching in country (Guizar-Countiño
et al., 2022; West et al., 2023).

We have the ability to test the
sensitivity of results to matching to
similar ecoregions beyond the
country, should this be necessary.
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Some projects may be exposed to
threats which are international in
nature, in which case a country-level
counterfactual will underestimate
additionality.

A23 To be matched, pixels must
have the same land use at start
of project and at 5 and 10 years
before the start (t0, t-5, t-10)

This is a reasonable approximation
to VCS which requires that REDD+
projects have remained forest for 10
years prior to project initiation
(VM0007; VM0015).

It is possible to extend the demand
that pixels be matched on the entire
time series. However this can only
ever go back as early as
approximately 1990.

A24 Matching using BACI +
Mahalanobis distance sampling
without replacement and
without callipers gives reliable
estimates of additionality.

This is a widely used approach in
assessment of conservation impacts
(Schleicher et al., 2019)

Additionality estimates are very
sensitive to decisions about the
choice of matching algorithm and its
parameters (Guizar-Coutiño 2022)

A25 The project area is the spatial
polygon that defines the area in
which the project is primarily
operating to conserve forest.
Consequences on carbon
storage are only assessed
within the project and
surrounding leakage areas.

Verra trims project area boundaries
to exclude any deforestation occuring
within the project boundary in the run
up to implementation. Under their
standard there’s no deforestation in
the project area prior to project start,
by definition. Thus, it is not
necessary to apply BACI
methodologies to the project area
under these circumstances.
Guizar-Coutiño et al. (2022) chose to
work with CI methods not BACI for
this reason. An alternative solution to
this is to analyse project and buffer
areas simultaneously, because the
buffer areas include the deforested
pixels that Verra has excluded from
the project area.

A26 We assume that the evolution of
the project and the
counterfactual differ due only to
human intervention.

This is the state of the art. Project and counterfactual pixels that
have the same parameters might still
differ due to their inherent
stochasticity. Moreover, project pixels
are typically geographically
contiguous, whereas counterfactual
pixels may not be. In this case, even
with perfect per-pixel matching,
geographically contiguous
disturbances may affect project pixels
more than counterfactual pixels, and
deforestation pressures on small
parcel sizes may affect
counterfactual pixels more than
project pixels. We can test this
through placebos. Placebo-based
testing has been developed will be
included in the next version of the
methodology.

A27 We assume that a 1km buffer
around the project is useful for
ensuring M contains good
candidates for matching

Tests suggest that better matches
are found when M is derived from
features derived from K unioned with
the buffer around the project

The importance of this assumption
has not been empirically assessed.

Algorithms/formats
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A28 All raster projections are in
WGS84 at a resolution of 30
metres per pixel at the equator.

This is the resolution of the JRC
Land Usage Class dataset, which
underpins most work.

A29 Geometric operations will occur
in the appropriate UTM
projection, being then converted
to WGS84 for rastering.

All geometric projections (e.g.,
calculating leakage zone) must occur
in a uniform projection with minimal
distortions.

Unless otherwise stated, if an area of
interest that is being expanded
overlies multiple UTM zones we work
with the one that covers the majority
of the area concerned.

3.Notation

Term Meaning (units) Default value

SCC(t) Social cost of carbon at time interval t ($⋅GtCO2
-1)

𝛿 Annual discount rate 3%/year

L Lifetime of carbon in the atmosphere 500 years (A1)

R Mean observed deforestation amount in the project in the prior 5
years from the time at which this computation is being carried out
(GtCO2)

D Social cost of damage from the release of sequestered carbon
following the assumed release schedule

t0 Year of start of project implementation

tnow Year of evaluation

t-5 Five years before year of implementation

tend Year when the project ends according to the project design
document

trelease Year when all net sequestration in the evaluation period is
released

Ptot(t) Total biomass in project in year t

Ctot(t) Total biomass in the matched counterfactual region in year t
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4.Inputs
The following inputs are required to run the evaluation, and any results are only valid for
comparison when all inputs match exactly: for example, JRC historic land usage data is
updated annually using improved processing algorithms, so it is important to know the
publishing year of the dataset, as JRC tiles for 2020 look different between the 2022 release
and the 2023 release.

Data Notes Recommended source

I1 Year project started Project Design Document (PDD)

I2 Years for evaluation Years for which project ex-post
additionality, leakage and other
impacts need to be estimated.

PDD

I3 Project boundaries Geodetic polygons that
delineate the project zone(s)

PDD

I4 Project risk level Qualitative assessment
whether the project is low- or
high-risk. (A2)

I5 Project ABG Optional, can be calculated
using (I6)

PDD

I6 AGB Point data Used if project document has
no AGB per LUC (I5)

GEDI Level 4A data (Duncanson et al.,
2022)

I7 Land cover time series
data consisting of an
image layer for each
year of interest.

For any pixel, its land use
class for a given year can be
looked up as
AFC[year][latitude][longitude]
.

We use the Annual Forest Change
Collection (AFC) land use class at
30m resolution per pixel. The land
use classes(LUC) are Undisturbed,
Degraded, Deforested, Regrowth,
Water, and Other.

EU JRC Annual Change Forest
Observations

[Vancutsem et al, 2021].

Important: historic data is constantly
revised for this dataset, so the year of
data publishing must be recorded.

I8 International Country
Borders

Open Street Map country boundaries
from osm-boundaries.

Important: Boundaries change over
time, so a specified snapshot
(currently 20230605) must be used.
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I9 Ecoregions data RESOLVE Ecoregions 2017
(RESOLVE Biodiversity and Wildlife
Solutions, Dinerstein et at. 2017)

I10 Elevation raster data NASA/CGIAR SRTM 90m Digital
Elevation (NASA/CGIAR)

I11 Land accessibility raster
data

Motorized Accessibility to Healthcare
in 2015 (Malaria Atlas Project; Weiss
et al, 2018)

I12 Polygon database of all
REDD+ projects

Compiled from Verra registry and any
other REDD+ projects we are aware
of

I13 Social Cost of Carbon Table from (Groom and Venmans.
2022). See also (Nordhaus 2014;
Marshal and Kelly 2010)

I14 Random seed For repeatability all random
number generators should be
seeded with a known value,
and that seed has to form
part of the inputs.

5. Outputs

Data

O1 Additionality of the project for each year in the evaluation period which is the period from the
official start year of the project until the most recent year of ex-post evaluation; if no alternative
claims of additionality are available the evaluation is made up to the most recently available land
cover data (tCO2)

O2 Local leakage of the project for each year in the evaluation period (tCO2)

O3 An estimate of equivalent permanence (eP) of the carbon sequestered in the evaluation period
(0<= EP <= 1)

O4 Paired pixels for each iteration with the first element of the pair being from the match area and
the second being in the region from which counterfactuals are drawn, used for visualisation.

O5 The unmatched pixels for each iteration.

O6 All potential control pixels (the set M), output as an aid to understanding how well the project
matching criteria worked.
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6. Algorithm
The project area is modelled as a population of approximately 30m by 30m pixels at the

equator in WGS84 (A28), each of whose centroids lies within the given project polygons. Each pixel is
associated with a land use class, such as ‘Undisturbed’ or ‘Deforested’ using the JRC Annual Forest
Change map. We then use GEDI shots to estimate the carbon density of each land use class (LUC)
(Section 6.1.3).

We match a sample of project pixels to corresponding counterfactual pixels of the same
environmental properties and historic LUC and then compute the total biomass in both the treatment
(project) and control (counterfactual) sets. The difference between the two values is the additionality.
This process is repeated 100 times to get a statistically significant result. A similar computation is
carried out for the leakage area. This leakage is subtracted from the additionality.

Finally the permanence of (additionality-leakage) in the evaluation period is estimated using
the approach from (Balmford et al, 2023) (Section 6.4).

For a higher-level introduction to the methodology then please see the explainer at
https://tinyurl.com/PACTTMFexplainer.

6.1 Data preparation for identifying candidate counterfactual
pixels and tracking land use

1. Slope data is derived from the SRTM Elevation data (I10)
a. Project SRTM tile from WGS84 to UTM (slicing to fit UTM areas if necessary)
b. Run GDALDEM Slope using the defaults
c. Project back to WGS84 (reassembling if necessary)

2. Coarsened Proportional land Cover (CPC) layers are produced for each land use class for
each year by first converting the land class pixels to a binary layer (i.e. is the pixel in the class
or not for each of the 6 LUC) and then for each pixel taking a 1km radius circle (in a
geographic projection like UTM) and then summing the binary layer and dividing by the total
number of contributing pixels. (I7)

3. We now estimate the carbon density in Mg/ha for each LUC in the project area. AGB was
predicted by the NASA team by modelling relative canopy height density values extracted
from full waveform space-borne LiDAR measurement as a function of field measurements of
AGB obtained from a global dataset, using ordinary least squares regression (Duncanson et
al. 2022). (A3, I6, I7)

a. If the project is assessed as low-risk, then the AGB per land class for both the project
and control are determined using both the values reported in the PDD as well as the
process detailed below. If the PDD does not report AGB values for certain land
classes, the assumptions made in determining these values should be clearly stated.
(A2)

b. Let B = a set of pixels, initially empty.

c. Find all GEDI level 4a shots from 2020/1/1 to 2021/1/1 falling within the project area
as well as a 30 km buffer around it (A29) and add them to B. (A4, A5)

d. Let S be the set of shots in B after filtering using degrade_flag == 0, beam_type
== 'full', l4_quality_flag == 1, leaf_off_flag != “leaf-off state”.
(A6)

e. For each shot s in S
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i. Set s.LUC from the Annual Forest Change land use class from 2020 (A5, A7,
A8)

ii. Discard s if the LUC of any of the 8 immediately neighbouring pixels differs
from the s.LUC. This corrects for the fact that GEDI shots have a 10 m
geolocation error with respect to AFC (Dubayah et al. 2020).

iii. Save s.LUC and s.agbd (the AGB value for the shot) in a table T.

f. Compute the median s.agbd value for each land use class from T.

g. Belowground biomass (BGB) and deadwood biomass is assumed to be 20% and
11% of AGB respectively (Cairns et al. 1997; IPCC 2003). (A9)

h. Total biomass (= AGB + BGB + deadwood biomass) is converted to total carbon
density in Mg/ha by multiplying by the average carbon density of 0.47 (A10)

6.2 Additionality & Leakage
The calculation of additionality and leakage are very similar and share a core algorithm. In summary,
this takes an area of interest (the project or the project’s leakage zone) and runs the matching
algorithm to find counterfactual pixels for this area. With this set of pairs we then analyse the carbon
stock changes in these two regions to make an estimate on the amount of additional carbon (which
may be negative in the case of leakage).

Inputs:
1. Area of Interest (AOI)
2. t0 the start year and tnow the year of assessment (I1, I2)
3. The project polygon with leakage buffer (this is explicitly needed as part of the Find Potential

Matches section to exclude it from the matching zone, whether calculating additionality or
leakage both will remove this entire region). (I3)

Algorithm:
1. Let T be the set of Pixels in the AOI at time t0 (A24, A25). Let |T | be the number of pixels in T.
2. For each pixel in T find its land use class V.
3. For each year t of time series from t0 to tnow, where t0 = year of project start and tnow is the year

of assessment.
a. Let NT,V(t) be the number of pixels in each class V in T in year t
b. The proportion of the AOI in class V in year t is NT,V(t)/|T|.
c. For each land use class V

i. Find the total area in class V by multiplying NT,V(t)/|T| by the total AOI area in
ha.

ii. ST,V(t) = Carbon stock per ha in class V * total area of class V in the AOI.
d. Ptot(t) = total carbon stock for year t in the AOI = ST,V(t)Σ

𝑉 

e. In preparation for finding counterfactuals, call procedure Find Potential Matches to
generate the set of potential treatment pixels (K) and potential control pixels (M) with:

i. Treatment area (also called match source) = AOI (A11)
ii. Control area, made up by taking the Match destination area and subtracting

the exclude region:
1. Match destination = the intersection of a 2000-km buffer around AOI

(A12, A29), the country(s) boundary from countries the AOI
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intersects with, and the ecoregion boundaries from RESOLVE
Ecoregions for all the ecoregions that lie within the project (I8, I9)

2. Exclude region = other REDD+ project areas AND a 5 km leakage
buffer around these REDD+ projects AND the project polygon with
leakage buffer (A13, A14, A29, I12)

f. Do the following 100 times, as indexed by i: We assume that 100 iterations suffice to
reach statistical confidence

i. Let C be the set of counterfactual matching pixels, which is the result of
calling Procedure Find Matches with:

1. The set of potential treatment pixels K
2. The set of potential match pixels M
3. A random seed derived from i for repeatability

ii. Let |C| be the number of pixels in C.
iii. For each pixel in C find its land use class V.
iv. Let NC,V(t) be the number of pixels in class V in C in t.
v. The proportion of the counterfactual area in class V in year t is NC,V(t)/|C|.

vi. For each land use class V
1. Find the total area in class V in the counterfactual scenario by

multiplying NC,V(t)/|C| by the total AOI area.
2. SC,V(t)(i) = carbon stock per unit area in class V * total area of class V

in the counterfactual scenario.
g. Ctot(t) = mean total carbon for year t in the counterfactual scenario = SC,V(t)(i)

1
100 Σ

𝑉 
Σ

𝑖 

h. Calculate additionality within AOI in t CO2 by multiplying carbon stocks by the ratio of
the molecular masses of CO2 (44) to C (12) as (A15, A16, A26):

Additionality(t) = (Ptot(t) - Ctot(t))(44/12)

6.3 Additionality
Additionality is calculated by calling 6.2 Additionality and Leakage with the project area as defined by
the project polygons as the Area of Interest and the project’s start year as the start year.

6.4 Leakage
Leakage is calculated by calling 6.2 Additionality and Leakage with an area that is a 5 km buffer
around the project polygons as the Area of Interest and the project’s start year as the start year. There
are two key changes compared to additionality:

1. If the project is assessed as low-risk, then the leakage is determined as a fraction of the
additionality as reported in the PDD as well as using 6.2 Additionality and Leakage

2. Leakage should be a negative number, before returning the final output (step 6.2.3.h). We cap
the leakage estimate at 0 to prevent returning a positive leakage number (i.e. additionality).

6.5 Permanence
This computation is carried out at the end of an evaluation period in year tnow. Let the end of the
immediately previous time period where estimates of additionality and leakage are available be
denoted by tnow-1 (normally, this would be the end of the previous year, which may precede the year of
project start). This computation is only carried out if the additionality exceeds the leakage. If this is
not the case, the permanence is 0.
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1. Let C(tnow) denote the net sequestration/release of (additionality - leakage) during the prior
time period, which is computed at the end of that period:

C(tnow) = (Additionality(tnow) + Leakage(tnow)) - ((Additionality(tnow-1) + Leakage(tnow-1))

2. Compute the average annual additionality, net of leakage, for the past 5 years in the project
area as:

R = (C(tnow) - C(tnow-5))1
5

where tnow-5 denotes 5 years before tnow. Note that part of this period could predate the project start.
3. Adjust C(tnow) for anticipated releases from prior evaluations that didn’t happen:

a. Let r(t1,tnow) denote the anticipated release in the evaluation period tnow estimated at
any prior time t1.

b. Compute Adjustment = r(t1,tnow)Σ
𝑡1

c. Let Cadj(tnow) = C(tnow) + Adjustment. If Cadj(tnow) is negative (a bad outcome), then the
project will need to borrow credits from other projects or a credit buffer, requiring
human intervention. Ideally, we wish the prior release schedules to be sufficiently
conservative that Cadj(tnow) > 0.

4. If Cadj(tnow) is positive, the benefit of sequestration is Cadj(tnow) * SCC(tnow), where SCC(tnow) is
the social cost of carbon at time tnow (see Table in Appendix). Otherwise, the damage from
carbon release is -Cadj(tnow) * SCC(tnow). (A17, A18)

5. If a project is assessed to be low-risk then the release during each evaluation period before
the end of the project, tend, is 0 and r(tnow, tend+ j), j >0 is assumed to be equal to R until
Cadj(tnow) drops to zero. (A19, A2)

6. If a project is assessed to be high-risk then r(tnow tnow+ j), j >0 is assumed to be equal to R until
Cadj(tnow) drops to zero. (A19, A2)

7. Let trelease denote the year when all net sequestration in the prior period (tnow-1 to tnow) is
released. Under the release schedule assumed in the previous step, and with a discount
factor , the damage from the carbon release (D) is calculated as:𝛿

𝐷 =
𝑖=𝑡

𝑛𝑜𝑤

𝑡
𝑛𝑜𝑤

+𝑡
𝑟𝑒𝑙𝑒𝑎𝑠𝑒

∑ 𝑟(𝑡
𝑛𝑜𝑤

, 𝑖)⋅𝑆𝐶𝐶(𝑖)  /(1 + 𝛿)
(𝑖 −𝑡

𝑛𝑜𝑤
)

8. Equivalent permanence (eP) is calculated as eP = .
𝐶

𝑎𝑑𝑗
(𝑡

𝑛𝑜𝑤
)𝑆𝐶𝐶(𝑡

𝑛𝑜𝑤
)−𝐷

𝐶
𝑎𝑑𝑗

(𝑡
𝑛𝑜𝑤

)𝑆𝐶𝐶(𝑡
𝑛𝑜𝑤

)

6.6 Find Potential Matches (match source, match destination)
(This is called from Section 6.2 and 6.3)

Inputs:
1. Treatment area (aka Match source) (polygon)
2. Control area (polygon) (this is landscape within which project is located minus areas where

matches won’t be sought. The match area is automatically excluded.)
3. Country boundaries (I3)
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4. Ecoregions (I9)
5. Land usage data (I7)
6. Year project started (I1)
7. Elevation (I10)
8. Slope (6.1.2)
9. Accessibility (I11)

Algorithm
1. Let K be a sample of 30m-resolution pixels in the treatment area, sampled at a density of 0.25

points per hectare for smaller projects and 0.05 points per ha for large projects (>250k ha)
(A20) and let K_buffer be a sample using the same method but where the treatment area has
been expanded to add a 1000m buffer (A27, A29).

2. Let R be the potential set of pixels in the control area(s), i.e. the counterfactual area
3. Calculate M, which is the set of potentially matching from R based on K_buffer. For each pixel

in K_buffer and for each potential pixel p in R add p to M if all of the following fields match
(A21):

a. Country (exact) (A22)
b. Ecoregion (exact)
c. Land use class at t-10 and t-5 and t0 (exact)
d. CPC value of undisturbed and deforested land at t-10 and t-5 and t0 (±0.1)
e. Elevation (±200m)
f. Slope (±2.5°)
g. Accessibility in 2019 (±10 minutes)

Output
1. Set K, treatment points (K_buffer will not be used later)
2. Set M, all potential control points (see figure 1)
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Figure 1: A binary mask of set M for a project located in Sierra Leone. Pixels in white are
counterfactual candidates for pixels inside the project. The base map is from OpenStreetMap.

6.7 Find Matches (set K, set M, random seed) (This is called from Section
6.2 and 6.3)

Inputs:
1. Set K, an area distributed sample of treatment pixels
2. Set M, the set of all possible control pixels (i.e., potential matches)
3. A random seed used for sampling this round
4. Country boundaries (I3)
5. Ecoregions (I9)
6. Land usage data (I7)
7. Year project started (I1)
8. Elevation (I10)
9. Slope (6.1.2)
10. Accessibility (I11)

Algorithm
1. Apply the random seed, so that all sampling actions below are derived by this seed
2. Let S be an empty set of pixels, used to store subset of M for matching in this round
3. Let Ksub be a randomly distributed 10% sample of pixels in K (I14)
4. For each pixel k in Ksub:

a. Select a random pixel from M, and add it to S if it matches the following criteria:
i. Country (exact) (A22)
ii. Ecoregion (exact)
iii. Land use class at t-10 and t-5 and t0 (exact)
iv. CPC value of undisturbed and deforested land at t-10 and t-5 and t0 (±0.1)
v. Elevation (±200m)

vi. Slope (±2.5°)
vii. Accessibility in 2019 (±10 minutes)

b. Repeat this until you have either 100 pixels matched with this k or have exhausted M
c. If there were no matches for k at this stage remove it from Ksub

5. Build a inverse covariance matrix, I, from the pixels in S using the following fields:
a. Elevation
b. Slope
c. Accessibility
d. CPC Value of undisturbed and deforested land at t-10, t-5 and t0

6. Let MP be the empty set of pixels (used to store the matched pairs)
7. For each pixel in Ksub, find and add to MP, if possible, a distinct match in S where there is a

hard match on:
a. land use class at years t-10, t-5 and t0, where t = the project start date. (A23)
b. Country
c. Ecoregion

and that has the minimum Mahalanobis distance using I across the following matching
variables:

d. Elevation
e. Slope
f. Accessibility
g. CPC value of undisturbed and deforested land at t-10, t-5 and t0
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8. Compute the standardised mean differences between each matching variable of the paired
pixels in MP (specifically, between the treatment and control in treatment standard
deviations).

9. Matching results are considered valid and can be used for additionality calculations if:
a. All matching variables are balanced which is defined as the std mean diff <0.2
b. A continuous matching variable in the range [0,1] with a value of close to 1 or 0

(>0.975 or <0.025) has standard mean difference > 0.2. This is because, when close
to 0% or 100%, the standard mean difference can be misleading.

10. If results are not valid, then no credible claims can be made, so exit with failure to match.
11. Return MP

Figure 2: A set of matched points MP for a project located in Sierra Leone. Project points are shown
in green (Ksub) and matched counterfactual points are shown in blue (matches from S). Pairs are
shown with connecting lines. The base map is from OpenStreetMap and the Global Forest Change

dataset.

7. Known issues
1. The current method does not depend on empirical observations: landscape-level

quantification of disturbance patterns estimated from remote sensing data products is needed
to estimate area-specific release schedules.

2. The current method does not take into account spatial and temporal variability in disturbance
and carbon release schedule: it will be preferable to take into account local environmental
(temperature, dryness etc.) and socioeconomic (proximity to road, settlements, existing
disturbed areas) factors, as well as past land use and disturbance history in order to account
for this variability and to be able to make more accurate predictions in a shifting future.

3. This methodology will not work well for plots/polygons that are smaller than 10ha or so
because of the pixel size being 30m, which can lead to substantial boundary effects.
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9. Appendices
SCC spreadsheet.xlsx

10. Changelog

10.1 Version 2.0 to Version 2.1

● Added changelog
● Added link to high-level explainer at https://tinyurl.com/PACTTMFexplainer
● Added link to code branch that matches this document
● Added assumption A27 explaining 1 km buffer for generating M
● Added credit for source of base tiles in image
● Added clarifying language around 30 km buffer for GEDI shots
● Updated use of term biome used instead of ecoregion in places
● Updated author list to include Abby Williams
● Removed duplicate text from introduction
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