
ZU064-05-FPR cufp-2011 20 December 2011 15:51

Under consideration for publication in J. Functional Programming 1

Commercial Users of Functional Programming
Workshop Report

ANIL MADHAVAPEDDY
Computer Laboratory, University of Cambridge

15 JJ Thomson Avenue, Cambridge CB3 0FD, UK
YARON MINSKY
Jane Street Capital

1 New York Plaza, New York NY, USA
MARIUS ERIKSEN

Twitter, Inc.
795 Folsom St., Suite 600

San Francisco, CA 94107, USA.

1 Overview

Commercial Users of Functional Programming (CUFP) is a yearly workshop that is aimed
at the community of software developers who use functional programming in real-world
settings. This scribe report covers the talks that were delivered at the 2011 workshop, which
was held in association with ICFP in Tokyo. The goal of the report is to give the reader
a sense of what went on, rather than to reproduce the full details of the talks. Videos and
slides from all the talks are available online at http://cufp.org.

2 Keynote: Pragmatic Haskell

Lennart Augustsson from Standard Charter gave the keynote address, relating his longtime
use of Haskell and Haskell-derived languages in commercial settings. Augustsson’s expe-
rience with Haskell dates back to its inception: he authored the first Haskell compiler, hbc,
which remains competitive with the Glasgow Haskell Compiler to this day. Augustsson
subsequently developed several Haskell variants that were tailored for his needs.

The first of these was pH, the parallel Haskell compiler (Aditya et al., 1995). pH sought to
exploit the implicit parallelism in a Haskell program by combining the Haskell syntax and
type system with the evaluation strategy of the id parallel programming language (Arvind
et al., 1978). pH introduced several concepts that are still used in modern systems, such as
the MVar abstraction.

Augustsson then applied his Haskell experience to the field of hardware design. The
Bluespec hardware description language is a full compile-time implementation of Haskell,
outputting Verilog for hardware synthesis. Bluespec significantly raised the level of ab-
straction for hardware design and is still available commercially today (Rishiyur & Arvind,
2008). Interestingly, Bluespec’s type system directly incorporates numbers and arithmetic.



ZU064-05-FPR cufp-2011 20 December 2011 15:51

2 Anil Madhavapeddy, Yaron Minsky and Marius Eriksen

Augustsson is currently working in the banking industry, providing in-house technol-
ogy for traders and quantitative analysts. Mu is Lennart’s latest Haskell dialect designed
specifically for this use. Most traders and quantitative analysts are chiefly interested in
data transformation and do not necessarily care about effectful operations. Mu provides a
simplified dialect of Haskell catering to these needs. Interestingly, Mu eschews Haskell’s
laziness and is a strict language instead. A number of pragmatic design decisions were
made: most performance sensitive code reuses C++ from in-house libraries, and strings in
Mu are not lists of characters. Furthermore, recursion is provided only optionally (and only
6% of their modules make use of it). Mu provides a fine-grained I/O monad, allowing for
both ”I/O” and ”O” (output only). In order to attain easy interprocess communication, all
values in Mu are serializable.
Mu is a true Haskell dialect in that code written in Mu may be compiled with a Haskell

compiler. As with its language and libraries, the Mu compiler is a work of pragmatic design.
All compiler transformations are done assuming it is operating on terminating code, and
the compiler uses LLVM (Lattner & Adve, 2004) for its backend.

Standard Chartered’s Mu codebase is of significant size and lives within a library for
quantitative analysts written in a combination of C++, Haskell and Mu itself. Language
interoperability is key; all parts of the system can easily be invoked from Excel, C#, Java
or any other component.

Their experience with strict semantics has been positive. Particularly useful is the ease
of obtaining meaningful stack traces, tracking resource usage, debugging and exception
propagation. The chief downside of strict semantics, in their experience, is the increased
difficulty of modular composition.

Augustsson noted that Excel has a more expressive effect system than Haskell and
provides an effective front-end to composing Mu modules. He demonstrated coding Mu

within Excel live on stage, via an interactive and interpreted version.

3 Cryptol: Theorem-Based Derivation of an AES Implementation

John Launchbury from Galois then described Cryptol, their declarative specification lan-
guage for cryptographic protocols (Erkök & Matthews, 2008). Galois is now using Cryptol
to derive a highly efficient implementation of AES targeted at FPGAs.

Cryptol is a first-order functional language with size-type declarations. Recursion is
available via stream equations. The sequentiality constraints are due to data dependen-
cies, making it possible to efficiently evaluate this language on FPGAs. Cryptography is
also a natural match for FPGAs, and Cryptol makes it easier to experiment with several
implementations. Cryptol has a theorem keyword to express properties such as the in-
verse relationship between encryption and decryption operations. A tool that is similar to
QuickCheck (Claessen & Hughes, 2000) is used to generate test cases to ensure that these
theorems hold.

The derivation of the design was preceded by a series of stepwise refinements to the
original specification, all of which were written in Cryptol. The theorem-based testing
system was used as a way of gaining confidence that each stage in the refinement was
solid. The end result was a chip that was competitive with top-notch manually constructed
implementations, but that the designer could have far more confidence in.



ZU064-05-FPR cufp-2011 20 December 2011 15:51

Commercial Users of Functional Programming 2011 3

4 Erlang: Large-Scale Discrete Event Simulation

Olivier Boudeville from EDF described the use of Erlang for building large-scale simula-
tions. Sim-Diasca (Simulation of Discrete Systems of All Scales) is a system implemented
in Erlang for building large scale discrete simulations of the kind that are used for simulat-
ing Smart Energy Grids and other large-scale industry projects.

Sim-Diasca was—as its name implies—designed to meet relatively uncommon scalabil-
ity requirements, supporting upwards of millions of parallel instances of complex models.
It prescribes no fixed topology and uses Erlang’s actor mechanism for communication
between nodes. The main role of the generic engine is scheduling. Its scheduler enforces
causality, reproducibility of the model simulation and some forms of ergodicity.

As typical language choices for this domain are C++ and CORBA, the authors wrote
a macro package—dubbed WOOPER—to aid development and provide a more familiar
environment by providing object-oriented primitives on top of Erlang.

The team did encounter resistance with its esoteric language choice. In particular, hiring
developers was harder. However, Boudeville characterized their choice of Erlang and func-
tional programming as “massively positive”. In particular, Erlang’s support for distributing
computation coupled with more suitable language constructs made complex algorithms
significantly easier to express.

5 Erlang: Testing Safety Critical Automotive Components

The next talk came from Thomas Arts, who is the CTO of Quviq, a company he co-founded
with John Hughes. Quviq is devoted to automated testing of software using QuickCheck
and Erlang. The talk covered the application of Erlang and QuickCheck to the testing of
automotive components. The average modern car has over 64 computers that are networked
(for example, “the brakes might need to know how fast the car is going!”). Manufacturers
use components from a variety of vendors and so interoperability testing takes on critical
importance.

The industry standard for automotive components is AUTOSAR.1 Initially, the AU-
TOSAR consortium outsourced its testing, and over thirty person-years were spent on writ-
ing manual tests for component interoperability. The result was disastrous and unsuitable
for use. The chief reason for this is that AUTOSAR is highly configurable, with thousands
of standardised parameters that are difficult to express manually. Furthermore, this means
that meaningful tests must be parametrized on the configurations.

The solution came in the form of Erlang and QuickCheck. Quiviq’s AUTOSAR testing
produced far better test coverage, tailored to the manufacturer’s particular configuration.
Furthermore, the terseness of Erlang and QuickCheck reduced the code size of the tests by
at least an order of magnitude.

1 http://www.autosar.org/



ZU064-05-FPR cufp-2011 20 December 2011 15:51

4 Anil Madhavapeddy, Yaron Minsky and Marius Eriksen

6 OCaml: Mobile HTML5 Development

We moved on from testing and simulation to the world of functional web development in
Japan. Keigo Imai delivered an entertaining talk about the consultancy (IT Planning, Inc.)
he works for, where 45% of their annual sales are from functional programming projects.

Their typical sales story goes like this. Customers specify their choice of programming
language and an impossibly tight deadline. ITPL then propose using their existing OCaml
codebase to deliver the solution, but within the required deadline and with much less risk.
ITPL continually educates its customers about the benefits of rapid development using
functional languages.

Imai then demonstrated an example project: a foreign exchange chart application that
works on iPhone and Android, dynamically drawn using an HTML5 canvas. It was written
in OCaml and translated to Javascript using the OCamlJS compiler.2 In their experience,
static typing was very helpful for web development. In particular, typing of DOM el-
ements avoided many runtime errors, especially in the complex <canvas> tag. Higher
level language features also facilitate the asynchronous programming style prevalent in
web apps. Their Web SQL database API is wrapped in a monad and continuation passing
style, allowing for ease of programming without having to create explicit callbacks chains.
OcamlJS allows for inlining Javascript, which was useful when more low-level control was
required.

Performance has been fine with OCamlJS, and no bugs have been reported yet on its
output. To quote Imai, ”it is written in our miraculous super OCaml technique!”. An
audience member asked if codesize (from the generated Javascript) is a problem, especially
in view of this being a mobile project. Keigo replied that they haven’t had any problems
with this.

7 Scala: Large Scale Internet Services at Twitter

Twitter is a social network for sharing short text messages. It is growing in popularity
extremely fast, and some backend components have to serve in excess of 106 queries per
second. Steve Jenson and Wilhelm Bierbaum described how many of Twitter’s infrastruc-
ture components are implemented in Scala. The JVM is their preferred virtual machine
due to its maturity and performance, and Scala provides a much better type system and
functional programming features than Java.

All Twitter client HTTP requests are answered by a reverse proxy called TFE, which
routes requests using the Finagle distributed RPC system.3 Request streams are passed
through filters that transform and apply processing functions on them. The process is
afforded the full facilities of the JVM, including the use of pre-existing libraries written
in Java.

The use of the JVM means that many existing debugging and profiling tools (e.g. Yourkit,
JStat, VisualVM) can be used, but the name mangling and anonymous functions in Scala
occasionally introduce obscure results. The use of immutable values result in a lot of

2 https://github.com/jaked/ocamljs
3 http://twitter.github.com/finagle/



ZU064-05-FPR cufp-2011 20 December 2011 15:51

Commercial Users of Functional Programming 2011 5

pressure on the garbage collector. When developing high-volume interactive services, it
is not uncommon to spend a significant amount of time understanding and tuning garbage
collection.

Twitter has also been hiring many programmers who have never used Scala before.
While many of them are familiar with the concepts underlying functional programming,
the syntax of Scala can be subtle, and is often difficult for beginners to learn.

8 F#: Mobile Applications using WebSharper

Adam Granicz from IntelliFactory began by pointing out that the market for mobile ap-
plications is massive. It is projected that in 2011, the phone market will have grown
to 3.7 billion users, with 18% of them owning smartphones capable of running applica-
tions. However, smartphone platforms are a heterogenous bunch. The current major plat-
forms (Android, iPhone, Windows Mobile) differ in both programming style and language
choice.

Ideally, mobile applications could be developed using higher level abstractions, support
compilations to multiple targets, and make use of desktop and cloud resources when avail-
able. The switch to proprietary and divergent APIs on different devices is a step backwards.

Javascript is becoming the intermediate language that connects these devices together,
and Windows 8 is even promoting it for building native desktop applications. IntelliFactory
built the WebSharper programming framework in F# that outputs Javascript that works with
all of these diverse devices.

With WebSharper, all of the server and client code is written in F#, and compiles to a
complete standalone web application. The F# interfaces make good use of the language’s
facilities: Type-safe URLs helps prevent common errors, and “sitelets” and “formlets” that
are composable abstractions for fragments of websites.

9 Haskell: A Real Time Programming Project in Real Time

Gregory Wright from Alcatel-Lucent Bell Labs described a project that used Haskell to
build the core of a real-time communication system. It was built by the GreenTouch con-
sortium, an organization of equipment vendors, service providers, and research institutes
to show a new antenna technology that reduces the energy used by wireless networks. The
goal of the project was to demonstrate an algorithm that reduces radio transmission power
as the number of base station antenna elements is increased and is capable of scaling to
antennas with thousands of elements.

An antenna can focus on a user and calibrate the amount of data sent over the link. As
a result, the power levels of an individual handset can be adjusted with respect to a target
rate. This was initially simulated and then later run on real hardware as a soft realtime
system.

In total, the project lasted 14 real days. As a result of the timescale, it used very vanilla
Haskell (e.g. arrays weren’t unboxed), with no tricks to improve memory behaviour, or
strictness annotations. The STM library was used, as well as the DSP library from Hackage.



ZU064-05-FPR cufp-2011 20 December 2011 15:51

6 Anil Madhavapeddy, Yaron Minsky and Marius Eriksen

Despite this simplicity, the project was a big success. An important factor was that they
always had a working system, with upgrades staged well. Haskell provided a high degree
of safety from “crashing and burning”.

Furthermore, the nature of the project was iteself very compatible with the principles of
Haskell. The core algorithms implemented were all “dataflow-like”, using laziness quite
effectively.

10 Erlang/OCaml: Disco, a MapReduce Platform

Prashanth Mundkur from Nokia Research in Palo Alto talked about the Disco Project.
When Nokia started evaluating systems for distributed data processing, the most popular
solution was Hadoop. However, this was a “massive pile of Java software” that was difficult
to configure and operate. An Erlang hacker at Nokia—Ville Tuulos—wondered how hard
it would be to implement a simpler alternative.

The first Disco prototype took a few weeks to implement. The core coordination com-
ponents are implemented in Erlang making use of its runtime facilities for distributed
computation. Python is the primary language used to write the data processing scripts, i.e.
the “mappers” and “reducers”. OCaml has recently been added as a more strongly typed
data processing alternative language.

The Erlang environment provides quite a few useful tools that made Disco easier to
implement. In particular, a shell to invoke remote procedure calls on hosts in the cluster
and fprof to collect profiling information in real-time. The dynamic typing did result in
some hard to find bugs, and the dialyzer static analysis tool is now used extensively on
the codebase (Sagonas, 2007).

Disco is open-source software, and available from http://discoproject.org.

11 mzScheme: Functional DSLs for Game Development

Dan Liebgold from Naughty Dog Software in Santa Monica then came on stage with the
first gaming related talk at CUFP. They produce the popular Uncharted game series for the
Playstation, which is famous for its complex and interactive scripted scenes. Dan described
modern game development as a major production effort where, roughly, artists produce
data and programmers produce code.

Naughty Dog has a history of using various Lisp dialects to handle the code and data in
a unified way. But when making the jump from the Playstation 2 to the Playstation 3, they
decided that maintaining a custom Lisp-based game development system was too costly,
and instead dedicated their efforts to rebuilding the tools, engine, and game in C++ and
assembly language.

This decision left no scripting system for gameplay and, more importantly, no system
for creating DSLs and the extensive glue data that is typically required to develop a major
video game. There was no off-the-shelf scripting system that fit the stringent memory
requirements in a Playstation 3, and no language that would allow rapid DSL creation
that fit into the existing tool chain.

With a bit of naivety, a penchant for the Scheme language, and a passion for functional
programming techniques, the team dove in and put together a system to fill in the gaps!



ZU064-05-FPR cufp-2011 20 December 2011 15:51

Commercial Users of Functional Programming 2011 7

They used mzScheme4, which can compile to fast native code. Dan reported that the results
have been very good, but not without issues. In particular, garbage collector performance
sometime led to manual tuning being required, and build environment integration was
tricky. Syntax transformations and error reporting led to confusion with new programmers
too.

On the other hand, the functional nature of the system was a big win, as it allowed
them to flexibly distill game data down to just the right form to embed into the resource-
constrained run-time environment. The final result is a system where programmers, artists,
animators, and designers are productively programming directly in an S-expression Scheme-
like language. Dan closed his talk by wowing the audience with the trailer for the game,
which has now been released and is garnering extremely positive reviews.

12 OCaml: The Acunu Storage Platform

Tom Wilkie from Acunu in London presented their Castle storage system to optimise big
data storage and retrieval. Castle consists of two components: a management service and
storage stack. The management service is written in OCaml and handles control requests
(eg. snapshots, backups, rollbacks, coordination). The storage stack implements an efficient
disk-backed indexed key-value store. While developing their storage stack, Acunu needed
rapid prototyping in order to explore new techniques and iterate on ideas. Given that issues
in storage systems tend to surface only after a certain amount of data or request volume,
the prototypes also needed to be reasonably performant.

However, although OCaml was effective for implementing the core algorithm, they spent
a lot of time on the support code to serialise data to and from disk. When the filesystem
codebase was moved to Java, performance increased by 6x times. The audience suggested
a few techniques to speed up the OCaml code, threading library, the Bitstring syntax
extension, and increasing the number of I/O threads used. Wilkie acknowledged these
could help, but that their availability should be promoted and documented better.

13 Conclusion

This year’s CUFP workshop covered a broad set of functional languages—Scala, Haskell,
Scheme, OCaml, Erlang and F# were all well represented, along with a nascent but growing
interest in more formal tools such as Coq and Isabelle. We also ran a well-attended 2-day
tutorial series on using Scala, OCaml, Haskell and F# for problem solving in scientific
computing, web programming, parallel programming and cloud computing.

The diversity of industries where functional programming is represented is also encour-
aging. Our speakers worked in the financial industry, big data processing, safety critical
systems in automobiles and energy systems, the real-time and mobile Internet, and for the
first time, the gaming industry.

We would like to thank Michael Sperber for organising the CUFP tutorial series, and
Manuel Chakravarty, Zhenjiang Hu, and the whole ICFP/CUFP team for their assistance
in Tokyo. We look forward to continuing the conference series in Copenhagen next year!

4 Now known as Racket, available: at http://racket-lang.org



ZU064-05-FPR cufp-2011 20 December 2011 15:51

8 Anil Madhavapeddy, Yaron Minsky and Marius Eriksen

References

Aditya, Shail, Arvind, Maessen, Jan-Willem, Augustsson, Lennart, & Nikhil, Rishiyur S. (1995).
Semantics of ph: A parallel dialect of Haskell. Pages 35–49 of: in proceedings of the Haskell
workshop (at FPCA 1995).

Arvind, Gostelow, K.P, & Plouffe, W.E. 1978 (Dec). An asynchronous programming language for a
large multiprocessor machine. Tech. rept. TR114a. UC Irvine.

Claessen, Koen, & Hughes, John. (2000). QuickCheck: a lightweight tool for random testing of
Haskell programs. Pages 268–279 of: Proceedings of the fifth ACM SIGPLAN international
conference on functional programming. ICFP ’00. New York, NY, USA: ACM.

Erkök, Levent, & Matthews, John. (2008). Pragmatic equivalence and safety checking in Cryptol.
Pages 73–82 of: Proceedings of the 3rd workshop on programming languages meets program
verification. PLPV ’09. New York, NY, USA: ACM.

Lattner, Chris, & Adve, Vikram. (2004). LLVM: A compilation framework for lifelong program
analysis & transformation. Pages 75– of: Proceedings of the international symposium on code
generation and optimization: feedback-directed and runtime optimization. CGO ’04. Washington,
DC, USA: IEEE Computer Society.

Rishiyur, Nikhil S., & Arvind. (2008). What is Bluespec? Sigda newsletter, 38(December), 1–1.
Sagonas, Konstantinos. (2007). Detecting defects in Erlang programs using static analysis. Pages 37–

37 of: Proceedings of the 9th ACM SIGPLAN international conference on principles and practice
of declarative programming. PPDP ’07. New York, NY, USA: ACM.


