
Evolving TCP. How hard can it be?

Zubair Nabi, Toby Moncaster, Anil Madhavapeddy, Steven Hand, Jon Crowcroft
Computer Laboratory

University of Cambridge
firstname.lastname@cl.cam.ac.uk

ABSTRACT
Over the last decade TCP has become the de facto “narrow
waist” of the Internet — a one-size-fit-all transport that is
poorly suited to the needs of modern applications. As middle-
boxes have become ubiquitous, it has become nigh impossible
for alternative transports to exist and so application devel-
opers have come to view opening a TCP socket as the only
reliable way to connect to a server. Some recent proposals
circumvent this problem by camouflaging new transports so
that they appear like TCP to middleboxes. We draw the key
lessons from this approach and show how this could lead to
a true one-size-fits-all transport: “Polyversal TCP”.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design – Network communications

Keywords
Transports, API, multipath

1. INTRODUCTION
Application developers have two choices for sending data

over the Internet — TCP, with its reliable, ordered, congestion-
controlled byte stream model or UDP with its unordered,
unreliable datagram model. Middleboxes such as firewalls
and intrusion detection systems have effectively hard-wired
TCP into the Internet and have made it increasingly hard
for novel transport protocols to be deployed [4].

TCP and UDP support a remarkable variety of applications
over a huge range of connection speeds and latencies, but are
struggling to meet the demands of today’s high-bandwidth,
low latency applications. This has led developers to use the
underlying transport as a substrate over which to run appli-
cation layer transports. Examples of this are Minion [5] that
uses TCP as its substrate but allows the application to trade
reliability in favour of reduced latency, and uTP [8], which

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNEXT Student’12, December 10, 2012, Nice, France.
Copyright 2012 ACM 978-1-4503-1779-5/12/12 ...$15.00.

provides TCP-like reliability on top of UDP for BitTorrent
and uses a custom approach to congestion control.

Multipath TCP (MPTCP) takes a different approach [6].
The transport is designed to work alongside TCP, and clever
design choices result in a new protocol that looks like TCP
on the wire, but which is able to make far better use of the
available bandwidth resource pool across multiple interfaces.

MPTCP points to a new approach for evolving transport
protocols. Rather than expecting a new protocol to survive
in an Internet dominated by middleboxes, we suggest that it
should adopt a form of camouflage. Raiciu et al. [6] identify
three design goals that are applicable to any new transport:
to be able to work with unmodified receivers and APIs, to
work in all cases where TCP currently works and to offer
performance at least as good as TCP in any circumstances.
In this paper we take these goals and generalise them to
show how this leads to the design of a new Polyversal TCP
that adapts to suit any underlying network: from WANs
with RTTs measured in seconds, to NUMA multicore inter-
connects in the nanosecond range, from low speed sensor
networks with bandwidths of kbps, to high-speed datacenter
networks with bandwidths of 10s of Gbps.

2. TRANSPORT DESIGN GUIDELINES
Middleboxes have reduced the choice of underlying trans-

port protocols to two: UDP or TCP. This is symptomatic
of the ossification that has been evident for some years [3].
However, we believe there is a simple solution — if a new
transport looks like TCP on the wire, then it survives the
first hurdle to adoption in the wider Internet. But in and of
itself this isn’t enough, there are additional guidelines that
should be followed if it is to be successful:

1. Connections should be established using a TCP hand-
shake and the behaviour of standard TCP control bits
should remain intact.

2. The protocol should fail gracefully in the presence of ag-
gressive middleboxes, coping with transparent erasure
of TCP options and falling back to vanilla TCP.

3. The new transport should offer real deployment benefits
— the history of the IETF is littered with new transports
that have never got traction because there was no
realistic deployment model.

4. The new protocol should exhibit stability and resilience
in the face of adverse network conditions. In particular
the protocol must be aware of the risk of fighting with
itself in cases where it causes self-congestion.



There is also an important non-goal that has hampered the
adoption of many new proposals: TCP or flow-rate fairness.
This is the flawed notion that at any bottleneck every flow
should receive an equal share of the resources. There are
many objections to this idea [2], but among the most critical
is that it fails to take account of applications that simply
open multiple flows in order to get a greater share of the
available bandwidth [1].

Figure 1: The evolution of PVTCP. At every stage
we offer enhanced performance over TCP and pro-
vide sensible fallback strategies.

3. FROM UNIVERSAL TO POLYVERSAL
The universality of TCP means it is the jack of all trades

and master of none. We believe that by applying the guide-
lines above we can change that, creating a transport protocol
that can offer any feature the application designer wants
while still retaining the ability to fall back to vanilla TCP.
In short, we envisage a Polyversal TCP.

PVTCP builds upon the MPTCP subflow mechanism by
allowing the application to customize each subflow indepen-
dently. These subflows can exhibit different characteristics
(congestion control, reliability, ordering, security etc.) de-
pending on application requirements and the underlying
network (including middleboxes). During setup, PVTCP
performs path characterisation using mechanisms similar to
path-MTU discovery. Using this information, PVTCP can
either transparently choose the transport semantics for a
particular subflow or if the application wants fine-grained
control, then it can use setsockopt() to explicitly customize
each subflow via a per-subflow socket. PVTCP maintains
backwards compatibility with the traditional socket API by
keeping the socket(), bind(), and listen() socket calls
intact. If problems are found at any point during the lifetime
of a connection, it can simply fall back to standard TCP for
that connection or use alternatives such as MPTCP or SSL
over MPTCP as shown in Figure 1.

3.1 Motivating Applications
We present two motivating examples exploring opposite

ends of the spectrum: datacenter networks, where the entire
network is under a single control domain (which alleviates
the middlebox issues) and mobile networks, which are at the
mercy of middleboxes, link layer loss and other entities.

Datacenter Networks.
Datacenter networks present an extreme case in which vir-

tual hosts maintain multiple communication channels within
and across physical machines. The underlying subnetworks of

these channels can vary from on-chip multicore interconnects
to inter-host Ethernet, optical or Infiniband links. They
exhibit an order of magnitude difference in performance
depending on the transport regime and the layout of the
underlying network [7]. In such situations, applications can
customize each subflow directly through the PVTCP socket
API or allow PVTCP to do so on its behalf. For instance,
PVTCP can choose the transport based on the size of the
transfer and the location of the destination. In addition, for
virtualized hosts, PVTCP can ensure robust live migration
by temporarily switching to standard TCP to allow shared
memory channels to be replaced.

Mobile Networks.
MPTCP can already stripe the same connection over mul-

tiple interfaces in multihomed mobile devices for robustness
and high throughput [6]. Under PVTCP the congestion con-
trol, reliability, and ordering of each subflow can be modified
based on the link layer technology (WiFi, 3G, etc.) to en-
hance performance and suit application needs. In addition,
PVTCP can also provide resilience by allowing connection
rejuvenation in case of signal drop-out or unreliable handover.

4. CONCLUSIONS AND FUTURE WORK
The well-documented increase in middleboxes has resulted

in TCP becoming almost universal. TCP has proved re-
markably adaptable, but it is not ideal for many modern
applications. This leaves protocol designers two choices: ei-
ther write an application layer transport on top of TCP or
UDP, or disguise the new transport as TCP. The second
approach is more flexible and this paper has given guidelines
for how to do this safely and effectively. To show the strength
of this approach we briefly described how Polyversal TCP
can offer a much more powerful and flexible alternative to
standard TCP in datacenter or mobile scenarios, but we
think that PVTCP has far wider application than this. We
also believe that PVTCP can help with network deossifica-
tion by decoupling the evolutionary fate of the network and
transport layer, allowing both to evolve independently. We
are now in the process of developing this protocol and the
related API enhancements to allow it to be integrated with
existing standard libraries thus enabling transport protocols
to evolve to reflect the needs of future applications.

5. REFERENCES
[1] M. Belshe and R. Peon. SPDY Protocol. 2012. IETF

draft: draft-mbelshe-httpbis-spdy-00.

[2] B. Briscoe. Flow rate fairness: Dismantling a religion.
ACM SIGCOMM CCR, 37(2), 2007.

[3] M. Handley. Why the Internet only just works. BT
Technology Journal, 24(3), 2006.

[4] M. Honda et al. Is it still possible to extend TCP? IMC
2011, 2011.

[5] M. Nowlan et al. Fitting square pegs through round
pipes. NSDI’12, 2012.

[6] C. Raiciu et al. How hard can it be? Designing and
implementing a deployable multipath TCP. NSDI’12,
2012.

[7] S. Smith et al. The case for reconfigurable I/O channels.
RESoLVE workshop at ASPLOS’12, 2012.

[8] L. Strigeus et al. uTorrent Transport Protocol, Jun 2009.
http://www.bittorrent.org/beps/bep_0029.html.


