
SPLAT: A Tool for Model-Checking and

Dynamically-Enforcing Abstractions

Anil Madhavapeddy1, David Scott2, and Richard Sharp3

1 Computer Laboratory, University of Cambridge
2 Fraser Research

3 Intel Research Cambridge
avsm2@cl.cam.ac.uk, djs@fraserresearch.org, richard.sharp@intel.com

1 Introduction

Conventional software model-checking involves (i) creating an abstract model
of a complex application; (ii) validating this model against the application; and
(iii) checking safety properties against the abstract model. To non-experts, steps
(i) and (ii) are often the most daunting. Firstly how does one decide which as-
pects of the application to include in the abstract model? Secondly, how does
one determine whether the abstraction inadvertently “hides” critical bugs? Sim-
ilarly, if a counter-example is found, how does one determine whether this is a
genuine bug or just a modelling artifact?

Splat attempts to simplify the model specification and validation tasks with
a view to making model checking more accessible to regular programmers. We
provide a high-level modelling language, SPL, which enables developers to spec-
ify models in terms of allowable program events (e.g. valid sequences of received
network packets). We have implemented a compiler that translates SPL into
both Promela and a number of general purpose programming languages (e.g.
C, OCaml, Java). The generated Promela can be used with SPIN [4] in order
to check static properties of the model. The generated code provides an exe-
cutable model in the form of a safety monitor : a program which dynamically
checks whether the application’s behaviour deviates from the specified model.
A developer can link this safety monitor against their application in order to
dynamically ensure that the application’s behaviour does not deviate from the
model. If the safety monitor detects that the application has violated the model
then it logs this event and terminates the application.

Although this technique simplifies model specification and validation it is, of
course, not appropriate for all systems. For example, dynamically shutting down
a fly-by-wire control system when a model violation is detected is not an option.
However, we observe that there are a large class of applications where dynamic
termination, while not desirable, is preferable to (say) a security breach. It is
these areas in which we believe Splat can deliver real benefits.

Our work currently focusses on implementing servers for common Internet
protocols securely and correctly. None of the major industrial implementations of
protocols such as HTTP (Apache), SMTP (Sendmail/Postfix), or DNS (BIND)

P. Godefroid (Ed.): SPIN 2005, LNCS 3639, pp. 248–252, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



SPLAT: A Tool for Model-Checking 249

are model-checked by their development teams. All of them regularly suffer from
serious security flaws ranging from low-level buffer overflows to subtle high-level
protocol errors [2]. In this paper we describe how we used Splat in the develop-
ment of mlssh: a complex, high-performance SSH2-compliant server written in
OCaml. Our experiences in implementing mlssh lead us to believe that Splat is
accessible to regular programmers without extensive model-checking experience.

2 Discussion

To demonstrate the benefits of Splat we chose to use it in the development of
mlssh: an Objective Caml [1] SSHv2 server. SSH, currently being standardized
by the IETF [6], is a complex protocol combining transport-level encryption,
user authentication, multiplexed data channels and remote shells. We chose to
implement mlssh in Objective Caml, since the strong static-type safety, good
UNIX syscall interface, and fast native-code output were all essential to our goals
of high performance and portability.

We used the SPL language to specify sequences of network messages allowed
by the SSH protocol. SPL policies, which are written using a familiar ’C’-like
syntax, represent non-deterministic finite state automata. An SPL automaton’s
inputs are referred to as statecalls. In the case of mlssh, statecalls are generated
when certain packets are received or transmitted, or some significant computa-
tion is performed by the server (e.g. deriving a shared secret via Diffie-Hellman
key exchange). A simplified fragment of the mlssh SPL policy for the transport
layer and authentication is shown in Figure 1.

Statecalls are represented by capitalized identifiers, and SPL functions use
lower-case identifiers. Semicolons are used to specify sequencing (e.g. S1; S2
specifies that state call, S1, must occur before state call, S2). Non-deterministic
choice is represented by using the either/or construct. The always allow block
specifies out-of-band messages which are expected at any time but do not cause

automaton transport (encrypted, s_auth) {
  always_allow (Recv_ignore, Recv_debug) {
    multiple (1..) {
      either {
        Recv_kexinit; Xmit_kexinit;
        either {
          Expect_dh;     (... etc)
        } or {
          Expect_gex;    (... etc)
        }
        Recv_newkeys; Xmit_newkeys;
        encrypted = true;
      } or (encrypted && !s_auth) {
        Recv_serv_auth;
        Xmit_serv_auth_ok;
        service_auth = true;
      }
    }
  }
}

automaton auth (success, failed) {
  do {
    either {
      optional { Xmit_auth_banner; }
      either {
        Recv_auth_req_none;
        Xmit_auth_failure;
      } or
        Recv_auth_req_password;
        auth_decision (success);
      } or {
        Recv_auth_req_publickey;
        auth_decision (success);
      } or {
        Notify_auth_permanent_failure;
        failed = true;
      }
  } until (success || failed);
}

Fig. 1. Sample SPL fragment for an SSHv2 server



250 A. Madhavapeddy, D. Scott, and R. Sharp

state transitions. The multiple (1..) block specifies that its body may occur
one or more times, and optional allows a block to occur at most once. Although
not in this example, SPL also supports a during/handle construct that models
asynchronous message handling (particularly useful for UNIX signal handling).
General recursion is prohibited, allowing us to statically allocate space for func-
tion arguments and return values. Internally, the Splat compiler transforms
SPL into a Control Flow Automaton (CFA) [3] representation.

There are two automata specified in Figure 1: transport and auth. The
transport automaton is parameterised over two variables: encrypted (repre-
senting that the channel has completed an initial key exchange and is encrypted)
and s auth (to indicate that the server has enabled the authentication service
to the client). The auth automaton maintains two state variables to indicate
either a successful authentication (success) or a permanent failure (failed).
The auth decision function call has been omitted for brevity.

Informally, the meaning of an SPL program is as follows. Each automaton
executes in parallel and sees every statecall. If an automaton receives a statecall
it was not expecting it reports an error. If any of the parallel automata report
an error then the SPL model has been violated.

To make the SPL more readable, each automaton, A, is surrounded by an
implicit always allow block that allows all statecalls not explicitly referenced
in A. More precisely, let Sall be the set of all statecalls referenced in the entire
SPL policy. Let S(A) be the set of all statecalls referenced in the definition of
automata A. Then A’s implicit always allow block allows statecalls in the set
Sall \ S(A).

2.1 Executable Model

In order to actually use and enforce this model in the target application, the
Splat compiler outputs a safety monitor designed to be linked directly against
the source code of the server. The safety monitor requires that the rest of the
server program cannot compromise its internal state. If this were not the case
then an attacker could (say) exploit a buffer overflow to manipulate the control-
flow of the safety monitor. In the case of mlssh, the Splat compiler generates
OCaml code with the following interface:

module Automaton = struct

exception Bad_statecall

type statecall =

|Xmit_ignore |Xmit_debug |Recv_kexinit |Xmit_kexinit (... etc)

type state

val init : unit -> state

val tick : statecall -> state -> state

val debug: string -> bool

end

This interface allows mlssh to initialize the safety monitor (via Automaton.
state), and to drive it by calling tick. If the safety monitor ever receives



SPLAT: A Tool for Model-Checking 251

an invalid sequence of statecalls (passed via tick calls) then it generates the
Bad statecall exception, terminating the program.

Although we specifically describe an OCaml interface here, the compiler can
also be easily extended to other language’s type systems (e.g. Java objects),
allowing server authors to write programs in their language of choice and still
use the Splat tool-chain. In the case where languages do not make strong enough
memory-safety guarantees to protect the safety monitor from the main program
(e.g. C), the compiler outputs an automaton which runs in a separate UNIX
process [5] and stub code which allows the server to communicate with the
monitor via IPC. However, this approach is slower for more fine-grained SPL
policies, as there is significantly more overhead in performing IPC than simply
calling a function (as is the case with OCaml).

It is important to note that we do not enforce mechanisms for insertion of
tick calls in server applications. In recent years, there have been a proliferation
of languages being used for authoring Internet services (Python, Perl, Ruby,
Erlang, Java, Eiffel, C/C++, Objective C etc.). Since different languages present
such different mechanisms for writing servers, any such technique would be either
too language-specific or too general to be of use. Instead, we allow SPL automata
to be embedded into any of these languages and allow server authors to insert
ticks as they see fit. In our implementation of mlssh we used a combination
of: (i) manual tick-insertion within the server source; (ii) meta-programming
techniques to automatically introduce ticks into generated code used for low-
level packet parsing; and (iii) program slicing to automatically tick across API
boundaries (e.g. call statecalls for every function call into the crypto library).

The executable automaton is also useful for providing high-level debugging
facilities. The debug function in the OCaml interface above connects the automa-
ton to a local UNIX domain socket to which a debugger process is listening, and
transmits details about its internal states in real-time. Since the SPL specifica-
tion typically captures higher-level information about the program’s state, this
complements the native language’s debugging facilities with application-specific
data (e.g. “what SSH packets is mlssh allowed to send immediately after au-
thentication is completed?”). The automaton can also keep statistics of state
transitions between program runs, aiding optimization efforts by highlighting
“hotspots” in the server.

2.2 Promela Output

The SPL compiler transforms the SPL policy directly into Promela code, suit-
able for machine-checking using SPIN. In addition, message producer processes
are created which continuously transmit statecalls to each automata. Model-
checking this output is not very interesting beyond exhaustiveness testing to
check that all the states are reachable. However, the programmer can specify
additional LTL assertions which must hold for the SPL policy as a whole. These
LTL assertions are checked by SPIN, and any counter-examples are translated by
the compiler back into SPL line numbers (which were added to each state in the
CFA by the compiler). In the code snippet shown previously, some LTL asser-



252 A. Madhavapeddy, D. Scott, and R. Sharp

tions used are: (i) encrypted ⇒ �encrypted and (ii) s auth ⇒ �encrypted.
These indicate that when encryption is enabled, it must remain enabled for the
lifetime of the session. Similarly, when the authentication service is activated,
encryption must always be enabled from then on.

Although the LTL assertions are currently specified outside of the SPL spec-
ification, we are currently integrating support for the assertions into the SPL
grammar, thus allowing them to be dynamically enforced in the executable au-
tomaton in the event that a model-checker is not available in the local build
environment.

The LTL assertions provide the programmer with a very useful mechanism
for determining whether the often informal intuitions about their server actually
hold true in their SPL model. For instance, UNIX signal handlers are a common
source of errors due to their extremely asynchronous nature; since they can easily
be expressed in SPL via a during/handle clause, the programmer can include
them in LTL assertions and more formally check those intuitions.

3 Tool Demonstration

In our tool demonstration, we intend to show the Splat tool-chain as used in the
mlssh SSHv2 protocol server, along with a simple debugger which demonstrates
the state transitions graphically in real-time. In addition, we will show how LTL
assertions help the programmer enforce invariants that are currently informally
mandated by the SSH specification. Finally, we hope to gather feedback from
the model-checking community, as we plan to release Splat under a BSD-style
license to encourage broader open-source adoption of model-checking techniques
across multiple languages and coding styles.

References

1. X. Leroy at al. Objective Caml. http://caml.inria.fr/.
2. CERT Coordination Center (CERT/CC). CERT knowledgebase.

http://www.cert.org/kb/.
3. Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, George C. Necula, Gregoire

Sutre, and Westley Weimer. Temporal-safety proofs for systems code. In Proceedings
of the 14th International Conference on Computer-Aided Verification, pages pp.
526–538. Lecture Notes in Computer Science 2404, Springer-Verlag, 2002.

4. Gerard J. Holzmann. The SPIN Model Checker : Primer and Reference Manual
title. Pearson Educational, 2003.

5. Niels Provos, Markus Friedl, and Peter Honeyman. Preventing privilege escalation.
In Proceedings of the 12th USENIX Security Symposium, August 2003.

6. Bill Sommerfeld. IETF Secure Shell Working Group (secsh).
http://ietf.org/html.charters/secsh-charter.html.

http://caml.inria.fr/
http://www.cert.org/kb/
http://ietf.org/html.charters/secsh-charter.html

	Introduction
	Discussion
	Executable Model
	Promela Output

	Tool Demonstration


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


