
 

© 2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for 

creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained 

from the IEEE.  

 
For more information, please see www.ieee.org/portal/pages/about/documentation/copyright/polilink.html. 

MOBILE AND UBIQUITOUS SYSTEMS 
www.computer.org/pervasive 

 
 
 
 
 

 
 
 
 
 

Using Smart Phones to Access Site-Specific Services 

 
Eleanor Toye, Richard Sharp, Anil Madhavapeddy, and David Scott 

 
Vol. 4, No. 2 

April–June 2005 
 
 
 
 
 
 
 
 
 
 

This material is presented to ensure timely dissemination of scholarly and technical 
work. Copyright and all rights therein are retained by authors or by other copyright 

holders. All persons copying this information are expected to adhere to the terms and 
constraints invoked by each author's copyright. In most cases, these works may not be 

reposted without the explicit permission of the copyright holder. 
 
 

     



60 PERVASIVEcomputing Published by the IEEE CS and IEEE ComSoc ■ 1536-1268/05/$20.00 © 2005 IEEE

T H E  S M A R T  P H O N E

Using Smart Phones to
Access Site-Specific
Services

O
ur work investigates how smart
phones can augment site-specific
services—that is, electronic ser-
vices or applications that reside in
a specific location. Site-specific

services already exist in the form of ticket
machines, electronic information kiosks, inter-
active product catalogues, and so on. However,
integrating users’ smart phones into these inter-
actions can enhance service functionality while
reducing deployment costs. 

Our approach offers several
benefits. By using personal infor-
mation stored on smart phones,
site-specific services can auto-
matically tailor their actions to
suit a particular user. Addition-
ally, users can store information
resulting from an interaction
with a service on their smart
phones for future reference (for

example, downloading a map). The service could
later push dynamic information updates to the
phone via text and MMS (multimedia messaging
service). Finally, users no longer have to queue to
access a single, shared site-specific service (for
example, a ticket machine). Instead, multiple users
can connect their smart phones to the service
simultaneously and access it concurrently.

Our research led us to develop the Mobile Ser-
vice Toolkit: a client-server software framework
supporting the development of site-specific ser-
vices that exploit interaction with smart phones.
We’ll discuss MST and present case studies of two
site-specific services implemented using it.

Mobile Service Toolkit
The MST client software (called the Mobile

Service Explorer or MSE) runs on users’ smart
phones. We implemented the MST server soft-
ware, which runs on a device providing a site-
specific service, on Linux and Windows. 

Service providers run MST servers on Blue-
tooth-enabled PCs located in their store, restau-
rant, cinema, and so on. Users in close proximity
to these services can connect and access them via
their MSE-enabled smart phones.

The MSE performs three primary functions:

• Connection establishment. We use machine-
readable visual tags to establish connections to
site-specific services. The MSE contains image-
processing software that decodes tags. Users
establish connections by pointing the smart
phone’s embedded camera at a visual tag and
pressing the Select button.

• Personal information management. The smart
phone contains a repository of personal infor-
mation. MST servers can request personal
information from the MSE to provide person-
alized services. The MSE chooses whether or
not to supply the requested information in
accordance with the user’s privacy policy.

• General-purpose data entry and display. The
MST server can push user interfaces to smart
phones and supports both thin-client func-
tionality (similar to Virtual Network Comput-
ing1) and WAP (Wireless Application Proto-
col)-like user interface controls.

Figure 1 shows the architecture of a system

The Mobile Service Toolkit is a client-server framework for developing
mobile services that interact with users’ smart phones. Two prototypes
that employ the MST are described: a virtual queuing service and a
vacation browsing service.

Eleanor Toye and Richard Sharp
Intel Research Cambridge

Anil Madhavapeddy
University of Cambridge

David Scott
Fraser Research



built using the MST. The components
running inside the MSE on the smart
phone deal with user interface control and
personal information management. We
represent the MST server’s address as a
visual tag on a poster or active display.
The box in the bottom-right corner shows
two possible encoding schemes—for a
Bluetooth and an Internet connection.

Networking and connection
establishment

Connecting a phone to a site-specific
service requires wireless networking
technology. Various choices exist, rang-
ing from operator-provided data services
such as GPRS (General Packet Radio
Service) to short-range, point-to-point
solutions such as IrDA and Bluetooth.
Although these technologies can trans-
fer information between smart phones
and site-specific services, we based the
MST’s current version on Bluetooth. We
chose Bluetooth because it’s free (unlike
GPRS, for example), low latency, and
supported by numerous existing smart
phones as well as other electronic devices
such as PCs, laptops, digital cameras,
and GPS devices. 

Irrespective of the networking proto-
col, the greatest technical challenge is
connection establishment. Users need to
know when they can connect to site-spe-
cific services, and they need to connect
quickly and efficiently. Because we use
Bluetooth, we can easily determine an
MST server’s device address by using
standard Bluetooth device discovery.
However, this raises several usability
issues. First, this device discovery is slow
in practice (in a realistic environment,
it’s not uncommon for device discovery
to take over 30 seconds). Second, in pub-
lic places, Bluetooth device discovery
might find an overabundance of devices,
including, for example, the mobile
phones and PDAs of passersby.

In previous work, we showed that you
can use visual tags, which encode Blue-

tooth device addresses, to bypass device
discovery.2 We integrated support for this
technique in the MSE. From a user’s per-
spective, tag-based connection establish-
ment proceeds as follows: the MSE soft-
ware turns the phone’s display into a
viewfinder—a live video feed continually
capturing frames from the phone’s em-
bedded camera. Whenever a tag is visi-
ble in the viewfinder, it’s highlighted with
a red crosshair on the phone’s display. A
user clicks on a tag by focusing on it and
pressing the Select button on their
phone’s keypad. (For the remainder of
this article, we assume that our users’
smart phones have cameras. However,
the MSE also supports standard Blue-
tooth device discovery, which you can use
on smart phones without cameras.)

Visual tags for Bluetooth connection
establishment are an order of magnitude
faster than traditional device discovery.
Our experiments showed that visual tags
let you set up a connection in 1.7s on
average (with a small standard deviation
of 0.47).2 This compares to an average of
17.12s for device discovery (with a much
larger standard deviation of 8.6). Visual
tags are also distinctive, recognizable
symbols (see the example in Figure 1).
So, in addition to encoding machine-

readable data, they can advertise the
existence of mobile services to users.

In our current scheme, our visual tags
encode a 48-bit BD_ADDR (Bluetooth
device address) and also have room for
15 bits of application-specific data. As
soon as a user’s phone connects to a ser-
vice, the MSE transmits these applica-
tion-specific data bits to the MST server.
This lets us have multiple tags that all
initiate a connection to the same MST
server. Based on the value of the appli-
cation-specific data bits in each tag, the
server can then provide different func-
tionality to users depending on which
tag they clicked. 

Although the MSE currently only sup-
ports Bluetooth, using a tag to establish
a connection scales to other protocols.
For example (see Figure 1), we could use
tags to establish Internet connections by
partitioning our 63 bits of data to
include a 32-bit IP address, a 16-bit TCP
v4 port number, and some application-
specific data. More generally, we could
support multiple protocols simultane-
ously by assigning, say, 4 bits of the tag
as a protocol selection field. This selec-
tion field would define the way the client
interprets the rest of the tag data.

Figure 2 shows a typical MST deploy-

APRIL–JUNE 2005 PERVASIVEcomputing 61

Address

Application-specific
logic

Mobile Server
Toolkit server

on a PC

63 bits of data
Address on

printed poster or
active display

User interface manager Privacy policy

Wireless Application
Protocol-like controls

Virtual Network
Computing client 

Always
Yes/no

Request PIN

Mobile Server
Toolkit client

(Mobile Server Explorer)
on smart phone

Personal Info
<field, value>*

(like Platform for 
Privacy Preferences)

For Bluetooth:

For the Internet:

32

BD_ADDR

IP

Application-specific data

Port

16 15

Network

Figure 1. The architecture of systems 
created with the Mobile Service Toolkit.



62 PERVASIVEcomputing www.computer.org/pervasive

T H E  S M A R T  P H O N E

ment involving multiple services, servers,
smart phones, posters, and displays. We
segmented the diagram into three por-
tions representing three site-specific ser-
vices. Two applications (1 and 2) simul-
taneously share the MST server on the
left. Additionally, two smart phones are
simultaneously using application 1.

Personalizing site-specific
services

The simplest way to support person-
alization with a smart phone is for the
phone to declare its identity to the ser-
vice (for example, a handset ID number).
Assuming that each smart phone has one
primary user, the phone’s unique iden-
tity enables a service to react differently
for each user. Furthermore, combined
with a server-side persistent state, user
identity also lets a service adapt accord-
ing to how a user has previously inter-
acted with it. For example, consider
using a smart phone to control an inter-
active game running on a display in a
shop window. Whenever users return to
the shop, their identities (provided by

their phones) lets the game greet them
and resume where they left off.

Personalization has potential for more
than simple user identification. The MSE
enables the smart phone to house a
repository of personal information,
including name, email address, home
address, and mobile phone number. So,
instead of filling out a form to register
for a store card, you could simply autho-
rize your MSE-enabled phone to supply
the required information to the store’s
site-specific service.

The MSE stores personal information
as a set of field name and value pairs.
Several XML schemas for representing
personal information already exist; we
based the personal information fields we
included in our initial MST implemen-
tation on the Platform for Privacy Pref-
erences (P3P) specification.3 By using a
simple request-response protocol, site-
specific services can obtain the personal
information. The request packet, gener-
ated by our MST server software,
includes the field name of the personal
information required.

Privacy of personal information
Some readers might wonder whether

the potential privacy risks would deter
people from storing personal informa-
tion on their phones. However, the gen-
eral public has already demonstrated its
willingness to put large quantities of per-
sonal information on smart phones: the
average user stores hundreds of personal
text messages and contacts (including
phone numbers, addresses, email, and
so on). To alleviate privacy concerns, the
MSE ensures that individuals always
have awareness of and control over the
transfer of their personal information.

The MSE lets users protect their per-
sonal information with a customizable
three-level privacy policy. For each piece
of personal information, a user can spec-
ify whether to 

• always disclose it automatically,
• ask for a Yes or No permission to dis-

close it, or
• ask for a PIN before disclosing it. (If

required, the user enters their PIN into
the phone’s keypad.)

We also provide an option that lets users
turn all personal information-sharing on
or off by entering a PIN. This lets users
lend their phones to their friends (for
example) without losing control over
their personal information.

Configuring a personal information
repository

Users can configure their personal
information repositories by filling in a
standard electronic form. We provide
two ways of doing this:

• A phone-based application lets users
enter and edit their personal informa-
tion. This application resembles (in look
and feel) the address book software
typically supplied with smart phones.

Application 1 Application 2

Poster Active display

Application 3

Poster

Mobile Service
Toolkit

Mobile Service
Toolkit

Smart
phone

Smart
phone

Smart
phone

Smart
phone

Figure 2. Hidden MST servers let users
interact with personalized site-specific
services—here, posters and active
displays.



APRIL–JUNE 2005 PERVASIVEcomputing 63

• For those who prefer to avoid entering
data on the small phone keypad, we
offer a PC-based application. Users can
enter and edit their personal informa-
tion on their PCs and then transfer this
to their smart phones over Bluetooth.

Both the phone-based and PC-based
applications let users configure their pri-
vacy policies and set their PINs.

Data entry and display devices
Site-specific services can push user

interfaces to smart phones. The MST
offers user interface controls such as
text-entry fields, alert dialogues, confir-
mation dialogues, and selection lists. The
MST uses a markup language similar to
WML (Wireless Markup Language) to
export these controls to phones and
return user responses.

As well as WML-like user interface
controls, the MST also provides thin-
client functionality. The MSE:

• allows an MST server to push arbitrary
graphics to the phone’s display and

• transmits all keypress events from the
phone’s keypad back to the MST
server in real time.

Combining WAP-like user interface
controls and thin-client functionality lets
designers trade off ease of implementa-
tion against customization. Opting for the
WAP-like standard user interface control
library makes services quick and easy to
develop. However, when designers need
fine-grained control over the user inter-
face parameters, they can rely on the thin-
client approach. If they take the thin-client
approach, service designers must explic-
itly deal with the way the interface is laid
out on different-sized phone displays.

Case studies
We’ve implemented two realistic case

studies using the MST. The case studies
demonstrate how you can construct

powerful applications by combining the
MSE’s three features (personalization,
user interface control, and connection
establishment). We implemented these
applications on the Nokia 3650 smart
phone. The Nokia 3650 runs the Sym-
bian OS and supports programs written
in either C++ or Java. The phone has 3.4
Mbytes of internal dynamic memory and
supports up to 128 Mbytes of external
flash memory. The phone uses a 32-bit
RISC CPU based on the ARM9 series
running at 104 MHz. The MST server
software and auxiliary server-side appli-
cation code are written in Objective Caml

and run on PCs; the MSE is written in
C++ and runs directly on the phone.

Virtual Queuing Service
Many real-life scenarios require queue

management. Our Virtual Queuing Ser-
vice lets users reserve a place in a queue
and receive updates on their queue posi-
tion via their smart phones.

For example, take a busy restaurant
where customers have to wait for avail-
able tables (see Figure 3). A poster in the
window of the restaurant describes the
Virtual Queuing Service and displays a
visual tag. After reading the poster, our

Figure 3. Using the Virtual Queuing 
Service at a restaurant.

1. Sally and her friend approach
a restaurant feeling hungry. 2. Disaster... a large queue!

3. Rather than
wait in line, a
smart phone is
used to interact
with the 
restaurant's 
site-specific 
service. A place
in the Virtual
Queue is booked;
the phone will
receive an SMS
(short message
service) later.

4. Now that their place is booked,
they can safely visit other shops.

5. Some time
later in Bob's
Bookshop... an
SMS arrives
informing Sally
that her table
will be ready in
5 minutes.

6. They return just in time to eat at the 
restaurant. All thanks to the Mobile Service
Toolkit and the site-specific service!



64 PERVASIVEcomputing www.computer.org/pervasive

T H E  S M A R T  P H O N E

user, Sally, can click on the tag using her
MSE-enabled phone to establish a Blue-
tooth connection with the service. As
soon as the phone connects with the ser-
vice, her phone displays a message con-
taining the current queuing time and
asks whether she’d like to join the queue.
Next, the service pushes a text field to
the phone, prompting Sally to enter her
party size. Finally, the Virtual Queuing
Service queries her repository of per-
sonal information, requesting her smart
phone’s phone number. (Depending on
Sally’s privacy policy, this data transfer
may occur automatically or may require

explicit confirmation or even PIN entry.)
At this point, the server terminates the
connection. Five minutes before Sally’s
table is ready, the Virtual Queuing Ser-
vice sends her a text message telling her
to return to the restaurant.

Numerous restaurants have already
implemented solutions such as this using
custom hardware devices that flash
when a customer’s table is ready. In such
restaurants, customers are typically
given one of these notification devices
when they arrive and proceed to wait in
the bar until it’s activated. Our Virtual
Queuing Service provides the same func-

tionality but at significantly reduced cost
to the restaurant owner (no hardware to
supply) and with increased customer
convenience (nothing extra to carry). 

Interactive advertising
This case study aims to demonstrate

how you can integrate smart phones
with existing site-specific services. Con-
sider a touch screen deployed in a cof-
fee shop, which lets users browse videos
of a travel agent’s vacation destinations.
A number of services like this exist
today, advertising a range of products.
By bringing smart phones into the inter-
action, we make it easier for potential
customers to follow up on information
they see on the touch screen. 

We augment interactive advertising ser-
vices with visual tags that users can click
on to receive further information (see a
graphical representation in Figure 4). Our
current implementation of the Vacation
Browsing Service has three conventional
touch screen buttons labeled “email me
info” (about this destination), “send
brochure” (to a home address), and “call
me” (to discuss the vacation details).

As soon as users see a vacation pack-
age that interests them, they press one of
the buttons on the screen. The service then
offers them the option of either entering
their personal information (email address,
home address, or phone number) via the
touch screen or clicking on a tag and
transferring it automatically from their
smart phone’s MSE software.

To understand what goes on “under the
hood” when a user clicks on a visual tag,
Figure 5 shows a typical network message
sequence chart. First, a user clicks on a
tag and establishes a Bluetooth connec-
tion. After the phone connects with the
service, it transmits the application-spe-
cific data bits read from the tag to the
MST server. The server responds by
requesting the appropriate personal infor-

Waikiki, Hawaii

Waikiki, Hawaii

Press option:

e-mail me info

send brochure

call me

Dr. A. N. Other

....

....

....

Enter address
or click on tag

q w e r t y u i o p

a s d f g h j k l

z x c v b n m , .

1

2

Figure 4. Using a touch screen to request
information from the Vacation Browsing
Service; users can submit information
automatically through their smart phones.



mation. (The value of the application-
specific data bits determines the personal
information requested.) If the user’s pri-
vacy policy authorizes it, the smart phone
can send the appropriate personal infor-
mation back to the MST server.

Related work
We’re not the first to use out-of-band

signaling to bypass Bluetooth device 
discovery. Eric Hall and his colleagues
propose using RFID tags to “wake up”
a sleeping Bluetooth radio and transmit
a device’s BD_ADDR.4 Hall also reports sig-
nificant power savings by turning off his
Bluetooth radio and using an RFID-
based rendezvous to wake it up again.
Our implementation achieves the same
time benefits as Hall and, because our
interactions are user-initiated, we can
also achieve similar power savings by
only turning the Bluetooth radio on
when the MSE is executed. 

Our system offers other advantages
over Hall’s. First, we rely entirely on
commodity hardware, so our work is
immediately applicable. You don’t need
to augment existing devices with RFID
readers. (Although some manufacturers
are incorporating RFID readers into
mobile devices, no such products exist in
the consumer market space. Current
offerings target specific industrial appli-
cations such as ruggedized phones for
field engineers.) Instead, you could
immediately deploy the MSE on the cam-
era phones that have already shipped
globally. Second, our work considers
both Bluetooth device discovery and ser-
vice selection whereas Hall considers
only the former.

The Google Toolbar has a feature
called AutoFill (http://toolbar.google.
com/autofill_help.html) that automati-
cally fills in values on Web forms using
personal data stored locally on a user’s
PC. The AutoFill feature handles the set

of data items named in the ECML (Elec-
tronic Commerce Modeling Language)
specification 5 such as username, address,
phone number, and credit card details.
AutoFill aims primarily to speed up fill-
ing forms on the Web and, unlike our
system, doesn’t let the user create a pri-

vacy policy. Our approach differs pri-
marily from AutoFill in the MSE’s inher-
ent mobility.

Liviu Iftode and his colleagues pro-
posed a system architecture that would
let users supply personal information
electronically in various situations and

APRIL–JUNE 2005 PERVASIVEcomputing 65

PosterSmartphone Mobile Service
Explorer

Mobile Service Toolkit
 server

User

Data from Visual Tag
labelled "send brochure"
(BD_ADDR, application-specific data)

Connect
to BD_ADDR

Request
home address

Request PIN
to unlock home address

PIN = 1234

Home
address = xxx

"thank you"
displayed

Time

OK

Application-specific
data

Display message
"thank you"

Figure 5. A network message sequence
chart showing messages in the Vacation
Browser Service when a user selects the
“send brochure” option.



66 PERVASIVEcomputing www.computer.org/pervasive

T H E  S M A R T  P H O N E

locations.6 Although they highlight issues
surrounding the privacy of personal
information, they’ve not yet proposed
concrete architectural solutions.

Lauri Aalto and her colleagues devel-
oped a push-based location-aware adver-
tising system using Bluetooth and WAP.7

This lets users receive advertisements on
their smart phones based on their prox-
imity to particular shops. By contrast, our
model is entirely user-initiated.

A defining characteristic of mobile com-
merce is the ability to transmit payments
using mobile phones, and many compet-
ing mobile payment systems exist today.8

These systems use various schemes—from
requesting authorization codes over SMS
to adding new payment hardware to
phone handsets. Using the MSE and a
camera-equipped smart phone requires
no SMS messages or extra hardware; a
user can just point and click on a visual
tag and authorize the transmission of
their credit card number. These existing
mobile payment schemes are early exam-
ples of smart-phone-based personaliza-
tion. Our MST generalizes this technique,
encompassing types of personal infor-
mation other than payment details.

W
e’ve prototyped several
site-specific services based
on our new Mobile Service
Toolkit framework. In

addition to the ones described here, we’ve
developed a stock querying service that
let’s you check whether a store’s product
is in stock as well as a flight information
service that sends you text messages with
information about your flight. Installing
a site-specific service is very cheap; at a
minimum, all you’ll need is a single Blue-
tooth-enabled PC (possibly placed some-
where out of sight) and some printed
posters advertising the service. Using the
screen and keypad of a user’s smart phone
to interact with the service makes this low
installation and maintenance cost possi-
ble. Additionally, the MST can augment
existing site-specific services such as the
touch screen-based application in our
Vacation Browsing Service scenario.

In the future, we plan to build more
prototype applications and deploy and
evaluate them in realistic environments,

soliciting feedback from real users. We
also plan to extend the MST with support
for more connection-establishment tech-
niques and wireless networking technolo-
gies. For example, we plan to support both
NFC (Near Field Communication)9 and
RFID-based connection establishment
when these technologies become avail-
able in the consumer marketplace. We
also intend to allow the MSE to connect
the MST servers via GPRS, Wi-Fi, and
IrDA in addition to Bluetooth.

REFERENCES
1. T. Richardson et al., “Virtual Network

Computing,” IEEE Internet Computing,
vol. 2, no. 1, 1998, pp. 33–38.

2. D. Scott et al., “Using Visual Tags to Bypass
Bluetooth Device Discovery,” ACM Mobile
Computing and Communication Rev., Jan.
2005, pp. 41–53.

3. L. Cranor et al., The Platform for Privacy
Preferences 1.0 (P3P1.0) Specification,
World Wide Web Consortium (W3C) Rec-
ommendation, 16 Apr. 2002; www.w3.
org/TR/2002/REC-P3P-20020416.

4. E.S. Hall, D.K. Vawdrey, and C.D. Knutson,
“RF Rendez-Blue: Reducing Power and
Inquiry Costs in Bluetooth-Enabled Mobile
Systems,” Proc. 11th Int’l Conf. Computer
Communications and Networks (CCN
2002), IEEE Press, 2002, pp. 640–645. 

5. D. Eastlake and T. Goldstein, ECML v1.1:
Field Specifications for E-Commerce, RFC
3106, Apr. 2001; www.faqs.org/rfcs/rfc3106.
html.

6. L. Iftode et al., “Smart Phone: An Embed-
ded System for Universal Interactions,”
Proc. 10th Int’l Workshop Future Trends
in Distributed Computing Systems (FTDCS
04), 2004, CS Press, pp. 88–94.

7. L. Aalto et al., “Bluetooth and WAP Push-
Based Location-Aware Mobile Advertising
System,” Proc. 2nd Int’l Conf. Mobile Sys-
tems, Applications, and Services (MobiSys
04), ACM Press, 2004, pp. 49–58.

8. S. Wallage, “The Far East Mobile Payment
Race,” 27 Nov. 2003, www.thefeature.
com/article?articleid=100241.

9. Near Field Communication, white paper,
ECMA Int’l, 2004, www.ecma-international.
org/activities/Communications/2004tg19-
001.pdf.

the AUTHORS

Eleanor Toye is a researcher
with Intel Research Cambridge,
UK. Her research interests are
in interaction design and
usability; her recent work in-
cludes educational applica-
tions of RFID technology and
studies of domestic DVD and

video use. She received her PhD in experimental
psychology from the University of Cambridge.
Contact her at Intel Research Cambridge, 15 JJ
Thomson Ave., Cambridge, CB3 0FD, UK;
eleanor@recoil.org.

Richard Sharp is a senior
researcher at Intel Research,
Cambridge, UK. His research
interests include ubiquitous
computing, security, pro-
gramming language design,
and compiler implementa-
tion. His recent work includes

research projects on investigating programming
languages for multicore network processors and
improving the security of complex Web applica-
tions. He received his PhD in computer science
from the University of Cambridge Computer
Laboratory. Contact him at Intel Research Cam-
bridge, 15 JJ Thomson Ave., Cambridge, CB3
0FD, UK; richard.sharp@intel.com.

Anil Madhavapeddy is a
PhD student at the Univer-
sity of Cambridge Computer
Laboratory in the Systems
Research Group and a devel-
oper on the secure OpenBSD
operating system. His research
interests include networked

systems security and ubiquitous computing. He
received his BEng in information systems engi-
neering from Imperial College London. Contact
him at Computer Laboratory, Univ. of Cambridge,
15 JJ Thomson Ave., Cambridge, CB3 0FD, UK;
avsm2@cl.cam.ac.uk.

David Scott is a member 
of technical staff at Fraser
Research in Princeton, NJ.
His research interests include
computer security, ubiqui-
tous computing, and net-
working. He received his
PhD in engineering from the

University of Cambridge. Contact him at Fraser
Research, 182 Nassau St., Ste. 301, Princeton,
NJ 08542; djs@fraserresearch.org.




