
Experiences with Effects

Thomas Leonard Craig Ferguson Patrick Ferris Sadiq
Jaffer Tom Kelly KC Sivaramakrishnan Anil

Madhavapeddy

OCaml Labs

The OCaml Users and Developers Workshop, Aug 2021



Overview

I Domains / effects / typed effects

I Introduction to effects

I Case study: Converting the Angstrom parser

I Eio concurrency library



Introduction to effects

I Resumable exceptions

I Multiple stacks
effect Foo : int → int

try

println "step 1";

let x = perform (Foo 2) in

println "step %d" x

with effect (Foo n) k →
println "step %d" n;

continue k (n + 1)



Advantages of effects

I No difference between sequential and concurrent code.
I No special monad syntax.
I Can use try, match, while, etc.
I No separate lwt or async versions of code.

I No heap allocations needed to simulate a stack.

I A real stack means backtraces and profiling tools work.



Case study: Angstrom

https://github.com/inhabitedtype/angstrom/

I A library for writing parsers

I Designed for network protocols

I Strong focus on performance

https://github.com/inhabitedtype/angstrom/


A toy parser

type ’a parser = state → ’a

let any_char state =

ensure 1 state;

let c = Input.unsafe_get_char state.input state.pos in

state.pos <- state.pos + 1;

c

let (*>) a b state =

let _ = a state in

b state



The Angstrom parser type

module State = struct

type ’a t =

| Partial of ’a partial

| Lazy of ’a t Lazy.t

| Done of int * ’a

| Fail of int * string list * string

and ’a partial =

{ committed : int;

continue : Bigstringaf.t →
off:int → len:int → More.t → ’a t }

end

type ’a with_state = Input.t → int → More.t → ’a

type ’a failure =

(string list → string → ’a State.t) with_state

type (’a, ’r) success = (’a → ’r State.t) with_state

type ’a parser = { run : ’r.

(’r failure → (’a, ’r) success → ’r State.t) with_state

}



Angstrom parsers

let any_char =

ensure 1 { run = fun input pos more _fail succ →
succ input (pos + 1) more

(Input.unsafe_get_char input pos)

}

let (*>) a b =

{ run = fun input pos more fail succ →
let succ’ input’ pos’ more’ _ =

b.run input’ pos’ more’ fail succ in

a.run input pos more fail succ’

}



Angstrom : effects branch

https://github.com/talex5/angstrom/tree/effects

type ’a parser = state → ’a

let any_char state =

ensure 1 state;

let c = Input.unsafe_get_char state.input state.pos in

state.pos <- state.pos + 1;

c

let (*>) a b state =

let _ = a state in

b state

https://github.com/talex5/angstrom/tree/effects


Parser micro-benchmark

let parser = skip_many any_char

Time MinWrds MajWrds

Callbacks 750.63ms 160.04Mw 8,9944.00kw

Callbacks’ 180.73ms 220.01Mw 9,659.00w

Effects 57.81ms - -

13 times faster!



Parser micro-benchmark

let parser = skip_many any_char

Time MinWrds MajWrds

Callbacks 750.63ms 160.04Mw 8,9944.00kw
Callbacks’ 180.73ms 220.01Mw 9,659.00w
Effects 57.81ms - -

1

3 times faster!



Realistic parser benchmark

Parsing an HTTP request shows smaller gains:

Time MinWrds MajWrds

Callbacks 60.30ms 9.28Mw 102.08kw
Effects 50.71ms 2.13Mw 606.30w



Using effects for backwards compatibility

effect Read : int → state

let read c = perform (Read c)

let parse p =

let buffering = Buffering.create () in

try Unbuffered.parse ~read p

with effect (Read committed) k →
Buffering.shift buffering committed;

Partial (fun input →
Buffering.feed_input buffering input;

continue k (Buffering.for_reading buffering)

)

(simplified)



Angstrom summary

I Slightly faster

I Much simpler code

I No effects in interface

I Can convert between callbacks and effects easily



Eio : an IO library using effects for concurrency

I Alternative to Lwt and Async

I Generic API that performs effects

I Cross-platform libuv effect handler

I High-performance io-uring handler for Linux



Eio example

let handle_connection =

Httpaf_eio.Server.create_connection_handler

~config

~request_handler

~error_handler

let main ~net =

Switch.top @@ fun sw →
let socket = Eio.Net.listen ~sw net (‘Tcp (host, port))

~reuse_addr:true

~backlog:1000

in

while true do

Eio.Net.accept_sub ~sw socket handle_connection

~on_error:log_connection_error

done



HTTP benchmark

100 concurrent connections. Servers limited to 1 core.



Eio : other features

I Structured concurrency

I OCaps security model

I Tracing support

I Supports multiple cores

I Still experimental



Summary

I Concurrency with effects works very well

I Effects have very good performance

I No bugs found in effects system during testing

https://github.com/ocaml-multicore/eio documentation shows
how to try out OCaml effects.

https://github.com/ocaml-multicore/eio


Lwt example

let foo ~stdin total =

let* n = Lwt_io.read_line stdin in

Lwt_io.printlf "n/total = %d"

(int_of_string n / total)

Fatal error: exception Division_by_zero

Raised at Lwt_example.foo in file "lwt_example.ml", line 6

Called from Lwt.[. . .].callback in file "src/core/lwt.ml", . . .

I Backtrace doesn’t say what called foo

I Closure with total allocated on the heap



Eio example

let foo ~stdin total =

let n = read_line stdin in

traceln "n/total = %d"

(int_of_string n / total)

Fatal error: exception Division_by_zero

Raised at Eio_example.foo in file "eio_example.ml", line 11

Called from Eio_example.bar in file "eio_example.ml", line 15

. . .


