
Programming Unikernels in the Large via Functor Driven
Development (Experience Report)

GABRIEL RADANNE, University of Freiburg
THOMAS GAZAGNAIRE, Tarides
ANILMADHAVAPEDDY, JEREMY YALLOP, and RICHARDMORTIER,University of Cambridge
HANNES MEHNERT and MINDY PRESTON, Robur
DAVID SCOTT, Docker, Inc

Compiling applications as unikernels allows them to be tailored to diverse execution environments. Depen-
dency on a monolithic operating system is replaced with linkage against libraries that provide specific services.
Doing so in practice has revealed a major barrier: managing the configuration matrix across heterogenous
execution targets. A realistic unikernel application depends on hundreds of libraries, each of which may place
different demands on the different target execution platforms (e.g., cryptographic acceleration).

We propose a modular approach to structuring large scale codebases that cleanly separates configuration,
application and operating system logic. Our implementation is built on the MirageOS unikernel framework,
using the OCaml language’s powerful abstraction and metaprogramming facilities. Leveraging modules
allows us to build many components independently, with only loose coupling through a set of standardised
signatures. Components can be parameterized by other components and composed. Our approach accounts
for state, dependency ordering, and error management, and our usage over the years has demonstrated
significant efficiency benefits by leveraging compiler features such as global link-time optimisation during the
configuration process. We describe our application architecture and experiences via some practical applications
of our approach, and discuss how library development in MirageOS can facilitate adoption in other unikernel
frameworks and programming languages.

Additional Key Words and Phrases: MirageOS, unikernels, functional, modules, OCaml

1 INTRODUCTION
A major source of complexity in modern application development is the need to run on an increas-
ingly diverse range of platforms: conventional operating systems (OSs) such as Linux or Windows,
mobile systems such as Android or iOS, embedded platforms such as ARM or RISC-V microcon-
trollers, or browser-based virtual machines via compilation to JavaScript or WASM. Designing
efficient programming interfaces for such heterogenous environments is challenging as all have
different internal models and mechanisms for memory management, isolation, I/O and scheduling.

Attempts to adapt existing models (e.g. POSIX) to these environments has led to a lowest common
denominator set of “mini-libc” system libraries. These are deeply unsatisfying: one would rather
generate binaries that are specialised for a particular platform, able to make full use of its specific
capabilities. Ideally, we would have a modular set of interfaces allowing applications to depend on
the specific functionality they need to operate on a specific physical or virtual platform.
One key step towards this goal is to use library operating systems (libOSs) to break down

monolithic kernel components into conventional libraries that can be linked alongside application
logic [Engler et al. 1995; Leslie et al. 1996]. When these kernel and application libraries are linked
to a bootloader, the result is a single-purpose unikernel, specialised at build time to execute that
Authors’ addresses: Gabriel Radanne, University of Freiburg; Thomas Gazagnaire, Tarides; Anil Madhavapeddy; Jeremy
Yallop; Richard Mortier, University of Cambridge; Hannes Mehnert; Mindy Preston, Robur; David Scott, Docker, Inc.

© 2019 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version
of Record was published in , https://doi.org/10.1145/nnnnnnn.nnnnnnn.

, Vol. 1, No. 1, Article . Publication date: May 2019.

ar
X

iv
:1

90
5.

02
52

9v
1

 [
cs

.P
L

]
 7

 M
ay

 2
01

9

https://doi.org/10.1145/nnnnnnn.nnnnnnn

G. Radanne, T. Gazagnaire, A. Madhavapeddy, J. Yallop, R. Mortier, H. Mehnert, M. Preston,
and D. Scott

Conditional
Nodes

User-provided
Implementations

MirageOS
Implementations

Fig. 1. Configuration graph for a MirageOS web server

specific application on the specific platform [Madhavapeddy et al. 2013]. The specialisation has
been shown to result in significant performance and code-size improvements in the resulting
artefacts [Madhavapeddy et al. 2015; Manco et al. 2017].

The last few years have seen many new unikernel frameworks written in high-level languages.
The number of kernel libraries has grown concomitantly, resulting in a practical challenge: how can
developers avoid the need to manually select the set of kernel libraries required by a target platform?
The common approach of depending on a monolithic OS interface layer (e.g., in OCaml, the Unix
module), does not scale to the modern heterogeneous world.

This paper describes our experiences in addressing this problem of writing high level code that
can run in heterogenous execution environments by using OCaml’s powerful abstraction facilities
within the MirageOS unikernel framework. MirageOS has been developed since 2006 and has seen
widespread deployment in industrial projects such as Xen [Gazagnaire and Hanquez 2009; Scott
et al. 2010] and Docker. Over the last decade, MirageOS has grown to support a highly diverse set of
target platforms including hypervisors such as Xen [Barham et al. 2003], KVM [Kivity et al. 2007]
and Muen [Buerki and Rueegsegger 2013], plus conventional Unix and Windows binaries, and even
experimental compilation to JavaScript and bare-metal booting on RISC-V and ARM boards.

The key challenge in maintaining these compilation targets has been to prevent OCaml program-
mers, otherwise fastidious about their use of abstraction, from using the monolithic OS interfaces
such as Unix that tie an application to a single execution environment. Instead, MirageOS takes
advantage of the powerful ML module system to allow programmers to abstract over use of indi-
vidual OS facilities (e.g., timekeeping, networking, storage, entropy). Rather than calling into libc,
application code is abstracted over the OS functionality needed using OCaml’s parameterised mod-
ules. The MirageOS compiler then supplies library implementations of the required functionality
suitable for the target platform. These implementations range from trivial passthroughs that invoke
system calls on Unix, to complete reimplementations of key kernel subsystems such as TCP/IP for
targets without a conventional OS such as bare-metal embedded devices or Xen hypervisors.

, Vol. 1, No. 1, Article . Publication date: May 2019.

Programming Unikernels in the Large via Functor Driven Development (Experience Report)

This way, developers write application code that can be efficiently compiled to any of these envi-
ronments simply by making their dependencies on system facilities explicit using parameterisation.
The resulting codebases are also highly structured (see Figure 1 for the MirageOS webserver) and
easily compiled to future deployment targets. We dub this approach Functor Driven Development,
and make the following experience contributions in this paper:

• we describe our portable application structuring that encourages developers to explicitly spec-
ify OS dependencies by using OCaml module constructs: structures, signatures, and functors
(i.e. functions over modules) (Section 2);

• we show how we make use of meta-programming techniques to generate the complex glue
code that connects configuration, build and deployment of the application, using an eDSL to
express dependencies between the application requirements and concrete implementations for a
particular target platform (Section 3); and

• discuss our experiences with using the OCaml module system at scale for operating system
assembly (Section 4).

2 STRUCTURING APPLICATIONS WITH FUNCTORS
OCaml modules [Leroy 1994, 1995; MacQueen 1984] allow programs to be built from smaller
components. In most languages, modules are compilation units: simple collections of type and
value declarations in a file. OCaml extends such collections, called structures, with signatures
(module types), functors (functions from modules to modules) and functor application, to form a
small typed functional language. Developers use this language to group, compose and selectively
expose program components (types, values, functions, and modules). Modules are structurally
typed: a module need not announce which signatures it satisfies, and a single module can satisfy
many different signatures, which may expose or conceal module components, and present types
as concrete or abstract. Modules may be combined using functors, which construct new modules
from existing modules passed as arguments.

Figure 2 uses this technique to design a simple static file server with two module parameters: S of
type Store, which describes how to access local files, and N of type Network, which describes how
networking is managed. Store and Network each expose a type t (representing the storage and
network handles respectively) and a function: listen makes a callback that listens on the network
handle, and read accesses the current store to read a file. The core application logic is defined by
the functor Make whose body contains a single function that calls the (abstract) functions from its
module parameters N and S.
Figure 3 and Figure 4 show several storage and network implementations. Direct (Figure 3a),

Crunch (Figure 3b) and NetStore (Figure 3c) implement various kinds of Store. As well as satis-
fying the signature Store, each implementation also provides a create function with specialised
arguments to take care of device-specific initialization. Direct.read gives access to the underlying
filesystem, the handle being the root of the filesystem in question. Crunch provides an in-memory
representation of a file-system. It operates by turning a filesystem tree into an OCaml module
which is then compiled and embedded in the application at configuration time. Finally, NetStore
presents an online service as an initially-empty Store; it processes requests to add files. NetStore
requires network access and is thus a functor parameterised by a module of type Network.
TCPIP (Figure 4a) and HTTP (Figure 4b) implement Network. The function TCPIP.listen uses

the POSIX listen and accept syscalls to handle incoming TCP/IP connections on the given
port. It then reads a request line and returns the result of passing it to a callback. The function
HTTP.listen handles connections, reading a full HTTP request when a client connects, extracting
the HTTP path and passing it to the callback. The resulting file content is wrapped into an HTTP

, Vol. 1, No. 1, Article . Publication date: May 2019.

G. Radanne, T. Gazagnaire, A. Madhavapeddy, J. Yallop, R. Mortier, H. Mehnert, M. Preston,
and D. Scott

response by adding the correct headers, before being returned to the client connection. Note
that this implementation depends on another network stack to simply read request and response
contents without interpretation. We can use this to implement HTTP over TCP/IP or over TLS to
get HTTPS.

Each of these modules can be used to satisfy the application’s functor allowing our simple static
fileserver to target a very wide range of deployment platforms. In each implementation, the type
t represents wildly different states but, as t is abstract, OCaml ensures that details of the type’s
implementation are never used in the body of the Make functor in Figure 2.

2.1 Standardized Signatures
Our example application consists of two major pieces of external functionality: file system access
and networking. MirageOS separates these two domains from the usual monolithic Unix module
by defining independent module signatures, which are then implemented by several modules. This
modular approach has two advantages: it avoids a dependency on a monolithic OS kernel, and it
disaggregates functionality into smaller module signatures that can be separately implemented by
experts in each domain. File system experts can contribute implementations of the Store signature,
and network developers can write Network implementations. The signature approach also makes
dependencies between different domains explicit; for example, the NetStore implementation
interacts with both Network and Store.

This strong isolation of concerns has proven essential in growing the MirageOS ecosystem. An
operating system contains many pieces pertaining to very different domains. MirageOS contains
libraries ranging from bare-metal drivers to TLS implementations, including high-level HTTP

1 module type Store = sig
2 type t
3 val read: t -> string -> string
4 end
5 module type Network = sig
6 type t
7 val listen:t -> (string -> string) -> unit
8 end

9 module Make (S: Store) (N: Network) = struct
10 let start storage network =
11 N.listen network (S.read storage)
12 end

Fig. 2. A modular file server.

1 module Direct : sig
2 (* read host filesystem *)
3 include Store
4 val create : string -> t
5 end

(a) Direct implements Store.

1 module Crunch : sig
2 (* read compiled-in strings *)
3 include Store
4 val create : Crunch.t -> t
5 end

(b) Crunch implements Store.

1 module NetStore (N: Network): sig
2 (* read from network service *)
3 include Store
4 val create : N.t -> t
5 end

(c) NetStore implements Store

Fig. 3. Examples of store implementations

1 module TCPIP : sig
2 include Network
3 val create : int -> t
4 end

(a) TCPIP implements Network.

1 module HTTP (N : Network) : sig
2 include Network
3 val create : N.t -> t
4 end

(b) HTTP implements Network.

Fig. 4. Examples of network implementations

, Vol. 1, No. 1, Article . Publication date: May 2019.

Programming Unikernels in the Large via Functor Driven Development (Experience Report)

servers. Contributors’ knowledge in a given domain can be applied to build additional implementa-
tions that will fit into the overall ecosystem, without getting overwhelmed by the enormity of the
full clean-slate operating system stack.
Having implementations bundled as modules with a common interface is also beneficial for

testing purposes. Complex components can be tested in isolation and often without requiring a
physical environment. Tests can be expressed as functors over the signatures to test, allowing
us to stress the implementation in a virtual environment convenient for local use (e.g. a fake
networking bridge). We also use this approach to test the applications themselves, which are
also parameterised by their module dependencies. We have combined this parameterised testing
approach with property testing [Claessen and Hughes 2000] and fuzzing [Dolan and Preston 2017;
Zalewski 2014] in various implementations.

2.2 State and Initialization
All the functors and modules in the previous sections are pure: they do not produce side effects when
applied to other modules. Applying a functor creates a new module built from its parameters, but
does not perform initialization or modify state. This is convenient for two reasons. First, modules
might share an interface for most of their operations except for the initialization code. For example,
in our store implementations (Figure 3) the type of create varies with each implementation, but
besides create the implementations all simply implement the Store signature. By separating
initialisation functions from the rest of the operations, we ensure that the core application, such as
the Make module in Figure 2, can be used with a large variety of implementations. Second, purity
maximises implementation sharing without mixing up state. For example, in the NetStore module
we might share the same Network implementation for both the online repository and to serve files.
However, although the implementations are shared, the network handle itself is not, ensuring we
don’t accidentally couple the two otherwise-separate components.

Although initialization code might be different for each module, there are some regular patterns
that inform our signature design. In the main function of our fileserver in Figure 2 we require a
store and a network handle, which correspond to the two arguments of the functor. This pattern is
both common and expected: for functors, the initialization function typically requires the results
of the initialization of each module arguments. This property holds in all the functors we have
presented so far.

2.3 Reporting Errors
A modular system that allows for many implementations must also provide some mechanism
for reporting errors. This error information must be simultaneously fine-grained enough for the
developer to determine the appropriate recovery or failure mechanism, and coarse enough for
different implementations to provide reasonable information in each possible failure case.
In MirageOS, we eschew the use of exceptions in favour of a more explicit approach using

the standard result type and OCaml’s polymorphic variants [Garrigue 2001]. The result type
is a binary sum: a value of type result is either a “success” value Ok v or an “error” value
Error err. Result also comes with monadic operations for chaining computations that can fail.
OCaml’s structurally typed polymorphic variants are distinguished by a leading backtick ‘ for each
constructor: for instance, ‘Unknown_file s has the type [> ‘Unknown_file of string]. Using
structural typing makes it possible to combine multiple error types. For example, if store_error
and network_error are polymorphic variant types, then [> store_error | network_error]
denotes the combination: any value of either store_error or network_error is also a member
of this type.

, Vol. 1, No. 1, Article . Publication date: May 2019.

G. Radanne, T. Gazagnaire, A. Madhavapeddy, J. Yallop, R. Mortier, H. Mehnert, M. Preston,
and D. Scott

1 module type Store = sig
2 type error = private [> ‘Unknown_file of string]
3 val pp_error: Format.formatter -> error -> unit
4
5 type t
6 val read:
7 t -> string -> (string, error) result
8 end

Fig. 5. Store extended with modular error handling.

1 module Store = Crunch
2 module Network = Http (TCPIP)
3 module MyServer = Server.Make (Store) (Network)
4
5 let () =
6 let crunch = CrunchModule.data in
7 let store = Crunch.create crunch in
8 let tcpip = TCPIP.create 80 in
9 let network = Network.create tcpip in
10 let server = MyServer.start store network in
11 run server

Fig. 6. Bringing it all together

Figure 5 extends the Store signature to use these extensible error types. The revised Store
signature exposes a type error, consisting of general errors expected to be encountered by any
Store implementation, along with a pretty printer[Bonichon and Weis 2017] that builds a human-
readable representation of an error (Line 3). By making the error type private [Garrigue 2006],
we allow the implementation to provide a richer error type, as long as it contains at least the
specified elements. Module type signatures with functions that may return an error use the result
type to return either the result of a successful call or the relevant error information. For example,
Store uses the error type together with result to provide structured error reporting for the
read function (Line 7).

This design has several appealing features. First, errors are extensible: individual implementations
of Store can extend the error type with implementation-specific errors, Second, error checking
is compositional: error types from multiple modules can be combined, and users can leverage the
monadic API of the result type to chain computations. Third, error-checking is typed: OCaml’s
type system ensures that clients that abstract over Store signature can only match on errors (such
as Unknown_file) exposed by the signature (although the pretty printer can always be called to
log messages about other errors).

2.4 Gluing Modules Together
Section 2 described a modular file server and showcased several implementation for its sub-
components. The flexibility of the modular approach allows us to assemble our application in
a LEGO fashion by plugging modules together. Figure 6 combines the various components to create
a self-contained file server that can be used in a POSIX environment. We use the Crunch module
along with the HTTP functor applied to TCPIP. This results in two functor applications (Lines 2-3).
We then need to initialize the various elements of our fileserver and launch it (Lines 9-10). Note
how the initialisation code closely reflects the structure of the functor instantiation code, thanks to
the regular pattern noted in Section 2.2.

Although it is straightforward, this code is not completely satisfactory to write by hand. Firstly,
the code is repetitive: the structure of the functor applications and the state initialization is the
same in each case (For example, the function applications in lines 9 and 10 mirror the functor
applications in lines 2 and 3.) Furthermore, the code must be modified by hand each time we change
a component of our application. (For example, using Direct in place of of Crunch would require
changing both the functor applications and the initialization by hand.) Finally, while the code in
this toy example is rather simple, its complexity rapidly increases in a realistic application. (For
example, the unikernel that runs the MirageOS website contains more than 70 modules and a
functor application depth of up to 10 for the devices it uses.) To handle such a rich ecosystem, we
need better tooling.

, Vol. 1, No. 1, Article . Publication date: May 2019.

Programming Unikernels in the Large via Functor Driven Development (Experience Report)

1 type 'a typ
2 val (@->): 'a typ -> 'b typ -> ('a -> 'b) typ
3
4 type 'a impl
5 val ($): ('a -> 'b) impl -> 'a impl -> 'b impl
6
7 val foreign: -> string -> 'a typ -> 'a impl

Fig. 7. Library to describe modules and functors

1 type store
2 val store : store typ
3
4 type network
5 val network : network typ
6
7 val direct : string -> store impl
8 val crunch : string -> store impl
9 val netstore : (network -> store) impl
10 val tcpip : network impl
11 val http : (network -> network) impl

Fig. 8. Devices combinators for the file server

1 let make_server =
2 foreign
3 "Server_modular.Make"
4 (store @-> network @-> job)
5
6 let my_server =
7 make_server $
8 direct "data/" $
9 (http $ tcpip)
10
11 let () = register "filesrv" [my_server]

Fig. 9. A config.ml file for the file server

Fig. 10. Configuration graph for the file server

3 FUNCTORIA: A TOOL TO GLUE MODULES AND SIGNATURES TOGETHER
Building executable applications from functor-heavy libraries involves significant boilerplate.
OCaml’s module language is much less flexible than its expression language: it does not support
conditionals or more complex dependency requirements. This section presents a tool functoria and
its DSL that acts as the glue language between the module and expression portions of the MirageOS
application, allowing us to overcome these limitations.
The high-level goal of functoria is to automatically configure and build modular applications,

such as the file server presented in Section 2, across the full variety of MirageOS backends. Functoria
provides a CLI interface which takes arguments pertaining to the application to explicitly configure
each of the constituent modules:
• functoria configure --store direct --fs /my/files -p 42
configures the application to serve “/my/files” over a socket on port 42.

• functoria configure --store crunch --fs /my/files -p 80
configures the application to create an HTTP file server serving the crunched files in “/my/files”
on port 80. (The logic that interprets 80 to build an HTTP server is described below.)
The configuration process generates a file main.ml that applies all the application functors

with concrete implementations, and also invokes the device initialisation code with the supplied
configuration parameters. All the programmer has to do is to install any OCaml dependencies and
invoke make to generate an executable unikernel from main.ml.

3.1 Configuring applications with functoria
Functoria relies on a configuration language that acts as a well-typed enforcer of the structure of
the application (expressed by the programmer by functorising across its dependencies) and the
implementation of those dependencies (expressed during the configuration process).
Figure 7 shows functoria’s high-level operations for describing functors. A value of type typ

represents a module type such as Store or Network. The @-> operation builds a functor type
from the types of its parameter and result: store @-> network @-> job represents the type of a
functor that takes module arguments of type store and network and builds a module of type job

, Vol. 1, No. 1, Article . Publication date: May 2019.

G. Radanne, T. Gazagnaire, A. Madhavapeddy, J. Yallop, R. Mortier, H. Mehnert, M. Preston,
and D. Scott

1 module Key : sig
2 type 'a k
3 type +'a v
4 val create: string -> 'a Arg.t -> 'a k
5 val value: 'a k -> 'a v
6 val pure: 'a -> 'a v
7 val ($): ('a -> 'b) v -> 'a v -> 'b v
8 end
9
10 val if_: bool Key.v -> 'a impl -> 'a impl -> 'a impl
11 val match_: 'b Key.v -> ('b * 'a impl) list -> 'a impl

Fig. 11. Keys for parameterised applications.

1 let default_store dir : store impl =
2 let i = Key.Arg.info
3 ~doc:"Choose␣store" ["store"] in
4 let arg = Key.Arg.(opt string "crunch"
5 ~stage:‘Configure i) in
6 let key = Key.create "store" arg in
7
8 match_ (Key.value key) [
9 "crunch", crunch dir;
10 "direct", direct;
11] ~default:(crunch dir)

Fig. 12. Using keys in a configuration pass

representing the final unikernel. A value of type impl represents a module implementation. There
is one operation, $, that corresponds to module application. The foreign function materializes a
named module (i.e. creates a value of type impl) given its name and type.
Functoria also exposes particular values of type typ and impl, for the signatures and modules

available in MirageOS (Figure 8). For example, store (of type store typ) corresponds to the Store
signature (Figure 2), and direct (of type store impl) corresponds to the Direct implementation
of type Store (Figure 3a). In each case the type index serves as a witness to ensure signature
compatibility. These typ and impl values can be used for reflection (e.g. to list all the available
implementations available for a given signature) as well as for composing functors to build devices.
Functoria also allows describing the various metadata associated with a module such as the

packages it requires from OPAM (the OCaml package manager). Indeed, modules described by the
configuration do not have to be immediately available in the current environment, but can be present
in external libraries. The functoria tool will use OPAM to install all the required dependencies.

To configure a unikernel using these operations, the programmer creates a file config.ml that
specifies how to combine the various module implementations. Figure 9 shows an example that
corresponds to the handwritten code of Figure 6. The value make_server represents a functor
"Server_modular.Make" with two parameters. The value my_server represents an application
of that functor to two arguments: the module direct, and the result of applying the functor http
to the server tcpip. Finally, the register function specifies and names the main module of the
application.

Based on this code, Functoria will derive a graph that describes the structure of the application
(Figure 10). This graph is used to synthethise everything related to the application: dependencies,
initialisation and module code, documentation, package manager invocations, and so on.

3.2 Parametrized applications
The applications we have seen so far are very static: changing one of the modules requires rewrit-
ing either the code or the configuration. To provide the kind of flexibility needed in MirageOS
applications, Functoria adds an additional ingredient: keys. The Key module (Figure 11) represents
CLI arguments that can be used during configuration to determine which implementations to use
in the generated code.

Figure 12 gives a new implementation of Store that supports selecting the storage mechanism
at build time. The default_store value exposes the option --store to the command line and
uses it to choose between the modules Direct or Crunch. The Key.create function declares a
new key and the Arg module describes the CLI arguments (in this example, a simple enumeration).
Finally, the match_ function chooses an implementation based on the CLI key selection.

, Vol. 1, No. 1, Article . Publication date: May 2019.

Programming Unikernels in the Large via Functor Driven Development (Experience Report)

From a user perspective, this allows functoria to provide some extremely useful features for
development. The user can choose between a filesystem or a built-in crunch store directly from
the command line (e.g. by running functoria configure --store crunch). Functoria also
generates the documentation of the application that describes all its keys, both as a Unix manual
page and via the CLI:
1 $ functoria describe
2 Name filesrv
3 Build-dir .
4 Keys store=crunch (default)

The --store key is only used during configuration; the match_ combinator can only swap
modules at configuration time. We use the ~stage:‘Configure argument to constrain this key
to work at configure time. However, it is also possible to use keys dynamically at runtime. To
demonstrate this, we can a new key to our file server to determine the port to listen to.
1 let port =
2 let arg = Key.Arg.(opt int 80 (info ["p";"port"]))
3 in Key.create "port" arg

We then use this key in the initialization code of the TCPIP module:
1 let network = TCPIP.create (Key_gen.port ())

The --port option can now be provided during both configuration and application startup. If
the option is present during configuration, the value will be persisted and used as a default value
during startup. MirageOS backends can supply more specific implementations for dynamic key
lookup at runtime (for instance, via bootloader arguments, browser APIs, or conventional Unix
environment variables).

In the examples so far, we have used keys in a “direct” manner: either by using their value directly
for configuration (in the case of --store) or by passing the value off to the underlying application
(for --port). We can also use keys for computations. For example, we define default_network
which uses the HTTP functor if the port is 80 or 8080, but uses the normal TCPIP device otherwise.
We use the fact that keys are split into two types: Key.k, which can be passed down to the runtime,
and Key.v, which cannot be serialized but can be used in computations. We can use Key.value to
obtain the value associated with port, and then apply Key.pure to our predicate to create a value
that is not associated with a key. $ allows us to apply the previous value to port. We can then use
the resulting boolean value with if_ to switch beetwen implementations.
1 let default_network : network impl =
2 let is_http = Key.(pure (fun x -> x = 80 || x = 8080) $ value port) in
3 if_ is_http (http $ tcpip) tcpip

Key.value equiped with pure and $ (also often named app) forms an applicative functor1. The
full library also provides other common applicative operators such as map.

3.3 Sharing and configuring devices

1 val impl: 'a configurable -> 'a impl
2
3 class type ['ty] configurable = object
4 method ty: 'ty typ
5 method name: string
6 method module_name: string
7 method keys: key list
8 method connect:
9 Info.t -> string ->
10 string list -> string
11
12 method packages: package list Key.value
13 method configure: Info.t -> unit
14 method build: Info.t -> unit
15 method clean: Info.t -> unit
16 end

Fig. 13. API for configurable devices

The foreign function is a specialised version of config-
urable devices. Configurable devices have an interface
that describes the metadata provided by foreign mod-
ules (type, names, package descriptions and keys) and also
the complete lifetime of a device: how to configure, build
and detach it (Figure 13). The connect method specifies
how to initialize the device—via a simple call to start in
1In the categorical sense. Not to be confused with ML functors!

, Vol. 1, No. 1, Article . Publication date: May 2019.

G. Radanne, T. Gazagnaire, A. Madhavapeddy, J. Yallop, R. Mortier, H. Mehnert, M. Preston,
and D. Scott

the case of foreign devices, but arbitrary initialization
code in general for more complex cases. Once a config-
urable device has been defined, it can be encapsulated as
an implementation via impl.

The OCaml object system proves useful here. The defi-
nition of configurable devices using OCaml classes makes
it possible to easily define classes of devices that are more
specialised for a particular purpose. For example, we
could define a system where every device, once initialized, must add itself to a global list of
devices. This can be encapsulated in functoria by providing a new function that generates the
appropriate initialization code and used instead of foreign.

Various devices can sometimes have common dependencies. For example, a network device can
be used both by HTTP devices and DHCP devices. However, it can’t be assumed that devices are
reentrant: many drivers for network connections should not initialize twice.

In functoria, devices are identified by both a module, which indicates their implementation, and
a name, which defines their state. Functoria uses this name to decide which devices should be
merged. If two devices have the same names, keys and–in the case of functors–are applied to the
same arguments, they are considered equal. Equal devices share their state and their code. To force
two devices to not be shared, it is sufficient to give them different names.

3.4 Building portable and flexible applications
We have made our example application more flexible than a typical monolithic Unix application,
and are now able to change all the aspects of our file server simply by providing command line
options. Our final configuration file, however, is barely more complex than it was at the beginning:
Figure 14. Thanks to the interfaces provided by functoria, MirageOS implementors can provide
combinators to make their devices easily usable in application configurations. The cost of this
flexibility, of course, is a multiplication of command line options and devices. Functoria presents
the configuration graph of the application in several formats to make it easier to reason about
its modular structure. The graph for our final file server (Figure 15) shows configurable devices
(rectangular nodes with a name and keys) and conditional configuration on keys (round nodes).

1 let make_server =
2 foreign "Server_modular.Make"
3 (store @->
4 network @->
5 job)
6
7 let my_server =
8 make_server
9 $ default_store "data/"
10 $ default_network

Fig. 14. config.ml file for the file server application Fig. 15. Configuration graph of the file server.

4 DISCUSSION AND RELATEDWORK
Growth of the OCaml libOS ecosystem. We have successfully used functoria as the core configu-

ration language in MirageOS for the past three years. During that time it has scaled to manage
the ever-expanding set of OS libraries written in pure OCaml to replace the original unsafe C
versions. Functoria has been used to create many unikernel applications such as the self-hosted
website whose configuration graph is rendered in Figure 1. The original vision of MirageOS was to

, Vol. 1, No. 1, Article . Publication date: May 2019.

Programming Unikernels in the Large via Functor Driven Development (Experience Report)

provide a complete reimplementation of OS functionality in a type-safe language, and today the set
of functoria module signatures in Table 1 show how far we have come in achieving this goal.
The mirage organisation on GitHub hosts over 100 repositories of independent OS libraries.

MirageOS supports a variety of deployment targets and the examples in the “skeleton” repository
compile to all of them. Some of the available MirageOS targets are:

• unix: maps filesystem and networking through to the Unix libc interfaces, resulting in a
standard Unix application. This mode is useful during development of higher-level logic.

• xen: eliminates the dependency on a general-purpose OS and constructs a standalone kernel
that boots on the Xen hypervisor. This requires a full device driver stack written in OCaml
(from DHCP to TCP/IP to HTTP to TLS) that are all supported by functoria.

• hvt, virtio, muen and genode: these use the Solo5 hypervisor [Williams and Koller 2016] to
run under KVM or directly on more specialised operating systems such as Meun or Genode.
They also require a complete OCaml device stack instead of relying on an underlying OS.

• qubes: extends the Xen compilation target with extra device drivers to work on the QubesOS
secure desktop Linux distribution, for example to firewall applications from each other.

There are also more experimental targets that link directly with embedded system bootlayers
to run directly on open-source ARM or RISC-V hardware [Gala et al. 2016], providing a path to
building highly secure and efficient IoT infrastructure. Note that all targets do not need to support
all the possible device drivers—a Unix backend can only provide network sockets and not support
direct Ethernet device signatures that are exposed by the Xen backend for example.

Expressivity of Functoria. Our approach relies heavily on the OCaml module language to succeed,
and functoria provides a partial embedding of the module system in the expression languages.
Surprisingly, although modules have much more expressive type systems than our embedding
supports, we found our subset sufficient for our organisational use.

Our observation is that when modules are used as a large scale organisation tool, it is generally
to reduce the need for tightly coupled source codebases. This means converging towards a set
of standardised signatures and avoiding subtyping hierarchies. The structural aspects of OCaml
modules, while still useful, can then be emulated by nominal encodings and a use of phantom type
parameters.
It is worth noting that OCaml significantly extends beyond the original roots of Standard

ML. Features in OCaml such as applicative functors, Modula-2 style separate compilation and
polymorphic variants have been essential when working with such a large number of modules.
Examination of our use of these features in a large library such as our TCP/IP stack vs a more
traditional ML implementation in the FoxNet [Biagioni et al. 2001] project is something we plan to
examine to assess these extensions more closely.

Applicative vs. Generative. Since the functors used in MirageOS are pure (see Section 2.2), it
is desirable to share the results of their applications as much as possible. OCaml’s applicative
functors [Leroy 1994, 1995] are a significant help here: in OCaml, if moduleM is equal to N then the
types provided by F (M) and F (N) are compatible. In contrast, functors in Standard ML [MacQueen
1984] are generative, not applicative: any types in the applications F (M) and F (N) are incompatible,
even ifM and N are equal.
In MirageOS, devices are considered different only if their states or their dependencies are

different (Section 3.3), and so OCaml’s applicative functors are the correct default. However,
generative functors, which OCaml also supports, are occasionally useful. For instance, the MirageOS
logging system relies on generative functors to create a new logging implementation with each

, Vol. 1, No. 1, Article . Publication date: May 2019.

G. Radanne, T. Gazagnaire, A. Madhavapeddy, J. Yallop, R. Mortier, H. Mehnert, M. Preston,
and D. Scott

instantiation. Functoria supports impure functors by generating fresh device names for each functor
application, which prevents sharing.

Alternative module languages. The constructs used in our approach can be found in module
languages different from ML. Backpack [Kilpatrick et al. 2014] introduces a “linking calculus”
for Haskell modules that supports features such as abstract signatures, separate compilation and
sharing that are necessary for our approach. Scala’s class calculus also supports a rich modularity
toolset that covers most of our usecases via abstract classes and generics. MixML [Dreyer and
Rossberg 2008] introduces structures that can be partially left abstract and filled later. This provides
all the advantages of ML modules, including genericity, encapsulation and separate compilation
but also support recursive modules which could be used for interdependent devices.

Module type Implementations Comments
Mirage_kv.RO Crunch, Kv_Mem, Kv_unix,

Mirage_tar, XenStore,
Irmin, Filesystems

Read-only key-value stores allow to pass down
immutable data to the unikernels such as web-
pages, certificates, etc. Arbitrary filesystems
can also be made into key-value stores.

Mirage_kv.RW Wodan Read-write key-value stores such as a pure
OCaml store designed to run on SSDs.

Mirage_fs.S Fat, Git, Fs_Mem, Fs_unix Filesystem implementations.
Mirage_net.S tuntap, vmnet, rawlink Send and receive network packets.
ARP, IP, UDP, TCP IPV4, IPV6, Qubesdb_IP,

Udp, Updv4_socket, Tcp,
Tcpv4_socket, . . .

Low-level implementations of Internet and
Transport Protocols. Usually has two imple-
mentations: a complete reimplementation and
one that delegates to the underlying OS.

STACK Direct, Socket, Qubes,
Static_IP, With_DHCP

Network stacks encapsulated for convenient
usage. The stacks usually provide keys to cus-
tomize its usage at configure and run time.

RANDOM Stdlib, Nocrypto, Test Random sources, either for normal or crypto-
graphic purposes.

HTTP Cohttp, Httpaf HTTP servers implemented in term of an un-
derlying STACK.

FLOW Conduit.With_tcp,
Conduit.With_tls

A generic abstraction for network flows that
can be used with or without encryption.

DNS, DHCP, SYSLOG Dns, Unix, Charrua_unix,
Charrua, Syslog.Tcp,
Syslog.Udp, Syslog.Tls

Protocols for various applications such as DNS,
DHCP or Syslogs implemented in terms of an
underlying STACK or FLOW.

Jitsu, Irmin, . . . High-level APIs that can provide extra func-
tionalities. For instance, Jitsu [Madhavapeddy
et al. 2015] can spawn new VMs on-demand.

Table 1. The MirageOS module ecosystem available on the opam package manager

, Vol. 1, No. 1, Article . Publication date: May 2019.

Programming Unikernels in the Large via Functor Driven Development (Experience Report)

5 CONCLUSION
We have presented functor-driven development, an application architecture that leverages OCaml
modules to structure application logic in a highly portable form that can be compiled across a
variety of heterogenous targets.

Our implementation of the MirageOS unikernel framework has allowed us to successfully scale
our ecosystem to hundreds of OCaml libraries. These libraries are packages which themselves
contain thousands of OCaml modules. Overall we have millions of lines of modular and reusable
OCaml code that provides clean-slate implementations of OS components – everything from device
drivers to Internet protocols – that can be deployed on a large (and increasing) array of execution
targets.

REFERENCES
Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew

Warfield. 2003. Xen and the Art of Virtualization. SIGOPS Oper. Syst. Rev. 37, 5 (Oct. 2003), 164–177. https://doi.org/10.
1145/1165389.945462

Edoardo Biagioni, Robert Harper, and Peter Lee. 2001. A Network Protocol Stack in Standard ML. Higher-Order and Symbolic
Computation 14, 4 (01 Dec 2001), 309–356. https://doi.org/10.1023/A:1014403914699

R. Bonichon and P. Weis. 2017. Format unraveled. In 28. Journées francophones des langages applicatifs, Fréjus, France,
January 7-7, 2017.

Reto Buerki and Adrian-Ken Rueegsegger. 2013. Muen: An x86/64 separation kernel for high assurance. (2013). https:
//muen.sk/

Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool for random testing of Haskell programs. In Proceedings
of the Fifth ACM SIGPLAN International Conference on Functional Programming (ICFP ’00), Montreal, Canada, September
18-21, 2000., Martin Odersky and Philip Wadler (Eds.). ACM, 268–279. https://doi.org/10.1145/351240.351266

Stephen Dolan and Mindy Preston. 2017. Testing with Crowbar. (2017).
Derek Dreyer and Andreas Rossberg. 2008. Mixin’ up the ML module system. In Proceeding of the 13th ACM SIGPLAN

international conference on Functional programming, ICFP 2008, Victoria, BC, Canada, September 20-28, 2008, James Hook
and Peter Thiemann (Eds.). ACM, 307–320. https://doi.org/10.1145/1411204.1411248

D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. 1995. Exokernel: an operating system architecture for application-level
resource management. In Proc. 15th ACM Symposium on Operating Systems Principles (SOSP). ACM, Copper Mountain,
Colorado, USA, 251–266. https://doi.org/10.1145/224056.224076

N. Gala, A. Menon, R. Bodduna, G. S. Madhusudan, and V. Kamakoti. 2016. SHAKTI Processors: An Open-Source Hardware
Initiative. In 2016 29th International Conference on VLSI Design and 2016 15th International Conference on Embedded
Systems (VLSID). 7–8. https://doi.org/10.1109/VLSID.2016.130

Jacques Garrigue. 2001. Simple Type Inference for Structural Polymorphism. In The Second Asian Workshop on Programming
Languages and Systems, APLAS’01, Korea Advanced Institute of Science and Technology, Daejeon, Korea, December 17-18,
2001, Proceedings. 329–343.

Jacques Garrigue. 2006. Private Row Types: Abstracting the Unnamed. In Programming Languages and Systems, Naoki
Kobayashi (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 44–60.

Thomas Gazagnaire and Vincent Hanquez. 2009. OXenstored: An Efficient Hierarchical and Transactional Database Using
Functional Programming with Reference Cell Comparisons. In Proceedings of the 14th ACM SIGPLAN International
Conference on Functional Programming (ICFP ’09). ACM, New York, NY, USA, 203–214.

Scott Kilpatrick, Derek Dreyer, Simon L. Peyton Jones, and Simon Marlow. 2014. Backpack: retrofitting Haskell with
interfaces. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14, San
Diego, CA, USA, January 20-21, 2014, Suresh Jagannathan and Peter Sewell (Eds.). ACM, 19–32. https://doi.org/10.1145/
2535838.2535884

Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. 2007. KVM: the Linux Virtual Machine Monitor. In In
Proceedings of the 2007 Ottawa Linux Symposium (OLS’-07.

Xavier Leroy. 1994. Manifest Types, Modules, and Separate Compilation. In Conference Record of POPL’94: 21st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Portland, Oregon, USA, January 17-21, 1994, Hans-Juergen
Boehm, Bernard Lang, and Daniel M. Yellin (Eds.). ACM Press, 109–122. https://doi.org/10.1145/174675.176926

Xavier Leroy. 1995. Applicative Functors and Fully Transparent Higher-Order Modules. In Conference Record of POPL’95:
22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Francisco, California, USA, January
23-25, 1995, Ron K. Cytron and Peter Lee (Eds.). ACM Press, 142–153. https://doi.org/10.1145/199448.199476

, Vol. 1, No. 1, Article . Publication date: May 2019.

https://doi.org/10.1145/1165389.945462
https://doi.org/10.1145/1165389.945462
https://doi.org/10.1023/A:1014403914699
https://muen.sk/
https://muen.sk/
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/1411204.1411248
https://doi.org/10.1145/224056.224076
https://doi.org/10.1109/VLSID.2016.130
https://doi.org/10.1145/2535838.2535884
https://doi.org/10.1145/2535838.2535884
https://doi.org/10.1145/174675.176926
https://doi.org/10.1145/199448.199476

G. Radanne, T. Gazagnaire, A. Madhavapeddy, J. Yallop, R. Mortier, H. Mehnert, M. Preston,
and D. Scott

Ian M. Leslie, Derek McAuley, Richard Black, Timothy Roscoe, Paul T. Barham, David Evers, Robin Fairbairns, and Eoin
Hyden. 1996. The Design and Implementation of an Operating System to Support Distributed Multimedia Applications.
IEEE Journal of Selected Areas in Communications 14, 7 (1996), 1280–1297.

David B. MacQueen. 1984. Modules for Standard ML. In LISP and Functional Programming. 198–207.
Anil Madhavapeddy, Thomas Leonard, Magnus Skjegstad, Thomas Gazagnaire, David Sheets, Dave Scott, Richard Mortier,

Amir Chaudhry, Balraj Singh, Jon Ludlam, Jon Crowcroft, and Ian Leslie. 2015. Jitsu: Just-In-Time Summoning of
Unikernels. In 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI 15). USENIX Association,
Oakland, CA, 559–573. https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/madhavapeddy

Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith,
Steven Hand, and Jon Crowcroft. 2013. Unikernels: Library Operating Systems for the Cloud. In Proceedings of the
Eighteenth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS
’13). ACM, New York, NY, USA, 461–472. https://doi.org/10.1145/2451116.2451167

Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuenzer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and
Felipe Huici. 2017. My VM is Lighter (and Safer) Than Your Container. In Proceedings of the 26th Symposium on Operating
Systems Principles (SOSP ’17). ACM, New York, NY, USA, 218–233. https://doi.org/10.1145/3132747.3132763

David Scott, Richard Sharp, Thomas Gazagnaire, and Anil Madhavapeddy. 2010. Using Functional Programming Within an
Industrial Product Group: Perspectives and Perceptions. SIGPLAN Not. 45, 9 (Sept. 2010), 87–92. https://doi.org/10.1145/
1932681.1863557

Dan Williams and Ricardo Koller. 2016. Unikernel Monitors: Extending Minimalism Outside of the Box. In 8th USENIX
Workshop on Hot Topics in Cloud Computing, HotCloud 2016, Denver, CO, USA, June 20-21, 2016., Austin Clements and
Tyson Condie (Eds.). USENIX Association.

M. Zalewski. 2014. (2014). http://lcamtuf.coredump.cx/afl/

, Vol. 1, No. 1, Article . Publication date: May 2019.

https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/madhavapeddy
https://doi.org/10.1145/2451116.2451167
https://doi.org/10.1145/3132747.3132763
https://doi.org/10.1145/1932681.1863557
https://doi.org/10.1145/1932681.1863557
http://lcamtuf.coredump.cx/afl/

	Abstract
	1 Introduction
	2 Structuring Applications with Functors
	2.1 Standardized Signatures
	2.2 State and Initialization
	2.3 Reporting Errors
	2.4 Gluing Modules Together

	3 Functoria: A Tool to Glue Modules and Signatures Together
	3.1 Configuring applications with functoria
	3.2 Parametrized applications
	3.3 Sharing and configuring devices
	3.4 Building portable and flexible applications

	4 Discussion and Related Work
	5 Conclusion
	References

