
Submitted to RESoLVE 2012

The Case for Reconfigurable I/O Channels

Steven Smith1, Anil Madhavapeddy1, Christopher Smowton1, Malte Schwarzkopf1,
Richard Mortier2, Robert M. Watson1, Steven Hand1

University of Cambridge1, University of Nottingham2

Abstract
Datacenter environments are increasingly layered, with multicore
parallelism, OS virtualisation and NUMA memory all introducing
variable latency and throughput for data transmission. For a pro-
grammer deploying applications in such a shifting environment, it
is unclear how best to use venerable interfaces such as the sockets
layer. Kernel hackers realise there is some performance hit to all
the software layering, but quantitative figures are hard to find.

This is a position paper of two rather different halves. We first
seek to understand just how big the impact of NUMA layouts and
OS virtualisation have been on I/O performance. To do this, we
implemented a variety of IPC mechanisms (from TCP sockets to
shared memory) and benchmarked them under modern multicore
hardware and Xen. We discovered a large variance in throughput
and latency under different scheduling conditions (over an order
of magnitude in some cases), and also some rather inexplicable
results which point to the extreme difficulty of predicting cross-
layer performance.

In the second half, we describe the early design of a system
which aims to overcome these multiplexed I/O scheduling issues.
It provides an efficient, zero-copy data transmission interface that
automates the selection of the underlying transport, and the fa-
cility to dynamically reconfigure transports as system conditions
change. Finally, we discuss the implications of extending the OS
with explicit I/O flow tracking—eliminating contention, transpar-
ent transport-level security and an easy upgrade path to multi-path
TCP.

1. Introduction
Inter-process communication (IPC) and remote procedure call
(RPC) facilities have existed in operating systems for many decades.
Ever since the first parallel applications ran on time-sharing ma-
chines, programmers have sought ways to communicate between
processes running on a single machine, and, equally, the first net-
worked applications introduced the concept of sending a message
to trigger a remote action. Today, these primitives are more rele-
vant than ever before: parallel programming within a machine and
across machines—an increasingly blurry distinction—relies heav-
ily on facilities to pass data between processes. On a higher level,
data-flow frameworks for simple parallel processing of large data

[Copyright notice will appear here once ’preprint’ option is removed.]

ISA (AMD/Intel) core layout /

ACPI SRAT

NUMA structure

superpages
Hardware

native/virtualized
Hypervisor type

(EPT/NPT/HVM/PV)
Virtualization

kernel/OS synchronization primitives OS

flow control

trusted/untrusted 

pair

Channel

buffer sizes request sizes

congestion control /contention

Data size

data transformation

transport-level security

High-level 

transformation
language runtime integration

optimal mechanism

if virtualized

Trust

Figure 1. Variables that may influence the choice of IPC mecha-
nism. Binary variables are indicated as , N-ary variables as ,
and continuous variables as .

sets depend on passing data between different tasks, which may run
anywhere, including local to a machine, on a networked cluster, or
far away in a wide-area “cloud”.

And yet, we are stuck with communication APIs closely cou-
pled to the underlying mechanisms used to implement them: the
programmer choice of a communication API constitutes an implicit
“buy-in” to a whole set of assumptions about the relative locations
of the communicating parties, as well as how the message is to be
delivered. Even worse, the implicit trade-offs may not be the same
in a different environment, and thus the programmer’s choice of
API depends on assumptions about the runtime environment (hard-
ware, software and setup) in addition to the characteristics inherent
to an implied mechanism. Finally, the environment may not be sta-
ble over time: processes or VMs may migrate during their lifetime,
and communication channels may begin or cease to be available.

In this position paper, we present evidence to the fact that this
issue is both real and pressing (§2). We show dramatic differences
in performance between communication mechanisms depending
on locality and machine architecture, and observe that the inter-
actions of communication primitives are often complex and some-
times counter-intuitive (§2.2). Furthermore, we show that virtual-
isation can cause unexpected effects due to OS ignorance of the
underlying, hypervisor-level hardware setup.

Faced with this evidence, we switch to designing a solution,
and present an early design of a new API that aims to improve
the state of scheduling I/O in a now-typical multi-core, multi-VM,
multi-host machine cluster (§3). FABLE is a system for the estab-
lishment and management of IPC channels using an system-wide
naming service (§3.1.1), with the facility to reconfigure channels

The Case for Reconfigurable I/O Channels 1 2011/12/19



dynamically as system conditions change (§3.1.4). Finally, we dis-
cuss some of the architectural implications that result from the ad-
dition of a system-wide I/O flow service (§4), and conclude with a
call to the research community to pay more attention to low-level
communication efficiency and performance when designing large,
distributed systems, and to develop better and more user-friendly
APIs to support this goal (§5).

2. Benchmarking existing APIs
UNIX provides a number of mechanisms for inter-process commu-
nications, each with their own benefits and tradeoffs. To give us an
idea of their relative performance, we conducted a series of micro-
benchmarks.1 We now show results from these benchmarks—some
of which are easily explained, while others are very surprising. We
conclude that choosing the optimal transport is a hard problem that
warrants an automated solution. In making this argument, we will
frequently refer to Figure 1, which gives an overview of some of
the variables we discovered to have a significant influence on the
optimality of a particular communication mechanism.

We first describe the transports we benchmarked (§2.1), discuss
the overall findings—a 4-15× difference in throughput between the
best and worst performance mechanism on a fairly standard multi-
core machine (§2.2) as well as unexpected performance artefacts.
We conclude that the performance of systems with so much multi-
plexing is very unpredictable, and that a more dynamic approach to
achieving maximum throughput is required (§2.3).

2.1 Mechanisms benchmarked
There is a wide design space of communication mechanisms, and
Table 1 summarises those we tried. We began with the conven-
tional socket interface used by most applications (§2.1.1), and then
moved onto custom shared memory variants (§2.1.2, §2.1.3 and
§2.1.4), and the Linux vmsplice mechanism (§2.1.5). Finally, to
establish a lower-bound on NUMA performance, we measured the
interprocessor-interrupt latencies (§2.1.6).

2.1.1 POSIX sockets
The POSIX sockets API is widely implemented in most multi-
process operating systems, and specifies TCP connections, domain
sockets and pipes.

TCP sockets are used by applications that potentially commu-
nicate outside the chassis; they can of course also be used to com-
municate with processes running on the local host as this makes it
transparent to the application whether it is communicating with a
local or a remote process. TCP offers a simple model to applica-
tion programmers but is, however, somewhat inefficient: the stack
continues to run its packetisation, congestion control, and retrans-
mission algorithms, even though these are completely redundant on
a localhost loopback connection. We believe that this is responsible
for the relatively poor performance which we observed for within-
chassis TCP in our benchmarking (§2.2).

Domain sockets avoid many of these problems with the absence
of concepts of packetisation, retransmission, or congestion control,
while still preserving the usual socket interface. The socket inter-
face is, however, itself a weakness: it fundamentally cannot take
full advantage of the potential for sharing memory between pro-
cesses running on the same physical host, as the interface mandates
that data be copied at least once.

Pipes present a broadly similar interface to domain sockets, but
are internally implemented in a completely different manner and
have surprisingly different performance characteristics (§2.2).

1 All of these tests are parameterised by many of the decisions in Figure 1
and are available online at: http://github.com/avsm/ipc-bench

2.1.2 mempipe
Sockets require at least a single data copy and system call to move
data, whereas shared memory offers a high-bandwidth, low-latency
alternative when both end-points are on the same OS. Unlike socket
communication, there is no standard for shared memory commu-
nications, and so we implemented the mempipe transport for the
purposes of these benchmarks.

The mempipe data producer and unconsumed pointers are in
memory that is private to the transmitter, while the consumer
pointer is in memory that is private to the receiver. Each message
has a header flag indicating its freshness and payload length. To
receive a message, the receiver waits for the freshness flag to be set
in the next header. The message is then consumed, the freshness
flag is cleared and the consumer pointer advances.

Transmission requires that sufficient space is available in the
ring. The free space is precisely that between the producer and next
acknowledgement pointers, and so the transmitter might need to
advance the next acknowledgement pointer to ensure that enough
space is available. The transmitter waits for the unconsumed-
message flag to be cleared in the relevant message header, and
then advances the pointer by the size of the acknowledged mes-
sage. Once the pointer is advanced far enough, the transmitter can
send its message. Once the payload has been deposited, the trans-
mitter finds the header immediately after the payload area and
clears the unconsumed-message flag in that header, before mov-
ing back to the header before the payload and setting the size and
unconsumed-message flag in that header. This two-step process en-
sures that the receiver does not advance ahead of the transmitter,
as if the receiver consumes the message before the transmitter is
ready to produce the next one, it will get block waiting for the next
message’s unconsumed-message flag to be set2.

Constructing a good shared memory transport requires making
a number of decisions about the end-points. For instance, while
there is an transfer of ownership from the transmitter to the receiver
in mempipe, there is no attempt to enforce it. The transmitter
can continue to modify the message payload buffer whilst the
receiver is reading it, and so assumes that both sides trust each
other to implement zero-copy transmission correctly. We can thus
measure the cost of enforcement separately, unlike with the socket
API which always enforces that both sides are untrusted. In our
benchmarks, the “safe” version of the transport copies the received
message into a private buffer before offering it to the application.

2.1.3 Spin-wait vs. futex use
The mempipe protocol involves waiting for flags to be set or
cleared, for which we consider two schemes. In mempipe-spin,
the process spins and tests the flag repeatedly. This is requires
no system calls, locked operations, or memory barriers beyond
those implicit in x86 memory accesses, but introduces massive
contention for other processes scheduled on the same core. We
therefore also consider a version using Linux’s futex system call.
This provides two core operations: block while a given memory
location has a given value, and a kernel notification that a memory
location has potentially changed. We use these facilities to elim-
inate all of the spin-wait loops and replace them with blocking
operations, at a cost of code portability.

We optimize performance by including an extra flag indicating
whether anyone is potentially waiting on a message; this avoids a
system call in the wake operation when on the fast path where there
are no waiters. Nevertheless, maintaining the flag is itself moder-
ately expensive, and requires atomic operations for every message

2 Messages are variable size, so is possible that what is now a header
was previously message payload, so the header is effectively uninitialised
memory until the flag is cleared.

The Case for Reconfigurable I/O Channels 2 2011/12/19



Benchmark § Description Copies
tcp 2.1.1 Standard TCP/IP connection to local loopback. 2

tcp-nodelay 2.1.1 TCP/IP connection with TCP NODELAY option set, disabling data buffering before sending a packet. 2
unix 2.1.1 Unix domain socket (in streaming mode). 2
pipe 2.1.1 Standard pipe connecting two processes. 2

vmsplice-coop 2.1.5 Sender supplies local page descriptors to a pipe, receiver copies from the sender-allocated memory and notifies. 1
shmem-pipe 2.1.4 -unsafe: meta-data defining extents referring to allocations in a shared-memory region are sent through a pipe. 0

-safe: same as above, except copying the data into a private buffer before inspection. 1
mempipe-futex 2.1.3 -unsafe: shared-memory ringbuffer with receiver blocking on a futex awaiting meta-data arrival. 0

-safe: as above, except copying the data into a private buffer before inspection. 1
mempipe-spin 2.1.3 -unsafe: shared-memory ring buffer with receiver spinning on meta-data arrival and inspecting data directly. 0

-safe: same as above, except copying the data into a private buffer before inspection. 1
ipi 2.1.6 Low-level hardware inter-processor interrupts (notification-only scheme, data transfer handled seperately). N/A

Table 1. Different IPC/RPC mechanisms benchmarked.

sent. Atomic operations are themselves quite expensive (although
much less so than a system call), and this reduces performance rel-
ative to the spinning version of the transport.

The decision of spinning versus futex is further complicated by
virtualisation, where the process may have the illusion of having
a CPU to itself, but is in fact co-scheduled with another VM and
would have much lower throughput if spins. The number of sys-
tem calls also becomes a more important consideration when virtu-
alised, due to extra privilege checks making them more expensive
than under native operation. The programmer must thus use differ-
ent transports depending on their deployment environment.

2.1.4 shmem pipe
The mempipe futex mechanism has two important weaknesses: it
cannot be integrated with existing poll- or select-based event
loops, and messages must be processed entirely in order. These mo-
tivated the development of a third shared-memory transport mech-
anism, shmem-pipe. Like mempipe, this scheme communicates
payload data via a shared memory area, but message metadata is
communicated out-of-band using a pair of ordinary POSIX pipes.
Rather than managing the shared memory area as a contiguous
ring, it is managed using a heap allocator operating in the trans-
mitter. When the transmitter sends a message, it allocates shared
space, populates the shared memory using the contents of the mes-
sage, and sends a small 8-byte descriptor through a metadata pipe.
The receiver collects the descriptor and processes the payload in
shard memory. Once it has finished with the message, it releases
the shared space back to the transmitter by writing another descrip-
tor into the other metadata pipe.

This scheme is zero-copy (like mempipe) and can efficiently
transfer large amounts of data between processes, and is also eas-
ier to integrate with existing select loops (as one can select on
the metadata pipes). Its main disadvantage is that it requires more
system calls, even in its fastest case, in order to move the descrip-
tors back and forth through the pipes. Fortunately, these operations
can often be batched and sometimes exceed the performance of
mempipe-futex. This scheme is a userspace equivalent to the Xen
virtual device model, where guest kernels transfer shared memory
pages using a coordination page for the metadata [11].

2.1.5 Cooperative vmsplice
Linux offers a vmsplice system call for single-copy IPC, which
moves pages into a remote pipe queue (as opposed to write, which
copies data from the sender into freshly allocated pages in the pipe
queue). This data is then copied into the receiver when it calls
read. Hence, a two-copy pipe is transformed into a single copy
one, and makes for an interesting compromise between sockets and
our shared memory transports. Unfortunately, vmsplice makes it
impossible to determine when the page has been read, and the
sender can safely reuse it. Thus, the only way of using the interface

with an arbitrary reader is for the writer to unmap the pages after
sending, and to then re-allocate additional buffers.

Our vmsplice-coop transport fixes this issue by augmenting
the main data pipe with an additional metadata pipe that is used
by the receiver to tell the sender when it is finished with a given
page. Data can thus be copied from the transmitter’s buffers di-
rectly into the receiver’s buffers, without a need to modify the re-
ceiver and without need to establish a shared-memory region. As
with mempipe, this relies on the receiver behaving correctly, and
therefore cannot be used if the receiver is untrusted.

We hope this brief adventure into shared memory IPC design
makes it apparent just how large the design space is! There are
many APIs (such as vmsplice) that have emerged after Berkeley
sockets that encode some, but not all, of these variants.

2.1.6 IPIs
All the schemes described above still involve a considerable
amount of software (e.g. in the kernel). In order to examine the
hardware layouts much more closely and establish a lower-bound
to how efficient inter-process communication can be, we dropped
down to the lowest software notification layer—an inter-processor
interrupt, or IPI.

This is a hardware mechanism which allows a processor to trig-
ger an interrupt in a remote processor. Apart from shared memory,
this kind of interrupt-based interface is the fastest mechanism of-
fered by the hardware for inter-processor communication, and so
provides an effective lower-bound on the latency of blocking com-
munication primitives.

We test it with a simple “ping-pong” test, where the CPUs
involved in the test handle incoming IPIs by generating an outgoing
IPI targeted at wherever the incoming interrupt came from. This
test is run in a modified Xen without any guest kernels or dom0
running, and so represents the minimum achievable latency with
the given hardware.

2.2 Benchmark Results
We evaluated our transport mechanisms on an AMD Opteron 6168
(“Magny-Cours”) with a total of 48 cores, split into six cores per
die, two dies per socket and a total of four sockets [4]. The ma-
chine has 64 GB of DDR3 RAM, and represents a reasonably stan-
dard high-end server. We also ran selected benchmarks on other
machines in order to get a feel for the effect of different archi-
tectures on the results. These machines include an Intel Q6600
(“Kentsfield”) 4-core machine with 8 GB of DDR2 RAM, and
an experimental machine with 80 Intel Xeon E7-2850 processors
(160 threads). All machines run 64-bit Linux 3.1.0, and Xen 4.1
with the same dom0 kernel in the virtualized tests. The tests were
compiled using gcc 4.6.1 with optimisations enabled (-O3). All
benchmarks were repeated at least 10,000 times, and both partici-
pating cores were pinned to a particular set of CPUs.

The Case for Reconfigurable I/O Channels 3 2011/12/19



0 20 40 60 80 100120140160
Core ID

0
20
40
60
80

100
120
140
160

Co
re

 ID

Xeon E7-2850

2000
2200
2400
2600
2800
3000
3200
3400
3600

IP
I l

at
en

cy
 in

 n
an

os
ec

on
ds

0 10 20 30 40
Core ID

0

10

20

30

40

Co
re

 ID

AMD Opteron 6168

830
840
850
860
870
880
890
900
910

IP
I l

at
en

cy
 in

 n
an

os
ec

on
ds

Figure 2. Comparison of IPI latency between cores on an 80-core
Xeon E7-2850 machine and the 48-core Opteron 6168.

2.2.1 IPI Latency
The IPI latencies should reveal the NUMA layout of a host, and so
we ran them on the 48-core AMD (Figure 2 (right)) and the 80-
core, hyper threaded Intel (Figure 2 (left)). For the AMD machine,
each cell in the grid represents a core, with sockets represented
by 3x2 blocks. The Intel machine is more complex, with each
cell representing a pair of hardware threads, cores represented by
2x2 blocks of threads, and sockets represented by 10x10 blocks of
cores. The sockets are themselves divided into 2 trays, each of 4
sockets.

As expected, the fastest inter-core latencies on both machines
are observed when communicating with another core in the same
socket (the blocks along the diagonal of the diagram), and cross-
socket latencies are somewhat higher.

On the Intel machine however, the latencies vary dramatically
when talking to a different core on a different socket, showing
that there is another factor (or hardware layout) affecting off-socket
communications. This complexity is at a layer far below that avail-
able to most application developers, and suggests that the choice
of transport strategy should be delegated to a system service. We
are continuing to investigate the source of this variance, and have
mostly ruled out issues such as incorrect CPU enumeration.

2.2.2 Latency
Our next benchmarks focus on two key metrics: the inter-core
communication latency (a “ping-pong” test), and the throughput
for different message sizes, with one core set up as a producer and
one as a consumer. We decided to focus on these aspects and limit
the investigation to within-chassis communication both because
this case exhibits the most interesting variety of mechanisms, and
since within-chassis communication represents a pathological, but
increasingly frequent case for today’s data-flow engines.

Figure 3 summarises results of latency measurements on the
48-core AMD machine. Each grid point represents a single test
independently run pinned across those cores. The top result shows
the performance difference between the shared memory mempipe
(left) and a TCP socket (right). As expected, the spinning shared
memory is generally far lower latency than TCP, except when
communication is scheduled on the same core, at which point it
is far worse. The TCP grid clearly reveals the underlying NUMA
memory layout of the host, with the on-socket communication
being the best latency.

We then ran the same TCP tests under Xen with a single 48-
vCPU dom0 (Figure 3 (mid-left)). The results are generally more
latent than the native case due to the extra system call cost, but
also completely obscure the underlying NUMA layout. We traced
this to the Xen scheduler continuously rebalancing the vCPU map-
pings, and tested out the theory by pinning every vCPU to its as-
sociated physical CPU (Figure 3 (mid-right)). This restored a dif-
ferent NUMA latency graph, since Xen enumerates physical CPU
numbers differently from native Linux.

0 10 20 30 40

Core ID
0

10

20

30

40

Co
re

 ID

native, mempipe

0
0.008
0.016
0.024
0.032
0.04
0.048
0.056
0.064

La
te

nc
y 

in
 m

ic
ro

se
co

nd
s

0 10 20 30 40

Core ID
0

10

20

30

40

Co
re

 ID

native, TCP

1.6e-05
1.8e-05
2e-05
2.2e-05
2.4e-05
2.6e-05
2.8e-05
3e-05

La
te

nc
y 

in
 m

ic
ro

se
co

nd
s

0 10 20 30 40

Core ID
0

10

20

30

40

Co
re

 ID

Xen-unpinned, TCP

5.4e-05
5.7e-05
6e-05
6.3e-05
6.6e-05
6.9e-05
7.2e-05
7.5e-05
7.8e-05

La
te

nc
y 

in
 m

ic
ro

se
co

nd
s

0 10 20 30 40

Core ID
0

10

20

30

40

Co
re

 ID

Xen-pinned, TCP

5.4e-05
5.7e-05
6e-05
6.3e-05
6.6e-05
6.9e-05
7.2e-05
7.5e-05
7.8e-05

La
te

nc
y 

in
 m

ic
ro

se
co

nd
s

0 10 20 30 40

Core ID
0

10

20

30

40

Co
re

 ID

native, UNIX sockets

1.05e-05
1.2e-05
1.35e-05
1.5e-05
1.65e-05
1.8e-05
1.95e-05
2.1e-05

La
te

nc
y 

in
 m

ic
ro

se
co

nd
s

0 10 20 30 40

Core ID
0

10

20

30

40

Co
re

 ID

Xen-pinned, UNIX sockets

3.8e-05
4e-05
4.2e-05
4.4e-05
4.6e-05
4.8e-05
5e-05
5.2e-05

La
te

nc
y 

in
 m

ic
ro

se
co

nd
s

Figure 3. Ping-pong latency in different configurations, using the
48 core system described earlier. Xen tests are run in multi-virtual
CPU Linux domains running on Xen, while native tests are run in
Linux running natively without Xen. Xen-unpinned shows the ef-
fect of allowing the Xen scheduler to assign virtual CPUs to physi-
cal CPUs; in all other tests, we manually specified this assignment.

We also observed very counter-intuitive results when measur-
ing domain socket latency (Figure 3 (bottom)). The native results
(left) show that the latencies for domain sockets are higher than
shared memory, and less than TCP. When run under Xen however,
the interacting schedulers have a completely different performance
profile, even with the virtual CPUs pinned (right). We ran addi-
tional tests on Xen to determine where such dramatically different
behaviour is coming from, by running the latency tests in a guest
microkernel based on the Xen MiniOS. Early results suggest a bug
(or at least, odd interactions) between the vCPU numbers and the
latency of event channel (i.e. virtual IRQ) latencies.

2.2.3 Throughput
We also measured the data throughput for all the transport mech-
anisms described earlier in Table 1, with individual data request
sizes of 64 bytes, 4KB and 64KB. All the tests were configured so
that the buffers written were all verified by the reader to contain an
incrementing sequence number.

The results are summarised in Figure 4, and show a large vari-
ance in performance across transport mechanisms. TCP (with or
without Nagle’s algorithm disabled) is slower than all of the other
transports, except at 64KB request sizes when it is slightly faster
than pipes and domain sockets (due to the large MTU set by Linux
when it detects that TCP is going over localhost). The shared mem-
ory transports are all clearly better, but there is no clear “winner”
between the variants. For example, the spinning version is patho-
logically bad when both end points are scheduled on the same core,
whereas it performs 4-15x faster than TCP across cores. Although
not shown here, the throughput results on Xen exhibit significantly

The Case for Reconfigurable I/O Channels 4 2011/12/19



64 4096 65535
0

5000

10000

15000

20000

25000

Th
ro

ug
hp

ut
 [M

bp
s] (a)

mempipe-spin-unsafe
mempipe-spin-safe
mempipe-futex-unsafe
mempipe-futex-safe

shmempipe-unsafe
shmempipe-safe
vmsplice-coop
pipe

unix-sock
tcp-nodelay
tcp

64 4096 65535

(b)

64 4096 65535
0

5000

10000

15000

20000

25000

Th
ro

ug
hp

ut
 [M

bp
s] (c)

64 4096 65535

(d)

Figure 4. Throughput comparison for different mechanisms on
a non-virtualized 48-core Opteron 6168. (a) same core, (b) same
socket, same die/MCM, (c) same socket, other MCM, (d) different
socket, other MCM

more variance. For comparison, we also tested a shared-memory in-
ter domain interconnect (“libvchan”) under Xen, which performed
around 30-40% faster than TCP for 4KB request sizes.

2.3 Benchmark Summary
We make two key observations after running micro-benchmarks in
a variety of different environments: (i) there is no silver bullet for
communication between arbitrary processes, only domain-specific
solutions. Picking one of these is hard, and the environment in
which the decision is made is neither always known in advance,
nor is it necessarily stable; (ii) the plethora of variables influencing
the performance of a particular mechanism makes the decision
unintuitive and lead to unexpected performance effects.

Application developers do not have access to the innards of ker-
nel and hypervisor scheduling, and so cannot make informed de-
cisions about which transport to best use. Most cloud computing
providers do not provide the privileged access required to pin vC-
PUs in guests, and indeed their business models depend on the ef-
ficiency gains from statistical multiplexing.

3. A Possible Solution: The FABLE Library
We have so far shown that existing APIs are rather unpredictable for
high-performance communications due to multiplexing introduced
by hardware, hypervisor, kernels and other software layers. Ideally,
the programmer should not have to worry about the specific envi-
ronment they are deploying in, but focus on specifying their data
processing needs and let the operating system schedule resources.

We now change tacks from benchmarking and move to the early
design of the FABLE library that aims to improve I/O scheduling in
the face of all these software layers. It has the following design
goals beyond the standard socket API: (i) automatic selection of
the best transport protocol between end-points, regardless of if
they are on the same kernel, VM or cluster; (ii) support dynamic
reconfiguration of the connection when system conditions change;

and (iii) efficient, zero-copy data transmission API that minimises
privilege transitions.

FABLE consists of a user-space application library, an extra
system call to register with a new name service daemon, and some
extensions to existing polling system calls to support the new I/O
descriptors. Figure 5 illustrates the following layers:

• Naming: all end-points are explicitly named, and a system ser-
vice (opaque to the library user) tracks the location of pro-
cesses and virtual machines and notifies them of reconfigura-
tion events. If virtualised or running in a cluster, this name ser-
vice can register with a higher-level one that has more accurate
system-wide knowledge.
• Connection: connection setup is similar to POSIX sockets, ex-

cept that the end-points are named services. Every connection
has a single transport mechanism, ranging from tightly coupled
shared memory, to a TCP connection, to a page-flipping mem-
ory pipe (§2.1). The client specifies if the remote end-point is
trusted to cooperate, or if private data copies are required.
• Flow: buffers structures for reading and writing are always allo-

cated by the FABLE library, and are tailored for the connection
they are associated with (e.g. an entry in a shared memory ring).
Buffers are single-use only, and buffer creation calls are where
back-pressure is applied, rather than at the point of reading or
writing. If buffers are unavailable, the application polls to be
notified when more are available.
• Data: every buffer is owned by exactly one FABLE connection,

and ownership is transferred either via a release back to the
system (e.g. after a read), or via a commit to write it onward to
the next end-point. Once ownership has been transferred, it can
never be regained and new buffers must be requested.

When designing FABLE, we assumed that nested scheduling
layers will dominate architectures for some years, due to the pop-
ularity of virtualisation and multi-core hardware. The addition of a
system-wide name service for end-points is key to keeping track of
I/O flows in such complex environments. The FABLE name service
is hierarchical and can keep higher-level software layers informed
about activity within a particular domain, up to and including a dis-
tributed cluster of physical hosts. The ultimate goal is to form an
accurate view of dataflow requirements for all applications across a
cluster, and provide more structured information for schedulers to
maximise I/O throughput across a cluster. We discuss the broader
implications of this name service more later (§4).

The FABLE name service is only used to coordinate the estab-
lishment of data channels and track their lifetime. Once established,
the data transfer between two endpoints is designed to be highly
efficient and not require a system call for a read/write operation, al-
though some transports may choose to do so (e.g. remote TCP when
using kernel sockets). This is particularly important for throughput
in virtualised environments, where system calls can be dispropor-
tionately expensive due to privilege checks by the hypervisor.

Although FABLE provides a new API, it can also be integrated
directly into existing applications via a socket compatibility layer
(§3.2). As we noted earlier, the sockets layer forces at least a single
data copy and so is often less efficient, but the facility to track all
I/O operations across the system remains extremely useful.

3.1 API Overview
We will now describe the lifecycle of an FABLE connection in more
detail, starting with the name mechanism (§3.1.1), how connections
are established (§3.1.2 and data transferred (§3.1.3), and finally
how the reconfiguration process works (§3.1.4).

The Case for Reconfigurable I/O Channels 5 2011/12/19



register

connect listen

getreadbuf getwritebuf

release commit

xpollkqueue

xregister

accept

Kernel Library

Naming

Connection

Flow

Data

Figure 5. Stages of an FABLE session: naming, connection setup,
buffer management, and data synchronisation. Note that normal
data operations do not require a system call.

3.1.1 Naming
Every FABLE connection is associated with two named end-
points.3 The application calls the xio register name to register
a new end-point, and obtains an opaque xio context structure in
return. The library does not keep much state—instead, it accesses
a system-wide name daemon via a kernel file-descriptor interface
and uses this to register with the name service. This descriptor is
used by the name service to track the xio context for its lifetime,
including the details of where it is scheduled, and the connections
emerging from it.

Most of the policy behind connection handling is implemented
in a user-space daemon that listens for FABLE registrations and
scheduling changes from the kernel. This daemon is responsible
for implementing all the policy for connection rendezvous between
end-points, and acts as a system-wide database of I/O flows. When
running in on a native kernel on a physical host, it is primarily con-
cerned with ensuring that communicating processes are scheduled
close to each other (from a NUMA and core layout perspective).
Once virtualised however, it registers with the VM management
stack and keeps it informed of the event stream. Similarly, if a host
joins a cluster of physical machines and wishes to cooperate with
them, the name service can integrate with Zookeeper [6] to handle
distributing its local metadata to the other hosts.

Once an xio context has been obtained, it can be used to es-
tablish multiple connections to other end-points via xio connect,
and also to listen for incoming connections via xio listen. FA-
BLE names are URIs and so the connection API converts a name
into a concrete connection, with the application unaware of the
precise transport unless it has been explicitly specified in the name.
The xio schema is reserved for FABLE-aware end-points, and some
other schema such as tcp or udp are supported to facilitate exter-
nal communication via standard protocols (and are needed for the
socket emulation library).

3.1.2 Connection
Connection establishment requires both end-points to agree that
they wish to communicate (i.e. that one is in a listen mode and
the other is connecting), and the selection of a transport mechanism
that is agreeable to both ends. Since the FABLE name service has
both of the services registered, it acts as the intermediary and calcu-
lates the best transport protocol for the two end-points. A successful
xio connect library call will return an opaque xio handle that
is used to reference the connection by the application.

The details of transport selection are necessarily quite complex,
since they depend on some static factors (hardware memory and

3 Although we have considered mechanisms for multicast, the first version
does not include support for it.

API call Description
xio register name Register this end-points name

xio connect Establish a connection to a remote end-point
xio getreadbuf Obtain a buffer with data from the remote

xio getwritebuf Allocate a buffer for writing to the remote
xio release Release a buffer back to the system
xio commit Commit a buffer for writing to the remote

xpoll Poll a POSIX fdset and a FABLE connection set

Table 2. List of main FABLE API calls.

core layout) and dynamic factors (e.g. virtualisation introducing
external load). The system name service is thus better-placed to
make this decision, instead of the application itself.

3.1.3 Data Transmission
Applications never allocate their own I/O buffers, and instead ob-
tain buffers using the xio getreadbuf and xio getwritebuf
calls. This allows FABLE to allocate optimal buffers for the trans-
port associated with the connection—e.g. low-memory if the net-
work card requires it for DMA, or from a shared memory segment
on the closest NUMA node, or with space reserved for TCP/IP
packet headers. These are optimisations reminiscent of exoker-
nels [5] and explicit path selection [9] that have so far not found
their way into mainstream UNIX-like systems.

Buffers are very similar to iovec structures, and include a
pointer to the I/O memory and its size. They also include a refer-
ence to the xio handle that created them, and an epoch number to
help with reconfiguration (§3.1.4). An important property of buffers
is that they are single use, and cannot be reused once they are freed
or written to another end-point.

An xio getreadbuf call is non-blocking, and returns an array
of buffers that are filled with data, or an empty set to indicate that
the application should poll for more data. When an application is
finished with a buffer, it must call xio release to hand it back
to the system. Since there are a limited set of buffers associated
with each connection, the xio getreadbuf call can return an
ENOSPACE to indicate that the application is holding onto too many
read buffers and should release some before requesting more. To
prevent deadlock, the application may handle this by copying read
buffers into private memory and releasing them early.

The write data path calls xio getwritebuf with an optional
parameter to specify the maximum size of the available data. This
returns an array of buffers which should be filled in any order by
the application. The size of each individual buffer is very transport-
specific, and ranges from a 4K page size for shared memory,
to slightly smaller than an interface’s MTU for TCP (to reserve
space for packet headers). When a buffer is filled for writing, the
xio commit call will transfer ownership of the buffer back to the
library, which queues it for writing. The application may no longer
modify or access this data once it has been committed—this is
advisory if the connection is trusted, and otherwise enforced via a
private copy being taken by the receiver or the page reference being
unmapped from the transmitting end.

The notion of single ownership of buffers is key for construct-
ing efficient stream processing engines, where processes perform
a combination of data processing and proxying. For example, con-
sider a web server that reads pages from disk via one FABLE chan-
nel, transmits the disk pages to a memcached process, which then
serves it to a network interface. The connection from the disk layer
will be a set of page-aligned buffers, whereas the connection to the
memory cache is a large shared memory ring. In this situation, the
application may commit a read buffer from the disk channel di-
rectly into the memcached channel, despite the disk buffer not be-
ing obtained from the memory cache channel. Every buffer tracks
its home connection, and so the FABLE library performs the appro-

The Case for Reconfigurable I/O Channels 6 2011/12/19



epoch 1
len 4096

epoch 1
len 4096

epoch 1
len 4096

epoch 2
len 1460

epoch 2
len 1460

shmem TCP

DMA

NIC

TCP

DMA

NIC

shmemshmem

network

Figure 6. FABLE buffers are variable-length and marked with an
epoch to separate reconfiguration events. The above example shows
a shared memory connection being switched over to zero-copy
TCP, with header-space reserved to facilitate DMA.

priate translation to convert between transport mechanisms (usually
via a slow copy). Once the foreign buffer has been committed, the
upstream writer is responsible for releasing it.

Astute readers will observe that the end-to-end data path in
the previous example is not very optimal, as a page-aligned data
source (the disk) and a page-aligned data sink (the network card)
are being interrupted by a data copy on a shared memory channel
to the intermediate cache process. This may be fine if the data is
being changed along the way, but large file transfers would be more
efficient if the memory cache switched its transport mechanism to
also be page-based. Channel reconfiguration lets FABLE perform
precisely this optimisation, and is described next (§3.1.4).

3.1.4 Reconfiguration
Every xio handle also has a file descriptor that can be obtained
to poll for reconfiguration events. A reconfiguration indicates that
the underlying transport mechanism is being changed, and that
the application should drain any older buffers as quickly as it can
(either by releasing them, or committing them for a write). The
epoch number in each buffer is used to distinguish between the
different transport mechanisms (see Figure 6).

While the reconfiguration notice to the application is an syn-
chronous, the actual change is very asynchronous and similar to
Xen live migration [3]. The new transport data path is established
first, without altering the existing one. A notification is then sent to
the FABLE library instance via the event file descriptor associated
with the end-point. All new buffers requested by the application are
now associated with the new transport, and the application is given
a timeout period to use the old buffers. If the application fails to
drain them in time, FABLE can slowly proxy the old buffers to the
new transport if it can, or simply terminate the connection.

A good example of the need for reconfiguration is when using
a virtual machine cluster. When two VMs are on the same physi-
cal host, they establish an inter-domain shared memory communi-
cation (e.g. via libvchan in recent versions of Xen). If one of the
VMs then live migrates to a different physical host, this connec-
tion would normally be terminated. With FABLE however, the live
relocation is observed by the cluster name service and triggers a
recalculation of the transport protocol, and configures TCP instead.
The example flow of buffers can be seen in Figure 6.

Aside from this, many of the performance anomalies we ob-
served earlier can be adjusted for via a reconfiguration process. For
instance, if two cores are idle and not virtualised, then a low-latency
spinning transport may be the most efficient. If another end-point is
subsequently scheduled onto the same cores, they will begin con-
tending, and the transport should be reconfigured to a futex-based
version. Similarly, if a process is rescheduled to a different NUMA

node, this can trigger the reallocation of memory buffers to ones
from the new NUMA node.

There is some resource cost associated with reconfiguring a
channel, and it is not intended to be done extremely regularly.
Instead, the FABLE name service observes all I/O flows on the
system and can be configured to either automatically balance them
(e.g. using Kalman filters to smooth out changes [7]), or allow
a system administrator to optimise it manually if desired. Either
policy is easy to implement due to the existence of the system name
service to aggregate and coordinate any reconfigurations.

3.2 Integration with Applications
The POSIX socket layer decouples name resolution from connec-
tion setup, and the FABLE socket layer bridges them together by
caching the results of the name lookup and using that informa-
tion to translate subsequent socket API calls from the application
into the FABLE equivalents. It is mostly prototyped as a user-space
LD PRELOAD library.

The easiest name resolution call to support is getaddrinfo,
which accepts a destination name and service, and returns an ad-
dress family (usually AF INET or AF INET6 for IPv4 or IPv6 ad-
dresses respectively), and a concrete list of sockaddr structures.
The FABLE wrapper registers the requested name/service pair with
the name service as a “partial lookup”, obtains a handle in return,
and returns this as an AF FABLE address family.

The application can then use the returned sockaddr through
to the usual socket and connect or listen calls. The FABLE
wrapper functions use the partial handle to reconstruct the name
and service at connection time, and perform a FABLE call if it is
local or a normal lookup for external requests. Conveniently, the
getaddrinfo interface also has a declarative set of hints which
indicate the application’s willingness to deviate from standard pro-
tocols such as TCP or UDP, and so give a clear indication to FABLE
about how much freedom it has to specialise the underlying trans-
port stream.

Supporting the older gethostbyname resolution is trickier,
since it returns a list of names, and the application must construct
a suitable sockaddr structure with a destination port filled in. This
can be still be handled in mostly the same way as getaddrinfo,
except that instead of returning an AF FABLE address, a localhost
“cookie” IPv4 sockaddr is generated that encodes the name han-
dle. The decision about whether to use a FABLE connection is then
taken at connection time, by using the fake IPv4 address and port
to lookup the partial handle from the name service, and determine
if the target address is another FABLE end-point or a connection to
the outside world.

4. Discussion
The FABLE design augments the operating system with a service
that tracks I/O flows for their lifetime, and the facility to reconfigure
them. We consider some of the implications of this now.

4.1 Upgrading Transport Protocols
I/O contention, in both the network and disk interfaces, is a serious
problem in many modern environments, especially those making
heavy use of virtualization, and significant research effort has gone
into handling these issues [1, 10]. The FABLE name service, with
its global knowledge of communication patterns, is well-placed to
manage these issues. At the most basic level, this could be as simple
as selecting a communication channel which is appropriate to the
communication environment. This might, for instance, mean en-
abling multi-path TCP on some channels, and deciding which paths
to use. These decisions would be constantly re-evaluated by FABLE
as the communication environment changes, and, where appropri-

The Case for Reconfigurable I/O Channels 7 2011/12/19



ate, channels would be reconfigured; the APIs presented here al-
low this to be performed transparently to the overlying application.
More interestingly, FABLE can integrate with computation sched-
ulers, at both host and cluster level, to schedule communicating
tasks in a way which minimises contention. Rather than simply re-
acting to or tolerating contention, FABLE could in many cases pre-
vent it from even occurring. This should allow more efficient use
of existing computation resources.

4.2 Transparent Security
Live migration [3] allows VMs to be moved from one host to an-
other, potentially over the wide area network. The VM’s network
connections generally migrate with it, but this can lead to security
issues if a connection that was previously local to a trusted network
or physical host is redirected over an untrusted network such as
the Internet. The usual approach to this problem is to require that
any connection carrying sensitive information which might be so
migrated be always encrypted. Unfortunately, cryptographic pro-
tections are computationally expensive, and this is inefficient when
the communicating VMs happen to be connected via a trusted net-
work (or are even located on the same physical host).

The FABLE name service provides a natural solution: reconfig-
urable channels (§3.1.4) allow cryptographic protections to be ne-
gotiated, upgraded, and downgraded where appropriate, completely
transparently to the application, and so ensure that efficient un-
encrypted communication is used precisely where it is safe to do
so. The user-space name daemon is also an appropriate place to
store public keys for end-points and a policy describing which net-
works are considered trusted, and upgrade to efficient new secure
transports such as TCPcrypt [2]. FABLE could also support more
exotic threat models, by, for instance, enabling cryptographic pro-
tection for host-internal shared-memory communication when the
host chassis is open.

4.3 Exokernels for the Virtualised Masses
Exokernels [5] eliminated multiplexing by exposing I/O layers as
libraries, and structuring the application to directly link against
them. The problem with deploying exokernels more widely has
been two-fold: the difficulty of implementing device drivers, and
the lack of a coordination layer to manage such vertical application
stacks.

Recent exokernels such as Mirage [8] run directly under Xen to
solve the device driver problem. However, they are still awkward to
configure and use, since running a VM is far more inefficient than
simply forking a process. We envision that FABLE will be useful to
not only communicate efficiently between processes and kernels,
but also to set up device channels to virtual machines. This not
only eliminates much redundant code between Linux and Xen, but
also provides the opportunity to optimise I/O channels more deeply
as nested virtualisation takes off.

5. Conclusion
In this paper, we firstly performed some quantitative measurements
of the behaviour of various transport mechanisms, when running on
virtualised and multi-core hardware. The performance properties
of modern interprocess communication facilities are complex and
counterintuitive, and can change dynamically while programs are
running. This makes it difficult to design systems which combine
both high performance and flexibility.

Secondly, we discussed the early design for FABLE, a system
service that dramatically simplifies these issues, allowing develop-
ers to straightforwardly produce software which adapts to its com-
munication environment, ensuring efficient communication with-
out sacrificing generality. By providing a single point of global

knowledge of I/O flows, FABLE also allows other components of
an interconnected system to optimise their own performance, by,
for instance, employing a scheduling policy which interacts well
with the actual IO activity observed.

We believe that extending operating systems with a first-class
I/O flow scheduler may be key to unlocking the potential of exciting
new technologies such as multipath communication, ubiquitous
transport encryption, and exokernel-like application specialisation.

Acknowledgments
We would like to thank David Scott from Citrix Systems R&D for
useful discussions and hardware, and Balraj Singh, Ben Laurie and
Jon Crowcroft for their comments.

References
[1] ALIZADEH, M., GREENBERG, A., MALTZ, D. A., PADHYE, J.,

PATEL, P., PRABHAKAR, B., SENGUPTA, S., AND SRIDHARAN, M.
Data Center TCP (DCTCP). In Proceedings of the ACM SIGCOMM
2010 Conference (2010), SIGCOMM ’10, pp. 63–74.

[2] BITTAU, A., HAMBURG, M., HANDLEY, M., MAZIÈRES, D., AND
BONEH, D. The case for ubiquitous transport-level encryption. In
Proceedings of the 19th USENIX conference on Security (Berke-
ley, CA, USA, 2010), USENIX Security’10, USENIX Association,
pp. 26–26.

[3] CLARK, C., FRASER, K., HAND, S., HANSEN, J. G., JUL, E.,
LIMPACH, C., PRATT, I., AND WARFIELD, A. Live migration of
virtual machines. In Proceedings of the 2nd Symposium of Networked
Systems Design and Implementation (May 2005).

[4] CONWAY, P., KALYANASUNDHARAM, N., DONLEY, G., LEPAK, K.,
AND HUGHES, B. Cache Hierarchy and Memory Subsystem of the
AMD Opteron Processor. IEEE Micro 30, 2 (Mar. 2010), 16–29.

[5] GANGER, G. R., ENGLER, D. R., KAASHOEK, M. F., BRICEÑO,
H. M., HUNT, R., AND PINCKNEY, T. Fast and flexible application-
level networking on exokernel systems. ACM Trans. Comput. Syst. 20
(February 2002), 49–83.

[6] HUNT, P., KONAR, M., JUNQUEIRA, F. P., AND REED, B.
Zookeeper: wait-free coordination for internet-scale systems. In Pro-
ceedings of the 2010 USENIX annual technical conference (Berkeley,
CA, USA, 2010), USENIX ATC’10, USENIX Association.

[7] KALYVIANAKI, E., CHARALAMBOUS, T., AND HAND, S. Resource
provisioning for multi-tier virtualized server applications. Computer
Measurement Group Journal (CMG Journal ’10) 126 (2010), 6–17.

[8] MADHAVAPEDDY, A., MORTIER, R., SOHAN, R., GAZAGNAIRE,
T., HAND, S., DEEGAN, T., MCAULEY, D., AND CROWCROFT, J.
Turning down the LAMP: Software specialisation for the cloud. In
Proceedings of the 2nd USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud) (Boston, MA, USA, June 2010), USENIX.

[9] MOSBERGER, D., AND PETERSON, L. L. Making paths explicit in
the scout operating system. In Proceedings of the second USENIX
symposium on Operating systems design and implementation (New
York, NY, USA, 1996), OSDI ’96, ACM, pp. 153–167.

[10] RAICIU, C., BARRE, S., PLUNTKE, C., GREENHALGH, A., WIS-
CHIK, D., AND HANDLEY, M. Improving datacenter performance
and robustness with multipath TCP. In Proceedings of the ACM SIG-
COMM 2011 Conference (2011), SIGCOMM ’11, pp. 266–277.

[11] WARFIELD, A., FRASER, K., HAND, S., AND DEEGAN, T. Facil-
itating the development of soft devices. In Proceedings of the 2005
USENIX Annual Technical Conference (General Track) (April 2005),
USENIX, pp. 379–382.

The Case for Reconfigurable I/O Channels 8 2011/12/19


