PACT Tropical Moist Forest Accreditation Methodology

Version 2.1

Published: August 12, 2024 Expires: February 12, 2025

A. Balmford*, D. Coomes, M. Dales, P. Ferris, J. Hartup, S. Jaffer, S. Keshav**, M. Lam, A. Madhavapeddy, R. Message, E.-P. Rau, T. Swinfield, C. Wheeler, and A. Williams

University of Cambridge

*Author order is alphabetical. **Corresponding author: sk818@cam.ac.uk

About this document

This PACT draft document describes in detail the methodology developed by the <u>Cambridge Center</u> <u>for Carbon Credits</u> (4C) for estimating the number of credits to be issued to a project in the tropical moist forest (TMF) biome. It expands on the methodology outlined in (Balmford et al. 2023). For a higher-level introduction to the methodology then please see the explainer at <u>https://tinyurl.com/PACTTMFexplainer</u>.

We welcome comments and suggestions for this document.

There is a reference implementation of this methodology, which can be found at <u>https://github.com/guantifyearth/tmf-implementation/tree/methodology-v2.1</u>

PACT Drafts are working documents of the <u>Cambridge PACT consortium</u> valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use PACT Drafts as reference material or to cite them other than as "work in progress."

This PACT Draft will expire on the date specified above.

This work is released under the CC BY 4.0 licence.

Table of contents

- 1. Glossary of terms
- 2. Assumptions
- 3. Notation
- 4. Inputs
- 5. Outputs
- 6. Algorithm
- 7. Known issues
- 8. <u>References</u>
- 9. <u>Appendices</u>
- 10. Changelog

1. Glossary of acronyms and terms

Term	
	Tracking carbon and landcover change
AGB	Above Ground Biomass
BACI	Before-after control-impact
BGB	Below Ground Biomass
GEDI	NASA Global Ecosystem Dynamics Investigation space-borne LiDAR
AFC	Annual Forest Change product from Vancutsem et al 2021
LUC	Land Use Class. These are undisturbed forest, degraded forest, deforested, regrowth forest, water and other (agriculture, urban etc.).
TMF	Tropical moist forest - these receive high rainfall which is not seasonal, supporting evergreen trees
	REDD+ Project terminology
REDD+	Reducing Emissions from Deforestation and Forest Degradation
PDD	Project design document, prepared in preparation of REDD+ project
	Economic terms
SCC	Social Cost of Carbon
RCP	IPCC Representative Concentration Pathway
	Technical terms
Carbon density	Amount of carbon storage in AGB, BGB and soil per unit land area (typically Mg C per hectare). A hectare is 100 x 100 m
LUC carbon density	The average carbon density of a LUC; setting this as a constant allows carbon stock changes to be calculated by simply tracking land use change.
Evaluation period	The time period for which carbon credits are being assessed.

2. Assumptions

	Assumption	Justification	Comments
	Carbon measurement		
A1	We consider the next 500 years when carbon accounting.	With a discount rate of 3%, the present value of damages 500 years in the future are 1 millionth of the damages today.	The lower the discount rate, the longer we need to model carbon releases.
A2	We can estimate project risk as being low or high.	Projects are currently allocated as being low- or high-risk according to our knowledge of the reputation of proponents, how long the project has been running for, and qualitative appraisal of the resilience of the project.	We have developed a quantitative measure for project risk that will be rolled out in the next version of the methodology.
A3	LUC carbon density does not change appreciably over time. We use LUC carbon density from 2020.	A reasonable first-order assumption.	This may not be accurate, as carbon density increases each year after the last episode of deforestation or disturbance and carbon density of undisturbed forest is falling over time as a result of global warming (Hubau et al. 2020; Brienen et al. 2015). Our method will be upgraded to reflect this.
A4	AGB per LUC that is measured in a 30 km region around the project area (as opposed to the project area alone) is representative of the project.	Rare land use classes have only a few GEDI shots, so we needed to sample outside the project area. A 30 km buffer around the project was chosen as it ensured that a large enough set of GEDI points were available to assess land use class carbon densities	This may not be accurate as small patches of "undisturbed" forest outside project areas are likely to have lower AGB as they are affected by edge effects and historical disturbance. Preliminary sensitivity analyses have shown that median carbon density of the undisturbed class is fairly insensitive to including the 30 km buffer (vs. project only). This may be tested formally in future.

A5	The GEDI L4A product from from 2020/1/1 to 2021/1/1 is an accurate measure of AGB for each LUC	This is the state of the art for tropical moist forests and can be replaced by better estimates as they become available (e.g. from improved GEDI allometries)	Nb, Estimates seem particularly bad for dry forests with open canopies but reasonable for TMF.
A6	GEDI L4A shots are correctly filtered using degrade_flag == 0, beam_type == 'full', I4_quality_flag == 1, leaf_off = 0	This is the best publicly-known setting right now according to the GEDI team (Personal communication)	Need to upgrade to better filtering as it becomes available
A7	Land use/forest change classification by Annual Forest Change map (AFC) (Vancutsem et al. 2021) is accurate for tropical moist forests	This is currently the best known source for tracking annual gains, losses and degradation of the tropical moist forests.	Building our technology on the AFC product makes us dependent on its continued existence - the long-term commitment of the JRC to resourcing its annual update needs to be checked . Mapbiomas is an appropriate source
			for Brazil and Indonesia and uses the same classes.
A8	Carbon density for each LUC is the same in the project and its counterfactual areas	A reasonable first-order assumption	Also see comments on A4. This could be refined if necessary. We should do a sensitivity analysis to estimating AGB from the project+buffer vs. 2000 km in-country zone.
A9	Belowground biomass (BGB) and deadwood biomass are assumed to be 20% and 11% of AGB respectively.	(Cairns et al. 1997) (IPCC 2003)	When a forest loses x% of its AGB due to degradation, it also loses x% of its BGB and deadwood biomass. Soil carbon is assumed to remain unchanged.
A10	Total biomass values are converted to carbon densities by multiplying by the average carbon density of 0.47	(Martin and Thomas 2011)	This is known to vary somewhat between ecosystems. Martin and Thomas found a standard deviation of 0.025 across their Panamanian sample
A11	Matches can be found for all pixels that are sampled from the project area and its leakage buffer	Poor matches will be reflected in standardised mean differences greater than 0.2.	Matching the unique areas (especially inaccessible areas) within the project area may be impossible. A simple method for excluding inaccessible areas has been developed which assumes zero additionality in these areas. To avoid bias, the project area has to be reduced accordingly. A better approach would be to break up the evaluation of the project into standard units which can be automatically excluded if matching fails.
A12	Potential match pixels must be within a 2000 km buffer around the project as well as match on ecoregion and country	Restricts matching to a similar vegetation type within the same geographic region	For projects under pressure from international threats it may be important to match globally, but this introduces further complications.

A13	Local leakage only occurs in a 5km buffer around the project	A 5-km buffer is grounded in the notion that forest protection has an effect on behaviour of people living close to its boundary. The choice of 5 km versus 10 or 15 km is somewhat arbitrary. A paper on deforestation leakage undermining the conservation value of tropical and subtropical protected areas (Ford et al. 2020) looked at leakage in a 10 km zone for 120 protected areas. Guizar-Coutiño (2022) evaluated the effectiveness of 40 REDD sites at reducing CO2 emissions using a 15 km buffer.	Quantifying local leakage and attributing causality to the project is challenging: first, actions beyond the control of the project can cause changes in leakage area carbon stock; second, for small projects, the leakage area can be many times larger than the project area and even small changes in stocks relative to the leakage counterfactual are amplified over the large area, so that the additionality signal is exceeded. Consequently, we take the view that the maximum amount of leakage that can occur is limited by the total quantity of additionality generated; in other words the food or fibre production attributable to leakage, can not exceed the amount displaced by the project. Local leakage can potentially be ignored but only through evidence that the actors, labour and finance involved were completely different from those involved in the project.
A14	Only REDD+ project areas (both Verra and non-Verra) should be excluded from counterfactual matches	Guizar-Countiño et al. 2022 found inclusion of other types of protected areas made little difference to additionality estimates	There may be arguments to match on specific land use management classes (e.g. community forest or industrial forest) or by ownership. This is not currently implemented. Need to expand this to include all REDD sites from VCS + Plan Vivo scrape
A15	CO_2 fluxes following a land cover class change are equal to the difference in carbon stocks between those classes expressed in CO_2 units (by multiplying carbon stock by the ratio of the molecular masses of CO2 (44) to C (12) = 3.667) and this change is instantaneous	This assumption is satisfactory for estimates of fluxes arising from deforestation of undisturbed forest and provides estimates that are close to or as good as those used by most carbon projects which parameterise land cover class carbon density estimates from field plots.	The approach is naive for tracking land cover changes between other classes, particularly where complex degradation or regeneration dynamics are at play. In reality carbon stocks in different pools are drawn down or released at different rates (i.e. they are not instantaneous). Applying simple time lags to emissions is a straightforward improvement for future versions.
A16	Because each counterfactual point is forced to be the same land cover class as its paired project point at project start, additionality is assumed to be equal to the simple difference at the end of the evaluation period	This is for simplicity.	Selection bias could result in under-estimating the counterfactual loss trajectory in the pre-project period. This would materialise as a divergence of the counterfactual from the project line rather than vice versa as expected. This issue can be reduced by
			working with aggregated pixel blocks (as per Garcia and Heilmeyer, 2023).
	Permanence		

A17	The annual discount rate of the SCC is 3%.	This discount rate is compatible with an increase in the SCC of 2% per year as well as the implied Ramsey discount rate using the mean pure time preference rate and elasticity of marginal utility of the expert survey reported in Drupp et al. (2018).	Balmford et al. (2023) provide sensitivity analysis of eP to discount rate choice.
A18	Relative concentration pathway (RCP) 4.5 is used to project atmospheric carbon concentration.	RCP 4.5 is more conservative than RCP 2.6.	This assumes a moderately fast decarbonization, not as fast as RCP 2.6 but not as slow as RCP 8.5
A19	Subjective assessments of project risk are reflected in release rates during the project term and, importantly, that release schedules reflect credit value without exposing buyers to unanticipated reversal risk.	In the absence of better data this allows us to value impermanent storage of NBS credits, factoring some qualitative perception of risks.	There can be a significant difference in EP depending on whether the project is assessed as low- or high-risk. We have developed a stochastic analysis that will be incorporated into the next revision of the methodology.
	Matching		
A20	A sampling density of 0.05-0.25 randomly generated spatial pixels per hectare over the project area is sufficient	This is currently set to generate a reasonably dense sample at the scale of most REDD+ projects. For larger projects we have reduced the sampling density due to the run time required on GEE. For smaller projects we want to establish a higher sample density to ensure precision in the treatment set.	Ideally, we should choose a target number of pixels based on statistical sampling theory. This will be incorporated into the next revision of the methodology.
A21	The significant factors driving deforestation are covered by the following matching variables: jurisdiction (country), ecoregion, land use class, elevation, slope, accessibility [time to health care as a proxy for time to town], proportionate land cover in a 1km radius. We assume that matching using BACI + Mahalanobis distance sampling without replacement and without callipers gives reliable estimates of additionality.	These are well known proximal causes applied to "unplanned" deforestation (Geist and Lambin 2001). However, the ultimate causes may be "planned" deforestation for commodity production for international markets <u>https://ourworldindata.org/drivers-of- deforestation</u>	Population density is so coarse that it is currently not found to be a useful matching variable. Soil types are a categorical hierarchy but currently too fine to be used effectively for matching. A better layer should be sought. Including recent history of deforestation in 1 km radius around points improves matching but needs more thought to consider if this creates bias in outcomes. Additionality estimates are very sensitive to decisions about the choice of matching algorithm and its parameters (Guizar-Coutiño 2022)
A22	Counterfactual matches are only made within the same country	Political decisions are key to success of REDD+; matching by country is reasonable because reference areas are typically in the same region (VM0009) and subject to the same policies, legislation and regulation (VM0015).There is precedent for matching in country (Guizar-Countiño et al., 2022; West et al., 2023).	We have the ability to test the sensitivity of results to matching to similar ecoregions beyond the country, should this be necessary.

		Some projects may be exposed to threats which are international in nature, in which case a country-level counterfactual will underestimate additionality.	
A23	To be matched, pixels must have the same land use at start of project and at 5 and 10 years before the start (t_0 , t_{-5} , t_{-10})	This is a reasonable approximation to VCS which requires that REDD+ projects have remained forest for 10 years prior to project initiation (VM0007; VM0015).	It is possible to extend the demand that pixels be matched on the entire time series. However this can only ever go back as early as approximately 1990.
A24	Matching using BACI + Mahalanobis distance sampling without replacement and without callipers gives reliable estimates of additionality.	This is a widely used approach in assessment of conservation impacts (Schleicher et al., 2019)	Additionality estimates are very sensitive to decisions about the choice of matching algorithm and its parameters (Guizar-Coutiño 2022)
A25	The project area is the spatial polygon that defines the area in which the project is primarily operating to conserve forest. Consequences on carbon storage are only assessed within the project and surrounding leakage areas.		Verra trims project area boundaries to exclude any deforestation occuring within the project boundary in the run up to implementation. Under their standard there's no deforestation in the project area prior to project start, by definition. Thus, it is not necessary to apply BACI methodologies to the project area under these circumstances. Guizar-Coutiño et al. (2022) chose to work with CI methods not BACI for this reason. An alternative solution to this is to analyse project and buffer areas simultaneously, because the buffer areas include the deforested pixels that Verra has excluded from the project area.
A26	We assume that the evolution of the project and the counterfactual differ due only to human intervention.	This is the state of the art.	Project and counterfactual pixels that have the same parameters might still differ due to their inherent stochasticity. Moreover, project pixels are typically geographically contiguous, whereas counterfactual pixels may not be. In this case, even with perfect per-pixel matching, geographically contiguous disturbances may affect project pixels more than counterfactual pixels, and deforestation pressures on small parcel sizes may affect counterfactual pixels more than project pixels. We can test this through placebos. Placebo-based testing has been developed will be included in the next version of the methodology.
A27	We assume that a 1km buffer around the project is useful for ensuring M contains good candidates for matching	Tests suggest that better matches are found when M is derived from features derived from K unioned with the buffer around the project	The importance of this assumption has not been empirically assessed.
	Algorithms/formats		

A28	All raster projections are in WGS84 at a resolution of 30 metres per pixel at the equator.	This is the resolution of the JRC Land Usage Class dataset, which underpins most work.	
A29	Geometric operations will occur in the appropriate UTM projection, being then converted to WGS84 for rastering.	All geometric projections (e.g., calculating leakage zone) must occur in a uniform projection with minimal distortions.	Unless otherwise stated, if an area of interest that is being expanded overlies multiple UTM zones we work with the one that covers the majority of the area concerned.

3.Notation

Term	Meaning (units)	Default value
SCC(t)	Social cost of carbon at time interval t (\$ GtCO2-1)	
δ	Annual discount rate	3%/year
L	Lifetime of carbon in the atmosphere	500 years (A1)
R	Mean observed deforestation amount in the project in the prior 5 years from the time at which this computation is being carried out $(GtCO_2)$	
D	Social cost of damage from the release of sequestered carbon following the assumed release schedule	
to	Year of start of project implementation	
t _{now}	Year of evaluation	
t5	Five years before year of implementation	
t _{end}	Year when the project ends according to the project design document	
t _{release}	Year when all net sequestration in the evaluation period is released	
$P_{tot}(t)$	Total biomass in project in year <i>t</i>	
C _{tot} (t)	Total biomass in the matched counterfactual region in year t	

4.Inputs

The following inputs are required to run the evaluation, and any results are only valid for comparison when all inputs match exactly: for example, JRC historic land usage data is updated annually using improved processing algorithms, so it is important to know the publishing year of the dataset, as JRC tiles for 2020 look different between the 2022 release and the 2023 release.

	Data	Notes	Recommended source
11	Year project started		Project Design Document (PDD)
12	Years for evaluation	Years for which project ex-post additionality, leakage and other impacts need to be estimated.	PDD
13	Project boundaries	Geodetic polygons that delineate the project zone(s)	PDD
14	Project risk level	Qualitative assessment whether the project is low- or high-risk. (A2)	
15	Project ABG	Optional, can be calculated using (I6)	PDD
16	AGB Point data	Used if project document has no AGB per LUC (I5)	GEDI Level 4A data (Duncanson et al., 2022)
17	Land cover time series data consisting of an image layer for each year of interest.	For any pixel, its land use class for a given year can be looked up as AFC[year][latitude][longitude]	We use the Annual Forest Change Collection (AFC) land use class at 30m resolution per pixel. The land use classes(LUC) are Undisturbed, Degraded, Deforested, Regrowth, Water, and Other.
			EU JRC Annual Change Forest Observations
			[Vancutsem et al, 2021].
			Important : historic data is constantly revised for this dataset, so the year of data publishing must be recorded.
18	International Country Borders		Open Street Map country boundaries from <u>osm-boundaries</u> .
			Important : Boundaries change over time, so a specified snapshot (currently 20230605) must be used.

19	Ecoregions data		RESOLVE Ecoregions 2017 (<u>RESOLVE Biodiversity and Wildlife</u> <u>Solutions</u> , Dinerstein <i>et at.</i> 2017)
110	Elevation raster data		NASA/CGIAR SRTM 90m Digital Elevation (<u>NASA/CGIAR</u>)
111	Land accessibility raster data		Motorized Accessibility to Healthcare in 2015 (<u>Malaria Atlas Project;</u> Weiss et al, 2018)
112	Polygon database of all REDD+ projects		Compiled from Verra registry and any other REDD+ projects we are aware of
113	Social Cost of Carbon		Table from (Groom and Venmans. 2022). See also (Nordhaus 2014; Marshal and Kelly 2010)
114	Random seed	For repeatability all random number generators should be seeded with a known value, and that seed has to form part of the inputs.	

5. Outputs

	Data
01	Additionality of the project for each year in the evaluation period which is the period from the official start year of the project until the most recent year of ex-post evaluation; if no alternative claims of additionality are available the evaluation is made up to the most recently available land cover data (tCO_2)
02	Local leakage of the project for each year in the evaluation period (tCO_2)
O3	An estimate of equivalent permanence (eP) of the carbon sequestered in the evaluation period (0<= EP <= 1)
04	Paired pixels for each iteration with the first element of the pair being from the match area and the second being in the region from which counterfactuals are drawn, used for visualisation.
O5	The unmatched pixels for each iteration.
O6	All potential control pixels (the set M), output as an aid to understanding how well the project matching criteria worked.

6. Algorithm

The project area is modelled as a population of approximately 30m by 30m pixels at the equator in WGS84 (A28), each of whose centroids lies within the given project polygons. Each pixel is associated with a land use class, such as 'Undisturbed' or 'Deforested' using the JRC Annual Forest Change map. We then use GEDI shots to estimate the carbon density of each land use class (LUC) (Section 6.1.3).

We match a sample of project pixels to corresponding counterfactual pixels of the same environmental properties and historic LUC and then compute the total biomass in both the treatment (project) and control (counterfactual) sets. The difference between the two values is the additionality. This process is repeated 100 times to get a statistically significant result. A similar computation is carried out for the leakage area. This leakage is subtracted from the additionality.

Finally the permanence of (additionality-leakage) in the evaluation period is estimated using the approach from (Balmford et al, 2023) (Section 6.4).

For a higher-level introduction to the methodology then please see the explainer at <u>https://tinyurl.com/PACTTMFexplainer</u>.

6.1 Data preparation for identifying candidate counterfactual pixels and tracking land use

- 1. Slope data is derived from the SRTM Elevation data (I10)
 - a. Project SRTM tile from WGS84 to UTM (slicing to fit UTM areas if necessary)
 - b. Run GDALDEM Slope using the defaults
 - c. Project back to WGS84 (reassembling if necessary)
- 2. Coarsened Proportional land Cover (CPC) layers are produced for each land use class for each year by first converting the land class pixels to a binary layer (i.e. is the pixel in the class or not for each of the 6 LUC) and then for each pixel taking a 1km radius circle (in a geographic projection like UTM) and then summing the binary layer and dividing by the total number of contributing pixels. (I7)
- 3. We now estimate the carbon density in Mg/ha for each LUC in the project area. AGB was predicted by the NASA team by modelling relative canopy height density values extracted from full waveform space-borne LiDAR measurement as a function of field measurements of AGB obtained from a global dataset, using ordinary least squares regression (Duncanson et al. 2022). (A3, 16, 17)
 - a. If the project is assessed as low-risk, then the AGB per land class for both the project and control are determined using both the values reported in the PDD as well as the process detailed below. If the PDD does not report AGB values for certain land classes, the assumptions made in determining these values should be clearly stated. (A2)
 - b. Let *B* = a set of pixels, initially empty.
 - c. Find all GEDI level 4a shots from 2020/1/1 to 2021/1/1 falling within the project area as well as a 30 km buffer around it **(A29)** and add them to *B*. **(A4, A5)**
 - d. Let S be the set of shots in B after filtering using degrade_flag == 0, beam_type == 'full', l4_quality_flag == 1, leaf_off_flag != ``leaf-off state''. (A6)
 - e. For each shot s in S

- i. Set s.LUC from the Annual Forest Change land use class from 2020 (A5, A7, A8)
- ii. Discard s if the LUC of any of the 8 immediately neighbouring pixels differs from the s.LUC. This corrects for the fact that GEDI shots have a 10 m geolocation error with respect to AFC (Dubayah et al. 2020).
- iii. Save s.LUC and s.agbd (the AGB value for the shot) in a table T.
- f. Compute the median s.agbd value for each land use class from T.
- Belowground biomass (BGB) and deadwood biomass is assumed to be 20% and g. 11% of AGB respectively (Cairns et al. 1997; IPCC 2003). (A9)
- h. Total biomass (= AGB + BGB + deadwood biomass) is converted to total carbon density in Mg/ha by multiplying by the average carbon density of 0.47 (A10)

6.2 Additionality & Leakage

The calculation of additionality and leakage are very similar and share a core algorithm. In summary, this takes an area of interest (the project or the project's leakage zone) and runs the matching algorithm to find counterfactual pixels for this area. With this set of pairs we then analyse the carbon stock changes in these two regions to make an estimate on the amount of additional carbon (which may be negative in the case of leakage).

Inputs:

- 1. Area of Interest (AOI)
- 2. t_0 the start year and t_{now} the year of assessment (**I1**, **I2**)
- 3. The project polygon with leakage buffer (this is explicitly needed as part of the Find Potential Matches section to exclude it from the matching zone, whether calculating additionality or leakage both will remove this entire region). (13)

Algorithm:

- 1. Let T be the set of Pixels in the AOI at time t_0 (A24, A25). Let |T| be the number of pixels in T.
- 2. For each pixel in T find its land use class V.
- 3. For each year t of time series from t_0 to t_{now} , where t_0 = year of project start and t_{now} is the year of assessment.
 - a. Let $N_{T,V}(t)$ be the number of pixels in each class V in T in year t
 - b. The proportion of the AOI in class V in year t is $N_{T,V}(t)/|T|$.
 - c. For each land use class V
 - i. Find the total area in class V by multiplying $N_{TV}(t)/|T|$ by the total AOI area in ha.
 - ii. $S_{T,V}(t)$ = Carbon stock per ha in class V * total area of class V in the AOI.
 - d. $P_{tot}(t) = \text{ total carbon stock for year } t \text{ in the } AOI = \sum_{t, t} S_{T, t}(t)$
 - e. In preparation for finding counterfactuals, call procedure Find Potential Matches to generate the set of potential treatment pixels (K) and potential control pixels (M) with: i.
 - Treatment area (also called match source) = AOI (A11)
 - Control area, made up by taking the Match destination area and subtracting ii. the exclude region:
 - 1. Match destination = the intersection of a 2000-km buffer around AOI (A12, A29), the country(s) boundary from countries the AOI

intersects with, and the ecoregion boundaries from RESOLVE Ecoregions for all the ecoregions that lie within the project (**I8**, **I9**)

- Exclude region = other REDD+ project areas AND a 5 km leakage buffer around these REDD+ projects AND the project polygon with leakage buffer (A13, A14, A29, I12)
- f. Do the following 100 times, as indexed by i: *We assume that 100 iterations suffice to reach statistical confidence*
 - i. Let *C* be the set of counterfactual matching pixels, which is the result of calling Procedure *Find Matches* with:
 - 1. The set of potential treatment pixels K
 - 2. The set of potential match pixels M
 - 3. A random seed derived from i for repeatability
 - ii. Let |C| be the number of pixels in *C*.
 - iii. For each pixel in C find its land use class V.
 - iv. Let $N_{C,V}(t)$ be the number of pixels in class V in C in t.
 - v. The proportion of the counterfactual area in class V in year t is $N_{C,V}(t)/|C|$.
 - vi. For each land use class V
 - 1. Find the total area in class *V* in the counterfactual scenario by multiplying $N_{C,V}(t)/|C|$ by the total *AOI* area.
 - 2. $S_{C,V}(t)(i)$ = carbon stock per unit area in class V * total area of class V in the counterfactual scenario.
- g. $C_{tot}(t)$ = mean total carbon for year t in the counterfactual scenario = $\frac{1}{100} \Sigma_{i} \Sigma_{j} S_{C,V}(t)(i)$
- h. Calculate additionality within *AOI* in *t* CO₂ by multiplying carbon stocks by the ratio of the molecular masses of CO₂ (44) to C (12) as **(A15, A16, A26)**: Additionality(*t*) = ($P_{tot}(t) - C_{tot}(t)$)(44/12)

6.3 Additionality

Additionality is calculated by calling <u>6.2 Additionality and Leakage</u> with the project area as defined by the project polygons as the Area of Interest and the project's start year as the start year.

6.4 Leakage

Leakage is calculated by calling <u>6.2 Additionality and Leakage</u> with an area that is a 5 km buffer around the project polygons as the Area of Interest and the project's start year as the start year. There are two key changes compared to additionality:

- 1. If the project is assessed as low-risk, then the leakage is determined as a fraction of the additionality as reported in the PDD as well as using <u>6.2 Additionality and Leakage</u>
- 2. Leakage should be a negative number, before returning the final output (step 6.2.3.h). We cap the leakage estimate at 0 to prevent returning a positive leakage number (i.e. additionality).

6.5 Permanence

This computation is carried out at the end of an evaluation period in year t_{now} . Let the end of the immediately previous time period where estimates of additionality and leakage are available be denoted by t_{now-1} (normally, this would be the end of the previous year, which may precede the year of project start). This computation is only carried out if the additionality exceeds the leakage. If this is not the case, the permanence is 0.

1. Let $C(t_{now})$ denote the net sequestration/release of (additionality - leakage) during the prior time period, which is computed at the end of that period:

 $C(t_{now}) = (Additionality(t_{now}) + Leakage(t_{now})) - ((Additionality(t_{now-1}) + Leakage(t_{now-1})))$

 Compute the average annual additionality, net of leakage, for the past 5 years in the project area as:

$$R = \frac{1}{5} (C(t_{now}) - C(t_{now}-5))$$

where t_{now} -5 denotes 5 years before t_{now} . Note that part of this period could predate the project start. 3. Adjust $C(t_{now})$ for anticipated releases from prior evaluations that didn't happen:

- a. Let $r(t_1, t_{now})$ denote the anticipated release in the evaluation period t_{now} estimated at any prior time t_1 .
- b. Compute Adjustment = $\sum_{t=1}^{t} r(t_1, t_{now})$
- c. Let $C_{adj}(t_{now}) = C(t_{now}) + Adjustment$. If $C_{adj}(t_{now})$ is negative (a bad outcome), then the project will need to borrow credits from other projects or a credit buffer, requiring human intervention. Ideally, we wish the prior release schedules to be sufficiently conservative that $C_{adj}(t_{now}) > 0$.
- If C_{adj}(t_{now}) is positive, the benefit of sequestration is C_{adj}(t_{now}) * SCC(t_{now}), where SCC(t_{now}) is the social cost of carbon at time t_{now} (see Table in Appendix). Otherwise, the damage from carbon release is -C_{adj}(t_{now}) * SCC(t_{now}). (A17, A18)
- 5. If a project is assessed to be low-risk then the release during each evaluation period before the end of the project, t_{end} , is 0 and $r(t_{now}, t_{end}+j)$, j > 0 is assumed to be equal to R until $C_{adi}(t_{now})$ drops to zero. (A19, A2)
- If a project is assessed to be high-risk then r(t_{now} t_{now}+ j), j >0 is assumed to be equal to R until C_{adj}(t_{now}) drops to zero. (A19, A2)
- 7. Let $t_{release}$ denote the year when all net sequestration in the prior period (t_{now-1} to t_{now}) is released. Under the release schedule assumed in the previous step, and with a discount factor δ , the damage from the carbon release (*D*) is calculated as:

$$D = \sum_{i=t_{now}}^{t_{now}+t_{release}} r(t_{now}, i) \cdot SCC(i) / (1 + \delta)^{(i-t_{now})}$$

8. Equivalent permanence (*eP*) is calculated as $eP = \frac{C_{adj}(t_{now})SCC(t_{now}) - D}{C_{adj}(t_{now})SCC(t_{now})}$.

6.6 Find Potential Matches (match source, match destination)

(This is called from Section 6.2 and 6.3)

Inputs:

- 1. Treatment area (aka Match source) (polygon)
- 2. Control area (polygon) (this is landscape within which project is located minus areas where matches won't be sought. The match area is automatically excluded.)
- 3. Country boundaries (I3)

- 4. Ecoregions (**I9**)
- 5. Land usage data (**I7**)
- 6. Year project started (I1)
- 7. Elevation (I10)
- 8. Slope (6.1.2)
- 9. Accessibility (I11)

Algorithm

- Let K be a sample of 30m-resolution pixels in the treatment area, sampled at a density of 0.25 points per hectare for smaller projects and 0.05 points per ha for large projects (>250k ha) (A20) and let K_buffer be a sample using the same method but where the treatment area has been expanded to add a 1000m buffer (A27, A29).
- 2. Let R be the potential set of pixels in the control area(s), i.e. the counterfactual area
- Calculate M, which is the set of potentially matching from R based on K_buffer. For each pixel in K_buffer and for each potential pixel p in R add p to M if all of the following fields match (A21):
 - a. Country (exact) (A22)
 - b. Ecoregion (exact)
 - c. Land use class at t_{-10} and t_{-5} and t_{0} (exact)
 - d. CPC value of undisturbed and deforested land at t_{-10} and t_{-5} and t_0 (±0.1)
 - e. Elevation (±200m)
 - f. Slope (±2.5°)
 - g. Accessibility in 2019 (±10 minutes)

Output

- 1. Set K, treatment points (K_buffer will not be used later)
- 2. Set M, all potential control points (see figure 1)

Figure 1: A binary mask of set M for a project located in Sierra Leone. Pixels in white are counterfactual candidates for pixels inside the project. The base map is from <u>OpenStreetMap</u>.

6.7 Find Matches (set K, set M, random seed) (This is called from Section

6.2 and 6.3)

Inputs:

- 1. Set K, an area distributed sample of treatment pixels
- 2. Set M, the set of all possible control pixels (i.e., potential matches)
- 3. A random seed used for sampling this round
- 4. Country boundaries (13)
- 5. Ecoregions (I9)
- 6. Land usage data (17)
- 7. Year project started (I1)
- 8. Elevation (I10)
- 9. Slope (6.1.2)
- 10. Accessibility (**I11**)

Algorithm

- 1. Apply the random seed, so that all sampling actions below are derived by this seed
- 2. Let S be an empty set of pixels, used to store subset of M for matching in this round
- 3. Let Ksub be a randomly distributed 10% sample of pixels in K (I14)
- 4. For each pixel k in Ksub:
 - a. Select a random pixel from M, and add it to S if it matches the following criteria:
 - i. Country (exact) (A22)
 - ii. Ecoregion (exact)
 - iii. Land use class at t_{-10} and t_{-5} and t_0 (exact)
 - iv. CPC value of undisturbed and deforested land at t_{-10} and t_{-5} and t_0 (±0.1)
 - v. Elevation (±200m)
 - vi. Slope (±2.5°)
 - vii. Accessibility in 2019 (±10 minutes)
 - b. Repeat this until you have either 100 pixels matched with this k or have exhausted M
 - c. If there were no matches for k at this stage remove it from Ksub
- 5. Build a inverse covariance matrix, I, from the pixels in S using the following fields:
 - a. Elevation
 - b. Slope
 - c. Accessibility
 - d. CPC Value of undisturbed and deforested land at t_{-10} , t_{-5} and t_0
- 6. Let MP be the empty set of pixels (used to store the matched pairs)
- 7. For each pixel in Ksub, find and add to MP, if possible, a distinct match in S where there is a hard match on:
 - a. land use class at years t_{-10} , t_{-5} and t_0 , where t = the project start date. (A23)
 - b. Country
 - c. Ecoregion

and that has the minimum Mahalanobis distance using I across the following matching variables:

- d. Elevation
- e. Slope
- f. Accessibility
- g. CPC value of undisturbed and deforested land at t_{-10} , t_{-5} and t_0

- 8. Compute the standardised mean differences between each matching variable of the paired pixels in MP (specifically, between the treatment and control in treatment standard deviations).
- 9. Matching results are considered valid and can be used for additionality calculations if:
 - a. All matching variables are balanced which is defined as the std mean diff <0.2
 - b. A continuous matching variable in the range [0,1] with a value of close to 1 or 0 (>0.975 or <0.025) has standard mean difference > 0.2. This is because, when close to 0% or 100%, the standard mean difference can be misleading.
- 10. If results are not valid, then no credible claims can be made, so exit with failure to match.
- 11. Return MP

Figure 2: A set of matched points MP for a project located in Sierra Leone. Project points are shown in green (Ksub) and matched counterfactual points are shown in blue (matches from S). Pairs are shown with connecting lines. The base map is from <u>OpenStreetMap</u> and the <u>Global Forest Change</u> dataset.

7. Known issues

- 1. The current method does not depend on empirical observations: landscape-level quantification of disturbance patterns estimated from remote sensing data products is needed to estimate area-specific release schedules.
- 2. The current method does not take into account spatial and temporal variability in disturbance and carbon release schedule: it will be preferable to take into account local environmental (temperature, dryness etc.) and socioeconomic (proximity to road, settlements, existing disturbed areas) factors, as well as past land use and disturbance history in order to account for this variability and to be able to make more accurate predictions in a shifting future.
- 3. This methodology will not work well for plots/polygons that are smaller than 10ha or so because of the pixel size being 30m, which can lead to substantial boundary effects.

8. References

- Balmford, A., Keshav, S., Venmans, F. et al. Realizing the social value of impermanent carbon credits. Nat. Clim. Chang. 13, 1172–1178 (2023). https://doi.org/10.1038/s41558-023-01815-0
- Brienen, R. J. W., O. L. Phillips, T. R. Feldpausch, E. Gloor, T. R. Baker, J. Lloyd, G. Lopez-Gonzalez, et al. 2015. "Long-Term Decline of the Amazon Carbon Sink." *Nature* 519 (7543): 344–48.

Cairns, M., Brown, S., Helmer, E. et al. Root biomass allocation in the world's upland forests.

Oecologia 111, 1–11 (1997). https://doi.org/10.1007/s004420050201

- Centre for International Earth Science Information Network-CIESIN Columbia University. NASA Socioeconomic Data and Applications Center (SEDAC) Palisades, NY. 2018. "Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11." https://doi.org/10.7927/H49C6VHW.
- Dinerstein, Eric, David Olson, Anup Joshi, Carly Vynne, Neil D. Burgess, Eric Wikramanayake, Nathan Hahn, et al. 2017. "An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm." *Bioscience*.
- Drupp, Moritz A., Mark C. Freeman, Ben Groom, and Frikk Nesje. 2018. "Discounting Disentangled." American Economic Journal: Economic Policy 10 (4): 109–34.
- Dubayah, R.O., J. Armston, J.R. Kellner, L. Duncanson, S.P. Healey, P.L. Patterson, S. Hancock, H. Tang, J. Bruening, M.A. Hofton, J.B. Blair, and S.B. Luthcke. 2022. GEDI L4A Footprint Level Aboveground Biomass Density, Version 2.1. ORNL DAAC, Oak Ridge, Tennessee, USA. GEDI L4A Footprint Level Aboveground Biomass Density, Version 2.1
- Dubayah, R. et al 2022 Environ. Res. Lett. 17 095001 https://iopscience.iop.org/article/10.1088/1748-9326/ac8694
- Duncanson, Laura, James R. Kellner, John Armston, Ralph Dubayah, David M. Minor, Steven Hancock, Sean P. Healey, et al. 2022. "Aboveground Biomass Density Models for NASA's Global Ecosystem Dynamics Investigation (GEDI) Lidar Mission." *Remote Sensing of Environment* 270 (March): 112845.
- Durán, América P., Jonathan M. H. Green, Christopher D. West, Piero Visconti, Neil D. Burgess, Malika Virah-Sawmy, and Andrew Balmford. 2020. "A Practical Approach to Measuring the Biodiversity Impacts of Land Conversion." *Methods in Ecology and Evolution / British Ecological Society*, May. https://doi.org/10.1111/2041-210X.13427.
- Fischer, G., F. O. Nachtergaele, H. van Velthuizen, F. Chiozza, G. Francheschini, M. Henry, and Muchoney D And Tramberend. 2021. "Global Agro-Ecological Zones (gaez v4)-Model Documentation.
- Garcia, Alberto, and Robert Heilmayr. 2022. "Conservation Impact Evaluation Using Remotely Sensed Data." SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4179782.
- Groom, Ben, and Frank Venmans. 2022. "The Social Value of Offsets." Research Square. https://doi.org/10.21203/rs.3.rs-1515075/v1.
- Grogan, Danielle, Steve Frolking, Dominik Wisser, Alex Prusevich, and Stanley Glidden. 2022. "Global Gridded Crop Harvested Area, Production, Yield, and Monthly Physical Area Data circa 2015." *Scientific Data* 9 (1): 15.
- Guizar-Coutiño, Alejandro, Julia P. G. Jones, Andrew Balmford, Rachel Carmenta, and David A. Coomes. 2022. "A Global Evaluation of the Effectiveness of Voluntary REDD+ Projects at Reducing Deforestation and Degradation in the Moist Tropics." *Conservation Biology: The Journal of the Society for Conservation Biology* 36 (6): e13970.
- Guizar-Coutiño, Alejandro. 2022. "Forest Conservation through Voluntary Carbon Offsetting Interventions." Edited by Coomes David. PhD, Biological Sciences.
- Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. Thau, et al. 2013. "High-Resolution Global Maps of 21st-Century Forest Cover Change." *Science* 342 (6160): 850–53.
- Hengle, T., and T. Nauman. 2018. "Predicted USDA Soil Great Groups at 250 M (probabilities) (Version v01)."

- Brienen, R. J. W., L. Caldwell, L. Duchesne, S. Voelker, J. Barichivich, M. Baliva, G. Ceccantini, et al. 2020. "Forest Carbon Sink Neutralized by Pervasive Growth-Lifespan Trade-Offs." *Nature Communications* 11 (1): 4241.
- IPCC (2003) Good Practice Guidance for Land Use, Land-Use Change and Forestry. Institute for Global Environmental Strategies (IGES)
- Jarvis, Andy, Hannes I. Reuter, Andy Nelson, Edward Guevara, and Others. 2008. "Hole-Filled SRTM for the Globe Version 4, Available from the CGIAR-CSI SRTM 90m Database."
- Martin, Adam R., and Sean C. Thomas. 2011. "A Reassessment of Carbon Content in Tropical Trees." *PloS One* 6 (8): e23533.
- Nordhaus, William. 2014. "Estimates of the Social Cost of Carbon: Concepts and Results from the DICE-2013R Model and Alternative Approaches." *Journal of the Association of Environmental and Resource Economists* 1 (1/2): 273–312.
- Pendrill, Florence, Toby A. Gardner, Patrick Meyfroidt, U. Martin Persson, Justin Adams, Tasso Azevedo, Mairon G. Bastos Lima, et al. 2022. "Disentangling the Numbers behind Agriculture-Driven Tropical Deforestation." *Science* 377 (6611): eabm9267.
- Spawn, Seth A., Clare C. Sullivan, Tyler J. Lark, and Holly K. Gibbs. 2020. "Harmonized Global Maps of above and Belowground Biomass Carbon Density in the Year 2010." *Scientific Data* 7 (1): 112.
- Vancutsem, C., F. Achard, J-F Pekel, G. Vieilledent, S. Carboni, D. Simonetti, J. Gallego, L. E. O. C. Aragão, and R. Nasi. 2021. "Long-Term (1990-2019) Monitoring of Forest Cover Changes in the Humid Tropics." *Science Advances* 7 (10): eabe1603.
- Weiss, D. J., A. Nelson, H. S. Gibson, W. Temperley, S. Peedell, A. Lieber, M. Hancher, et al. 2018. "A Global Map of Travel Time to Cities to Assess Inequalities in Accessibility in 2015." *Nature* 553 (7688): 333–36.

9. Appendices

SCC spreadsheet.xlsx

10. Changelog

- 10.1 Version 2.0 to Version 2.1
 - Added changelog
 - Added link to high-level explainer at https://tinyurl.com/PACTTMFexplainer
 - Added link to code branch that matches this document
 - Added assumption A27 explaining 1 km buffer for generating M
 - Added credit for source of base tiles in image
 - Added clarifying language around 30 km buffer for GEDI shots
 - Updated use of term biome used instead of ecoregion in places
 - Updated author list to include Abby Williams
 - Removed duplicate text from introduction