Technical Report R

Number 553

s UNIVERSITY OF
4P CAMBRIDGE

Computer Laboratory

Xen 2002

Paul R. Barham, Boris Dragovic, Keir A. Fraser,
Steven M. Hand, Timothy L. Harris,
Alex C. Ho, Evangelos Kotsovinos,
Anil V.S. Madhavapeddy, Rolf Neugebauer,
[an A. Pratt, Andrew K. Warfield

January 2003

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/fwww.cl.cam.ac.uk/



© 2003 Paul R. Barham, Boris Dragovic, Keir A. Fraser,
Steven M. Hand, Timothy L. Harris, Alex C. Ho,
Evangelos Kotsovinos, Anil V.S. Madhavapeddy,

Rolf Neugebauer, Ian A. Pratt, Andrew K. Warfield

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/lwww.cl.cam.ac.uk/TechReports/
Series editor: Markus Kuhn

ISSN 1476-2986



Xen 2002

The XenoServer Team
University of Cambridge Computer Laboratory
15 JJ Thomson Avenue,
Cambridge CB3 OFD, ENGLAND
Xeno.Servers@cl.cam.ac.uk

January 9, 2003

Abstract

This report describes the design of Xen, the hyper-
visor developed as part of the XenoServer wide-
area computing project. Xen enables the hard-
ware resources of a machine to be virtualized and
dynamically partitioned such as to allow multi-
ple different ‘guest’ operating system images to
be run simultaneously.

Virtualizing the machine in this manner pro-
vides flexibility, allowing different users to
choose their preferred operating system (Win-
dows, Linux, NetBSD), and also enables use of
the platform as a testbed for operating systems re-
search. Furthermore, Xen provides secure parti-
tioning between these ‘domains’, and enables bet-
ter resource accounting and QoS isolation than
can be achieved within a conventional operating
system. We show these benefits can be achieved
at negligible performance cost.

We outline the design of Xen’s main sub-
systems, and the interface exported to guest oper-
ating systems. Initial performance results are pre-
sented for our most mature guest operating system
port, Linux 2.4. This report covers the initial de-
sign of Xen, leading up to our first public release
which we plan to make available for download in
April 2003. Further reports will update the design
as our work progresses and present the implemen-
tation in more detail.

1 Introduction

The XenoServer project [6] is building a public in-
frastructure for wide-area distributed computing,
creating a world in which XenoServer execution

platforms are scattered across the globe and avail-
able for any member of the public. This allows
users to run programs at points throughout the
network to reduce communication latency, avoid
network bottlenecks and minimize long-haul net-
work charges. Also, it can be used to deploy large-
scale experimental services, and to provide a net-
work presence for transiently-connected mobile
devices.

Our approach is distinguished from existing
work on mobile agents, execution platforms, code
hosting and the like by two principles:

1. Tackling difficult problems at the same
time.
Acceptable designs for execution environ-
ments, resource management, resource dis-
covery, authentication, privacy, charging,
billing, payment and auditing are all crucial
to the success of our platform as an infras-
tructure service open to and accepted by the
public. Existing work has tackled individual
subsets of these problems, but tensions be-
tween the issues concerned mean that solu-
tions proficient in some dimension are lack-
ing in another.

2. No brave new world.

Our platform will host applications written in
today’s programming languages against ex-
isting APIs — and, we believe, those written
with tomorrow’s languages and libraries. We
do not want to mandate a particular code dis-
tribution format or a particular middleware
toolkit for distributed programming.



An important component of the XenoServer
project is to implement proof-of-concept systems
software on which the other components, and pub-
lic services, can safely be executed. This re-
port introduces one such system; the prototype
XenoServer node based on the Xen hypervisor.

The hypervisor runs directly on server hard-
ware and dynamically partitions it between a num-
ber of domains, each of which hosts an instance
of a guest operating system. A single XenoServer
may host a range of Guest OSes running at the
same time; it may also host several independent
instances of the same Guest OS running in dif-
ferent domains, perhaps on behalf of different
clients. The hypervisor provides just enough ab-
straction of the machine to allow effective iso-
lation and resource management between these
domains — the same principle pioneered in the
Nemesis and Exokernel research operating sys-
tems.

The structure of this paper is as follows: Firstly,
to set the general scene, we provide a high-level
architecture and design which identifies the prin-
ciples we are using to build the Xen-based hyper-
visor and prototype guest operating systems. Sec-
ondly, to aid the porting of new guest operating
systems, we describe the C-language interface ex-
ported to domains running on top of the hypervi-
sor. Finally, we describe the control interfaces that
the hypervisor exports to enable higher-level man-
agement software to run as user-mode processes
in a privileged control domain.

In a companion paper we introduce higher-level
aspects of the system; how XenoServers adver-
tise their facilities to clients, how clients identify
XenoServers to host their tasks and how the we
support a diverse range of billing and charging
policies [3].

2 Overall System Architecture

Figure 1 presents the architecture of a XenoServer
node based on the Xen hypervisor. As illus-
trated, we essentially take a virtual machine ap-
proach as pioneered by IBM VM/370 [7]. How-
ever, unlike VM/370 or more recent efforts such
as VMWare [8] and Virtual PC [2], we do not
attempt to completely virtualize the underlying

User User User
Software Software Software

GuestOS GuestOS GuestOS
(XenoLinux) (XenoBSD) (XenoXP)
Xeno-Aware Xeno-Aware Xeno-Aware
Device Drivers Device Drivers Device Drivers Device Drivers
Domain0 virtual virtual virtual virtual Xen

control %86 CPU

interface blockdev

phy mem network

v v v

H/W (SMP x86, phy mem, enet, SCSI/IDE)

Figure 1: The structure of a XenoServer based on
the Xen hypervisor, hosting a number of different
guest operating systems.

hardware. Instead we adapt some parts of the
hosted guest operating systems to work with our
hypervisor; the operating system is effectively
ported to a new target architecture, typically re-
quiring changes in just the machine-dependent
code. The user-level API is unchanged, thus ex-
isting binaries and operating system distributions
can work unmodified.

This approach has been dubbed “para-
virtualization” by the Denali project team at U.
Washington [10], and provides benefits in terms
of both performance and ease of implementation.
This returns again to many of the observations
made during the Nemesis and Exokernel projects;
it is extremely difficult to fully-virtualize the
existing abstractions of PC hardware. In any
case, this lets Guest OSes make better informed
decisions — for instance, not fully virtualizing
memory lets us avoid double-paging.

As shown in the figure, the hypervisor layer
serves to virtualize resources and securely mul-
tiplex access from a set of overlying virtual ma-
chines. Within the single host, there are now two
levels of interface to a given resource: at the bot-
tom level is the raw physical interface between the
hypervisor and the device, and above this is the
virtualized interface that is presented to the vir-
tual machines. These interfaces, although simi-
lar, need not be identical; by making the existence
of the hypervisor non-transparent it is possible to
provide additional services such as scheduling and

(hypervisor)



filtering to individual virtual machines.

In addition to exporting virtualized instances of
the CPU, memory, network and block storage de-
vices, Xen exposes a control interface to set how
these resources are shared between the running
domains. The control interface is privileged and
may only by accessed by one particular virtual
machine: domain0. This domain is a required part
of any Xen-based XenoServer and runs the appli-
cation software that manages the control-plane as-
pects of the platform — more details about these
functions are available in the companion docu-
ment [3].

Even in terms of a single machine, there are
good reasons to keep the control software in do-
mainO distinct from the hypervisor itself. In par-
ticular, it allows us to better separate the notions
of mechanismand policy within the system: while
the hypervisor must be involved in data-path as-
pects (e.g. sharing the CPU between domains, fil-
tering network packets before transmission, or en-
forcing access control when reading data blocks),
there is no need for it to be involved in, or even
aware of, higher level issues (e.g. how the CPU is
to be shared, or which kinds of packet each do-
main may transmit).

3 Detailed Design

In this section we introduce the design of the
major subsystems that make up a Xen-based
XenoServer. Rather than deal solely with the hy-
pervisor, we present both hypervisor and Guest
OS functionality for each case. This is for clar-
ity of exposition as well as a reflecting accurately
our co-design principles; the hypervisor is no use
by itself.

The current discussion of Guest OSes focuses
on our para-virtualized linux system, XenoLinux.
Work is also underway building Guest OSes
based on NetBSD (XenoBSD) and Windows XP
(XenoXP). Reference will be made to these com-
ponents where relevant.

After describing the modes of communication
between the hypervisor and domains, we will
tackle timers, the CPU and scheduling in Sec-
tion 3.2, physical memory in Section 3.3, network
devices in Section 3.4 and block devices in Sec-

tion 3.5.

3.1 Interaction Between the Hypervisor
and Domains

In general, domains run over the hypervisor in
much the same way as processes run over an or-
dinary operating system; they are suspended and
resumed transparently and may only invoke ser-
vices from the hypervisor over a number of spec-
ified interfaces. By analogy with ordinary system
calls, we term these “hypercalls” and we shall see
examples of hypercall-based interfaces for various
devices in the subsequent sections.

Communication from the hypervisor to a do-
main takes the form of “events” which stand in
place of the usual delivery mechanisms for device
interrupts or processor exceptions. As with tradi-
tional Unix signals, there are only a small number
of events, each acting as a flag indicating a partic-
ular kind of occurrence. For instance, we shall see
events used to indicate that new data has been re-
ceived over the network, or that disk read requests
have been completed.

As we have said, communication between a do-
main and the Hypervisor is similar to a standard
system call interface, providing a small number
of entry points for a Guest OS. However, care is
taken that these calls do not block, and should
be interpreted more like a notification mechanism
than a full-blown system call interface. We shall
see this distinction most clearly in Section 3.5
when we discuss the way in which local storage
is made available to domains.

With the interfaces between the Hypervisor and
the Guest OSes being only used for notifications
the Hypervisor is completely asynchronous sig-
nificantly simplifying its design and implementa-
tion.

Xen is entirely event-driven and requires no in-
ternal threads or processes for its own operation.
It requires no dynamic memory allocation during
normal operation. Some control-plane operations
such as domain creation and the insertion of new
network filtering rules do require new memory to
be allocated, but such operations can be aborted if
the memory allocation fails.

As a result of this simple structure, Xen is
small, currently less than 42Kk lines of code exclud-



ing disk and network hardware device drivers. We
hope that this will permit extensive code review
and perhaps even application of formal methods
to result in a stable and secure hypervisor.

3.2 Virtualizing Time and the CPU

Virtualizing the CPU involves providing abstrac-
tions for time and interrupts as well as providing
a mechanism for sharing the CPU between do-
mains. This is not very different to what a normal
operating system would provide.

3.21 Time

Guest operating systems need to be aware of the
passage of real time and their own “virtual time”,
i.e., the time they have been executing. Further-
more, a notion of time is required in the hyper-
visor itself for scheduling and the activities that
relate to it. To this end, the hypervisor provides
the following notions of time:

Cycle counter time provides the finest-grained,
free-running time reference, with the approx-
imate frequency being publicly accessible.
The cycle counter time is used to accurately
extrapolate the other time references. On
SMP machines it is currently assumed that
cycle counter time is synchronised between
CPUs (the current x86-based implementation
achieves this within inter-CPU communica-
tion latencies courtesy of the Linux initiali-
sation code).

System time is a 64-bit value containing the
nanoseconds elapsed since boot time. Unlike
cycle counter time, system time accurately
reflects the passage of real time, i.e., it is ad-
justed several times a second for timer drift.
This is done by running an NTP client [4]
in domainO on behalf of the machine, feed-
ing updates to the hypervisor. Intermediate
values can be extrapolated using the cycle
counter. Providing these NTP-adjusted val-
ues through the hypervisor allows us to use
a single NTP client per machine instead of
performing time synchronisation in every do-
main.

Wall clock time is the actual “time of day” Unix
style struct timeval (i.e., seconds and
microseconds since 1 January 1970, adjusted
by leap seconds etc.). Again, an NTP client
hosted by domainO can help maintain this
value. To Guest OSes this value will be re-
ported instead of the hardware RTC clock
value and they can use the system time and
cycle counter times to start and remain per-
fectly in time.

Domain virtual time progresses at the same
pace as cycle counter time, but only while a
domain is executing. It stops while the do-
main is de-scheduled. Therefore the share of
the CPU that a domain receives is indicated
by the rate at which its domain virtual time
increases, relative to the rate at which cycle
counter time does so.

3.2.2 Timers

The hypervisor includes a timer facility which al-
lows it to execute functions when a particular time
is reached. This may be used by Xen’s own device
drivers and by the scheduler (see below).

The hypervisor provides Guest OSes with a
limited interface to these timers. Each domain
receives a pair of alarm timers; one operating in
domain-virtual time and the other in system time.
The Guest OSes are expected to build their own
timer infrastructure (e.g. priority queue) above
these. The domain virtual alarm timer can be used
for scheduling within the Guest OS while all other
components of the Guest OS are likely to use the
system time alarm timer. We will return to the de-
tails of the timer interface for Guest OSes when
describing the scheduler.

3.2.3 Virtualizing Interrupts

Interrupts are virtualized by mapping them to
events, which are delivered asynchronously to the
target domain. A Guest OS can map these events
onto its standard interrupt dispatch mechanisms,
such as using a simple vectoring scheme. Each
physical interrupt source controlled by the hyper-
visor, including network devices, disks, or the
timer subsystem, is responsible for identifying the



target for an incoming interrupt and sending an
event to that domain.

This demultiplexing mechanism also provides
a device-specific mechanism for event coalescing
or hold-off. For example, a Guest OS may request
to only actually receive an event after n packets
are queued ready for delivery to it, or ¢ nanosec-
onds after the first packet arrived (which ever is
true first). This allows us to address latency and
throughput requirements on a domain-specific ba-
sis (as we did with flow-aware interrupt dispatch
in the ArseNIC Gigabit Ethernet interface [5]).

3.2.4 Scheduling

Scheduling comprises two sets of interfaces. An
internal interface through which a domain can no-
tify the scheduler of its intentions and an interface
through which scheduling parameters can be spec-
ified.

The internal interface to the scheduler and
timers provides the following operations to each
domain:

Guest OS scheduler interface
sched_hal t ()

sched_ti ner(tine)
sched_vti mer (vti ne)

Through the sched_hal t () operation a domain
relinquishes the CPU. Guest OSes are expected to
call this function when idle, i.e., instead of execut-
ing an idle loop or, on x86, the hl t instruction.
Halted domains are woken up again when receiv-
ing an event, e.g., through a virtualized interrupt
caused by an arriving network packet. Domains
can also request to be sent a timer event at a spe-
cific system time (using the sched_ti nmer())
operation, thus defining a timeout value when
halting.

While a domain is running on a CPU
it can also request to receive timer events
at specified domain-virtual times using the
sched_vti mer () operation. A Guest OS can
use these timer events to schedule its processes
when active. The hypervisor is responsible for
managing the timers operating in domain-virtual
time when scheduling and de-scheduling a do-
main, i.e., it has to translate domain-virtual time
into system time.

This very simple scheduler interface, essen-
tially the sched_hal t () operation in combina-
tion with event delivery and the timers operating
in system time and domain-virtual time, is suf-
ficient to build both a variety of scheduling al-
gorithms in the hypervisor as well as supporting
scheduling within Guest OSes. To improve the
performance of the latter, we might in future ex-
tend the interface to include scheduler activations
[1].

Underneath the scheduler interface, we are ex-
perimenting with a number of different scheduling
algorithms. For example, using Nemesis’ atropos
scheduler to provide soft-real time absolute pro-
cessor shares, and time warp to share the CPU ina
weighed proportionally-fair fashion. The param-
eters for the scheduling algorithm are controlled
via domainO.

There are two further aspects of the design
which we must still refine in more detail, namely,
how to deal with scheduling latency, especially
with respect to the virtualized interrupt model de-
scribed above, and improved scheduling of do-
mains on SMP or SMT systems. Xen supports
both SMT and SMP hosts, but currently each do-
main can run on only one processor at any time
(Guest OSes are currently uni-processor). We will
report on our efforts to address these issues in a
future paper.

3.3 Virtualizing Physical Memory

The hypervisor is responsible for providing mem-
ory for each of the domains running over it. How-
ever, the Xen hypervisor’s duty is restricted to
managing physical memory and to policing page
table updates. All other memory management
functions are handled externally. Start-of-day is-
sues such as building initial page tables for a
domain, loading its kernel image and so on are
done by the domain builder running in user-space
within domain0. Paging to disk and swapping is
handled by Guest OSes themselves, if they need
it. This approach keeps the hypervisor lightweight
while keeping the system flexible.

Many of the design decisions for the mem-
ory management subsystem were influenced by
the choice of hardware architecture for the initial
XenoServer platform: the x86. It is worth bear-



ing in mind that the existence of certain ‘modern’
CPU features, such as a software-managed TLB,
would make memory virtualisation even simpler
and more efficient.

The x86 processors use a complex hybrid mem-
ory management scheme that combines paging
and segmentation. Virtual addresses presented
by instructions identify a segment and an offset
within that segment. Segments are mapped first
to a linear address space which is translated, via
page tables, to the physical address space. Rather
than just distinguishing user-mode and kernel-
mode execution, there are four rings, ranging from
0 (the most privileged) to 3 (the least). Segments
can be made accessible on a per-ring basis and a
particular area in the linear address space is only
accessible if it is covered by an accessible seg-
ment. Within that, pages themselves can be made
accessible either to all rings, or only to rings 0-2.
In an ordinary OS, each process has its own linear
address space, and the OS runs in ring 0 and ap-
plications in ring 3. Segmentation, in that case, is
effectively unused with each segment completely
overlapping, starting at the bottom of the linear
address space and extending completely to the
top.

On a Xen-based XenoServer, the hypervisor it-
self runsinring O. It has full access to the physical
memory available in the system and is responsible
for allocating portions of it to the domains. Guest
OSes are left to run in and use rings 1, 2 and 3
as they see fit, aside from the fact that segmenta-
tion is used to prevent the Guest OS from access-
ing a portion of the linear address space that is
reserved for use by the hypervisor. This approach
enables transitions between Guest OS and hyper-
visor without flushing the TLB, which is critical
for performance. We expect most Guest OSes will
use ring 1 for their own operation and place appli-
cations (if they support such a notion) in ring 3.

3.3.1 Physical Memory Allocation

The hypervisor reserves a (small) fixed portion of
physical memory at system boot time. This spe-
cial memory region is located at the beginning of
physical memory and is mapped to the very top
of every virtual address space. Except when op-
erating in the hypervisor, i.e. in ring 0, segmen-

tation is used to prevent access to this region. It
therefore remains mapped (but not necessarily ac-
cessible) at all times — an analogous approach to
how standard Linux maps kernel memory at high
virtual addresses.

Any physical memory that is not used directly
by the hypervisor is divided into pages and is
available for allocation to domains. The hyper-
visor tracks which pages are free and which pages
have been allocated to each domain. When a new
domain is being initialized, the hypervisor allo-
cates it pages drawn from the free list. The amount
of memory required by the new domain is passed
to hypervisor as one of the parameters for new do-
main initialization by the domain builder.

Domains can never be allocated further mem-
ory beyond that which was requested for them on
initialization. However, a domain can return pages
to the hypervisor if it discovers that its memory
requirements have reduced. Pages might be re-
turned to the hypervisor in several situations:

e The domain may have entered an idle phase
and wishes to release unneeded resources to
avoid incurring charges for their continued
use.

e The domain needs a new zeroed page but
the pages already allocated to it contain
potentially-useful non-dirty data. Instead of
swapping one of those pages out to disk, the
domain can return it to the hypervisor in ex-
change for a fresh one.

e Once a domain has terminated all its pages
are returned to the free list and are available
for further allocation by the hypervisor.

The advantage of returning a page to hypervi-
sor during execution is that the hypervisor might
be able to return the very same page back to do-
main at a subsequent time. This is possible only
in cases where the system is not under pressure
for memory and thus the page in question has not
been reallocated by the hypervisor between the
domain returning and reclaiming it. We call this
feature the last chance cache and page laundering
respectively.

We are currently evaluating whether to pro-
vide read-only page sharing between domains (the



Guest OS would copy-on-write). If multiple do-
mains are are executing or accessing the same files
from a shared file system (running in domain0),
this mechanism could provide reduced total phys-
ical memory footprint. The extent of the benefit
provided by such a mechanism is under review.

3.3.2 Page Table Updates

In addition to managing physical memory alloca-
tion, the hypervisor is also in charge of performing
page table updates on behalf of the domains. This
is neccessary to prevent domains from adding ar-
bitrary mappings to their page tables — for intro-
ducing mappings to one anothers’ pages. Two op-
erations are exported:

Guest OS pagetable update interface
pt _set _paget abl e(addr)
pt _update(list of requests)

The first operation informs the hypervisor to
switch the domain to use the page tables located
at the specified address (of course, it must en-
sure suitable continuity of execution across this
call). If this is a new page table, not seen be-
fore, then the hypervisor must validate the whole
page table structure reachable from the specified
address, and revoke any mechanisms that the do-
main may have to write directly to the pages con-
taining the proposed page table (thus ensuring it
remains valid).

The hypervisor allows incremental update to
page tables via the pt _updat e operation. It
takes a vector of proposed updates and applies
them in a batch. This batching amortizes the
cost of making the hypercall and exploits the fact
that many Guest OS, including XenoLinux, pro-
vide explicit “flush” operations that indicate when
page table updates must become visible to pre-
serve consistency.

3.3.3 Pseudo-Physical Memory

The usual problem of external fragmentation
means that a domain is unlikely to receive a con-
tiguous stretch of physical memory. However,
most Guest OSes do not have built-in support for
operating in a fragmented physical address space
e.g. Linux has to have a one-to-one mapping for

its physical memory. Therefore a notion of pseudo
physical memory is introduced. Once a domain is
allocated a number of pages, at its start of the day,
one of the first things it needs to do is to build
its own real physical to pseudo physical map-
ping. From that moment onwards pseudo phys-
ical addresses are used instead of discontiguous
real physical adresses. Thus, the rest of the Guest
OS code has an impression of operating in a con-
tiguous adress space. Guest OS page tables still
contain real physical addresses. Mapping pseudo
physical to real physical addresses is needed on
page table updates and also on remapping mem-
ory regions within the Guest OS.

The decision to do the mapping inside the Guest
OS and not by the hypervisor was made for two
main reasons:

e To keep the hypervisor code as thin as possi-
ble, and

o Different Guest OSes may prefer the map-
ping done in different ways to suit their ar-
chitecture. Some might not even want to do
the mapping and might be happy to live in
fragmented memory region.

Apart from enabling the allocation of discon-
tiguous memory regions the pseudo physical ap-
proach aids domain migration — either between
machines by pickling and unpickling an entire
running domain, or simply between different lo-
cations within a single machine’s physical address
space (for example, to perform balancing within a
ccNUMA machine).

3.4 Virtualizing Network Access

Since the hypervisor must multiplex network re-
sources, its network subsystem may be viewed as
a virtual network switching element with each do-
main having one or more virtual network inter-
faces attached to this network.

The conceptually simplest hypervisor design
would act as a link-layer hub, forwarding all in-
bound traffic to all Guest OSes and relaying out-
bound traffic to the “real” network. In prac-
tice, however, this is undesirable due to concerns
about:



XenoServer

Virtual
Machine 1
External

\ Xen

— ~ Network
Virtual >
Router

A A

%

Virtual
Machine 2

Virtual
Machine 3

N
Additional VMs

Figure 2: The Xeno Network Model

e security: any domain can snoop all traffic,
and

e performance: additional copies (or compli-
cated means of avoiding them) would be re-
quired.

Instead we choose to make the hypervisor act
conceptually as an IP router, forwarding each do-
main’s traffic according to a set of rules. The use
of a general packet classifier inside the hypervisor
allows additional services to be provided, as we
shall see in Section 3.4.1.

As the vast majority of traffic is likely be
TCP/IP-based, there is an understandable benefit
in abstracting at the IP level. However, a limita-
tion of this approach is that it does not account
for non-IP (and non-ARP) traffic. Some applica-
tions which use alternative protocols might pre-
fer a link-layer hub model which does not mod-
ify Ethernet frames before they are forwarded. If
this becomes a major requirement then our design
can accommodate a hybrid hub/router; however
for the present we rule this out of scope. Exper-
imental protocols may still be used via overlays
(e.g. IP on IP).

3.4.1 Hypervisor Packet Handling

As described earlier, the hypervisor is responsi-
ble primarily for data-path operations. In terms
of networking this means packet transmission and
reception, which we now consider in turn.

On the transmission side, the hypervisor needs
to perform two key actions:

10

e Validation. A domain is only allowed to
emit packets matching a certain specifica-
tion; for example, ones in which the source
IP address matches one assigned to the vir-
tual interface over which it is sent. The
hypervisor is responsible for ensuring any
such requirements are met, either by check-
ing or by stamping outgoing packets with
prescribed values for certain fields.

e Scheduling. Since a number of domains can
share a single “real” network interface, the
hypervisor must mediate access when several
domains each have packets queued for trans-
mission. Of course, this general schedul-
ing function subsumes basic shaping or rate-
limiting schemes.

e Logging and Accounting. The hypervisor
can be configured with classifier rules that
control how packets are accounted or logged.
For example, domainO could request that it
receives a log message or copy of the packet
whenever another domain attempts to send a
TCP packet containing a SYN.

On the receive side, the hypervisor’s role is rel-
atively straightforward: once a packet is received,
it needs to determine the virtual interface(s) to
which it must be delivered. Currently, the packet
is copied to deliver it to the Guest OS. In the fu-
ture, we intend to use a page-flipping scheme to
eliminate the copy, trading the page containing
the received packet for one from the Guest OSes
free buffer ring. This should result in improved
network performance at the expense of increased
memory requirements due to allocating one re-
ceive buffer a page. If a smart NIC such as Ar-
seNIC [5] is used, the packet could be delivered
directly into the Guest OS receive buffer without
need for copying or memory management tricks.

An appealing design approach is to abstract the
demultiplexing task into a generic packet classi-
fication and trigger model. This allows a clean
implementation of the receive path (see Figure 3).
In addition to trivially supporting e.g. multicast,
the use of other triggers allows fast forwarding,
user-specified firewalling, simple packet rewriting
and even clever denial-of-service (DoS) preven-
tion techniques.



Hypervisor RX Packet Path

Packet may be delivered along
a fast path directly to a target
guest(s?) possibly triggering
immediate interrupt.

Events generated relating to
packet delivery (also described
by rules) delivered to interested
guests.

L

[J Packet classifier examines

packet header to match

appropriate action rule(s?) .
Forwarding module may make

small changes to packet (ie
readdressing) and forward to TX
queue.

Ethernet driver receives
packet into skbuff.

Figure 3: Rule-Based Packet Recieve Path

For example, a set of three rules might be used
to implement a simple packet symmetry scheme
to prevent a domain from performing many kinds
of DoS attacks against remote hosts.

e Rule 1: If thisinbound packet is for domain
n, increment RX_count[n].

e Rule 2: If this outbound packet is from do-
main n, increment TX_count[n].

e Rule 3: If TX.count / RX_count >
max_send_ratio, generate a symmetry viola-
tion event for domainoO.

This set of rules allows a service running on
domainO to wait for events to arrive describing
alarm conditions, such as these symmetry viola-
tions, and then take action accordingly. Updates
to the classification table are initiated by pass-
ing similar event structures down from the Guest
OSes. This allows a common event-based appli-
cation model to easily build simple policy at the
Guest OS layer.

3.4.2 Data Transfer

For network devices, actual data transfer between
domains and the hypervisor uses very similar
techniques to those of Nemesis or the ArseNIC
gigabit Ethernet interface [5].

Unsurprisingly, the general scheme much re-
sembles that of a user-level network interface.
Each virtual interface uses two “descriptor rings”,

11

one for transmit, the other for receive. Each de-
scriptor identifies a block of contiguous physical
memory allocated to the domain. There are four
cases:

e The transmit ring carries packets to transmit
from the domain to the hypervisor.

e The return path of the transmit ring carries
“empty” descriptors indicating that the con-
tents have been transmitted and the memory
can be re-used.

e The receive ring carries empty descriptors
from the domain to the hypervisor; these pro-
vide storage space for that domain’s received
packets.

e The return path of the receive ring carries
packets that have been received.

Real physical addresses are used throughout,
with the domain performing translation from
pseudo-physical addresses if that is necessary.

This scheme avoids the hypervisor from hav-
ing to perform buffer management on behalf of
domains — if a domain does not keep its receive
ring stocked with empty buffers then packets des-
tined to it may be dropped. It provides some de-
fense against receive-livelock problems because
an overloaded domain will cease to receive fur-
ther data. Similarly, on the transmit path, it pro-
vides the application with feedback on the rate at
which its packets are able to leave the system.

Synchronization between the hypervisor and
the domain is achieved using counters held in
shared memory that is accessible to both. Each
ring has associated producer and consumer in-
dices indicating the area in the ring that holds
descriptors that contain data. After receiving n
packets or ¢ nanoseconds after receiving the first
packet, the hypervisor sends an event to the do-
main. A single hypercall is needed to allow a do-
main to “kick” the hypervisor when it causes such
a transition on either of the downward paths:

Guest OS network data transfer interface
net _updat e()




3.4.3 Additional Considerations

There are a number of further services that may be
desirable to provide within the hypervisor:

e Address Translation. By performing net-
work address translation (NAT) and port for-
warding, many domains may share a com-
mon external IP address.

e Traffic Logging. Details regarding connec-
tions may be logged to allow forensic audit-
ing in the case of a specific domain acting
maliciously.

e Packet Sniffing. In order to perform net-
work analysis, the classifier can be configure
with rules to cause certain packets to be du-
plicated and delivered to multiple domains.

Further discussion about these and other poten-
tial features may be found in our design note [9].

3.5 Accessto Block Devices

As we introduced in Figure 1, the hypervisor
implements the actual device drivers for specific
pieces of hardware and then exposes virtual inter-
faces to Guest OSes. This model is followed for
IDE and SCSI drives, as it was for network de-
vices.

As before, however, we are faced with a num-
ber of choices in terms of the level at which the
underlying block device is exposed to particular
domains and the kinds of sharing which we per-
mit to occur. For instance, should the interface to
local storage operate at the level of file accesses
within a particular kind of file system? Alterna-
tively, should the hypervisor provide “raw” disk
access to complete physical disks?

3.5.1 Control Interfaces

The approach we have taken is a pragmatic bal-
ance between these extremes; the hypervisor pro-
vides domains with the abstraction of logical
block devices built from extents drawn from the
physical disks fitted to the system. Each extent
in the list is given as a tuple specifying a physi-
cal drive, offset within it, extent-length and a flag

12

indicating whether read/write or read-only access
is to be granted. A control interface is provided
to domainO to configure logical block devices on
behalf of domains; the hypervisor is only respon-
sible for the data-path protection and translation
of requests:

Domain0 block deviceinterface
bd_devi ce_.update (dom devn,

Domain0 has complete read/write access to their
entire contents, including partition tables, boot in-
formation and so on. It will typically be config-
ured to use one of the partitions as its root file
system. Other partitions may be marked as type
“XenoDisk”. These will be divided up into fixed-
length extents (currently 100MB chunks), and
available for domainO to construct logical block
devices from, as necessary.

In a typical installation, domainO will use some
extents to hold a shared file system that it exports
to other domains via a local NFS or SMB server.
This provides domains with a high-level file-based
read/write interface. In the future, a shared mem-
ory block transfer mechanism will augment the
NFS server for improved efficiency when servic-
ing Guest OS file requests. The memory manage-
ment system will thus enable pages that are in use
by more than one domain to be shared read-only
(copy-on-write) between domains.

Rather than only exporting a local file sys-
tem via this mechanism, we expect domainO will
wish to provide domains with access to other dis-
tributed file systems, such as Coda, Tapestry, vy,
or our own XenoStore. In which case, it will likely
use some of the local disk extents to provide a
persistent shared cache of recently accessed files.
With the shared-memory block transport in place,
this could provide an efficient means of allowing
Guest OSes to retrieve files that are likely to ex-
hibit a high degree of sharing, such as common
system and application binaries.

Instead of using the file-level interface, some
domains will choose to ask domainO to construct
a logical block device for them. For example, a
domain might ask that a new block device be cre-
ated such that it may perform paging (swaping) to
it. Doing so will provide the domain with high-
performance disk access, bypassing the file-level

extent |ist)



shared cache which could provide no benefit any-
way.

Similarly, a domain could request creation of a
new block device, build a file system on it, and
populate it with important application data that it
needs to access with predictable performance, and
thus could not rely on the distributed file system.

3.5.2 Persistent block devices

When created, block devices are reserved for the
client’s exclusive use during the period the Guest
OS is running on the server. However, we wish
to provide the option of persistent storage, allow-
ing a client to reclaim a block device previously
created by another Guest OS.

Upon creation, logical block device are as-
signed a pair of large sparse identifiers which
serve as access keys. One identifier provides read-
write access, the other read-only. When asking
domainO to construct it a logical block device, a
domain in possession of a key can use it to re-
quest a specific pre-existing block device contain-
ing known data, perhaps encrypted for additional
security. This mechanism also allows Guest OS to
perform read-only sharing of common data, per-
haps root file system images.

When created, a persistent block device can be
assigned an expiry date. If not actively renewed
by someone in possession of the key, the disk ex-
tents that make up the block device are liable to
be zeroed and re-allocated on an LRU basis as
new block devices are created or existing ones ex-
tended.

3.5.3 Data Transfer

Domains which have been granted access to a log-
ical block device are permitted to read and write
it directly through the hypervisor, rather than re-
quiring domain0 to mediate every data access.

In overview, we use the same style of
descriptor-ring that is used for network packets.
Each domain has one ring that carries operation
requests to the hypervisor and carries the results
back again. Three kinds of operation request
are possible. Although the actual communication
uses an asynchronous message passing model,

13

they are most easily understood in terms of a pro-
cedural interface in that manner that they could be
exposed by an abstraction library within the do-
main. The first three procedures place an opera-
tion on the descriptor ring and return a handle for
that invocation:

Guest OS block device request messages

handl e = nsg_bd_read(devi ce, buffer,
bl k_.num bl k_cnt)
handl e = nmsg_bd_.wite(device, buffer,
bl k_.num bl k_cnt)
handl e = nsg_bd_barri er(device)

The first two of these operations, nsg_bd_r ead
and nsg_bdwite request ordinary asyn-
chronous read and write operations on the speci-
fied logical block device and at the specified range
of real physical memory locations. Remember
that these procedures are not hypercalls; they op-
erate entirely within a domain, placing messages
into a request-descriptor ring shared with the hy-
pervisor.

These operations permit contiguous transfers
between block devices and guest operating sys-
tems. With these primitives, it is also possible to
support more advanced operations such as scatter-
gather operations.

The third operation, msg_bd_barri er, is
worthy of more detailed attention. We permit
the hypervisor to re-order operations on block de-
vices, allowing it to perform any of the set of oper-
ations that have been requested of it by any of the
domains. The meg_bd_bar ri er request acts as
a synchronization barrier that a domain can use
to constrain the re-ordering. It requires that the
hypervisor completes servicing all of the opera-
tions that precede the barrier before commencing
any of the operations that follow it. This sup-
ports domain-specific trade-offs in the consistency
model they require.

The final three messages form counterparts of
those above and indicate to the guest operating
system the status of the request identified by the
handle:

Guest OS block device response messages
nmsg_bd_read_repl y(handl e)
msg_-bd_writereply(handl e)
nsg_bd_barri er _repl y(handl e)




As we have seen, the majority of block-device
operations are carried by these requests and re-
sponses over a descriptor ring. Aside from these
sets of messages, only a single hypercall is nec-
essary. Once again, this is used to inform the hy-
pervisor when it should check for new data placed
within the descriptor ring:

Guest OS block device data
transfer interface
bd_updat e()

3.5.4 DMA Transfers

Rather than copying data in and out of the hy-
pervisor, we use page pinning to enable DMA
transfers directly between the physical device and
the domain’s buffers. Disk read operations are
straightforward; the hypervisor just needs to know
which pages have pending DMA transfers, and
prevent the Guest OS from trying to give them
page back to the hypervisor, or to use them for
storing page tables. Similarly, if a page is to be
subject of a disk write operation, it must not be
reallocated, otherwise the new owner’s contents
could be leaked. Note that unlike the case of
network transmission, we do not have to be con-
cerned about the security implications of a domain
updating a page’s contents between initiating a
write and it being performed.

4 Preliminary Results

We have plans to perform a thorough analysis of
Xen’s performance, comparing Guest OSes run-
ning over Xen against the same OS running on the
bare hardware. We will use a variety of different
work loads, including SPEC CPU, SPEC WEB
(using Apache), and micro-benchmarks such as
Imbench. For comparison, we also intend to re-
peat the experiments with Linux running over
VMWare, preferably VMware ESX server. We
hope to show that the performance overhead of
para-virtualization is negligible, and certainly less
that the full virtualization aimed for by VMWare.

The most mature Guest OS port we currently
have running on Xen is Linux 2.4. Table 4 show
results comparing the performance of the SPEC

14

CPU INT 2000 suite running on xenolinux-2.4.20
on Xen vs. Linux-2.4.20 running on the same
hardware (a dual processor 733MHz Pentium-I1I,
512MB). The main purpose of this benchmark is
to thoroughly exercise Xen’s memory virtualiza-
tion technique. We arranged for the benchmark
suite to be running in an NFS-mounted direc-
tory, thus giving Xen’s network stack a work-out
too. The results are very encouraging — running
within Xenolinux, the benchmark’s overall perfor-
mance degradation is less than 2%. We also have
initial results from running the Imbench micro-
benchmark suite. Although these present an ab-
solute worse-case scenario, most are in the 10-
20% overhead range. Given that no concerted ef-
fort has yet been made to optimize either Xen or
Xenolinux, we find these figures very encourag-
ing. We will run experiments to provide further
performance results shortly.

5 Conclusion

We have presented the design of the Xen Hypervi-
sor and XenoL.inux, a guest OS which runs on top
of it. The project is ongoing and under active de-
velopment by an enthusiastic team. We will con-
tinue to improve the implementation and to evolve
our design, with the aim of having our system se-
lected for deployment on the PlanetLab test bed.

6 Credits

The XenoServer hypervisor team are (in alphabet-
ical order): Paul Barham, Boris Dragovic, Keir
Fraser, Steve Hand, Tim Harris, Alex Ho, Evange-
los Kotsovinos, Anil Madhavapeddy, Rolf Neuge-
bauer, lan Pratt, and Andrew Warfield. Keir Fraser
deserves special mention for leading the initial im-
plementation.

References

[1] ANDERSON, T. E., BERSHAD, B. N., LA-
ZOWSKA, E. D., AND LEVY, H. M. Sched-
uler Activations: Effective Kernel Support
for the User-Level Management of Paral-
lelism. In Proceedings of the 13th ACM



Table 1: SPEC CPU INT2000 suite running on a 733Mhz dual Pentium-I11 system. XenoLinux vs. Linux

2]

[3]

[4]

[5]

[6]

XenoLinux 2.4 Linux 2.4
benchmark RunTime Ratio | RunTime Ratio
164.9zip 487 287 4382 291
175.vpr 640 219 623 225
176.gcc 475 232 454 242
181.mcf 930 194 881 204
186.crafty 316 316 315 317
197.parser 762 236 748 241
252.eon 1824 71.3 1833 70.9
253.perlbmk 530 340 530 340
254.gap 415 265 403 273
255.vortex 640 297 630 302
256.bzip2 692 217 676 222
300.twolf 1236 243 1212 248
SPECint_base2000 229.4 234.0

S GOPS Symposium on Operating Systems [7] SEAWRIGHT, L., AND MACKINNON, R.

Principles (SOSP'91) (Pacific Grove, CA,
USA, Oct. 1991), pp. 95-109.

Corp, C. The technology of Vir-
tual PC, 2000. Available from
http://www.connectix.com/downloadcenter
/pdfivpcw_wp/vpcw_overviewwp
_sep1301.pdf.

HAND, S., HARRIS, T., KOTSOVINOS, E.,
AND PRATT, I. Controlling the XenoServer
Open Platform, November 2002. Under sub-
mission to OpenArch’03.

MiLLs, D. L. Network Time Protocol
(Version 3) Specification, Implementation
and Analysis. RFC 1305, University of
Delaware, Mar. 1993.

PRATT, |., AND FRASER, K. Arsenic: A
User-Accessible gigabit ethernet interface.
In Proceedings of the Twentieth Annual Joint
Conference of the |EEE Computer and Com+
munications Societies (INFOCOM-01) (Los
Alamitos, CA, Apr. 22-26 2001), IEEE
Computer Society, pp. 67-76.

REED, D., PRATT, |., MENAGE, P., EARLY,
S., AND STRATFORD, N. Xenoservers: ac-
counted execution of untrusted code.

15

[8]

[9]

[10]

VM/370 - A Study of Multiplicity and Use-
fulness. 1BM Systems Journal (1979), 4-17.

VMware virtual platform, technical white
paper, 1999.

WARFIELD, A., HAND, S., HARRIS, T.,
AND PRATT, I|. Isolation of Network Re-
sources in XenoSevers, November 2002.
Planetlab Design Note PDN-02-006.

WHITAKER, A., SHAwW, M., AND GRIB-
BLE, S. D. Denali: Lightweight Virtual Ma-
chines for Distributed and Networked Appli-
cations. Tech. Rep. Technical Report 02-02-
01, University of Washington, 2002.



