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Abstract
We are now seeing increased hardware support for improving
the security and performance of privilege separation and com-
partmentalization techniques. Today, developers can benefit from
multiple compartmentalization mechanisms such as process-based
sandboxes, trusted execution environments (TEEs)/enclaves, and
even intra-address space compartments (i.e., intra-process or intra-
enclave). We dub such a computing model a “hetero-compartment”
environment and observe that existing system stacks still assume
single-compartment models (i.e., user space processes), leading to
limitations in using, integrating, and monitoring heterogeneous
compartments from a security and performance perspective.

We introduceDeluminator, a set of OS abstractions and a userspace
framework to enable extensible and fine-grained information flow
tracking in hetero-compartment environments. Deluminator al-
lows developers to securely use and combine compartments, define
security policies over shared system resources, and audit policy
violations and perform digital forensics across heterogeneous com-
partments. We implemented Deluminator on Linux-based ARM and
x86-64 platforms, which supports diverse compartment types rang-
ing from processes, SGX enclaves, TrustZone Trusted Apps (TAs),
and intra-address space compartments. Our evaluation shows that
our kernel and hardware-assisted approach results in a reasonable
overhead (on average 7-29%) that makes it suitable for real-world
applications.

CCS Concepts
• Security and privacy→ Information flow control;Operating
systems security; Trusted computing.
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1 Introduction

Modern applications face diverse attack vectors from threats within
and across dependencies and system abstractions. Compartmental-
ization is a powerful protection technique that splits an application
into isolated components (or trust domains), each with well-defined
communication channels [4, 13, 46, 65, 103]. Many compartmen-
talization mechanisms have emerged offering different levels of
isolation and enforcement for different usecases, such as isolating
unsafe libraries, subprocesses, or code blocks [14, 36, 48, 55, 64, 69,
83, 98, 102]. These mechanisms show that compartmentalization
significantly reduces the attack surface and impact of unknown vul-
nerabilities, and is often the best defense against the ever growing
and complex security threats in modern computing environments.

That is why to enhance the security and performance of com-
partmentalization techniques, many recent efforts have focused
on providing hardware-assisted isolation and privilege separation
mechanisms that can (i) reduce TCB, (ii) provide stronger or finer-
grained isolation, or (iii) achieve better performance than software-
only approaches [9]. Such progress has led to significant security
and performance improvements and more practical compartmen-
talization techniques [4, 6, 13, 24, 33, 38, 39, 46, 53, 65, 93, 97, 103].
Various forms of Trusted Execution Environments (TEEs)/enclaves
have been introduced on almost all modern hardware architectures
to protect security-critical coded and data against privileged system
software such as the host OS or hypervisor [2, 5, 28, 38, 71, 78, 86].

This allows application developers to simultaneously use com-
partments with different characteristics, such as traditional process-
based sandboxes [13], TEE/enclave-assisted compartments [2, 5,
28, 38], and intra-address space sandboxing (intra-process [18, 57,
98, 104] or within an enclave [62, 73, 87]). Each compartment type
has a different threat model, privileges, and isolation and shar-
ing mechanisms. We dub this a hetero-compartment environment
which runs multiple compartment types simultaneously; each with
a different threat model, privileges, and isolation and sharing mech-
anism. Hetero-compartments allow developers to combine different
compartmentalization mechanisms and design secure software that
meets application-specific performance, efficiency, or compatibility
requirements. However, they also introduce challenges in practice
since there are many vulnerabilities within and across these hetero-
geneous isolation boundaries that are difficult to detect, debug, and
prevent. It is especially hard to reason about whole-system security
with existing tools and multiple heterogeneous compartments.

Consider existing TEE/enclave-assisted partitioning frameworks
which enable developers to refactor and port code to isolated com-
partments. Refactoring code without rigorous security analysis
can introduce new attack vectors [45, 55, 58, 99], overly privileged
compartments with potential vulnerabilities, and a high cost in
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reengineering [7, 82, 96]. Previous studies have demonstrated at-
tacks on enclave/TEE applications due to vulnerabilities within an
overprivileged enclave [45, 91, 99], insecure resource sharing be-
tween enclaves and processes (just two distinct compartments) [45,
58, 99, 106], or compartment interface vulnerabilities [55]. It is ex-
tremely challenging for developers to securely migrate a compart-
mentalized application to another platform; e.g. from SGX enclaves
to TrustZone TAs. Despite surface similarities, TEEs/enclaves are
highly architecture dependent and TEEs like SGX or TrustZone
have different interfaces and confidentiality, integrity, and fresh-
ness guarantees (they do not usually guarantee availability). Hence
migrating enclave-assisted applications will likely widen the attack
surface [58], especially without a security analysis tool to enforce
the same security policies across heterogeneous compartments.

A key blocker for developers to secure hetero-compartment envi-
ronments and leverage hardware-assisted compartmentalization is
the lack of tools to reason about security threats within and across
these compartments. We present Deluminator– a unified set of OS
abstractions designed for a hetero-compartment computing model
that tracks sensitive data and control flows across arbitrary com-
partments. Deluminator offers an extensible userspace framework
to trace hetero-compartment’s data and system objects (address
space, threads, files, IPC/RPC, etc.) based on desired confidentiality
and integrity policies across different trust boundaries. The goal
is to provide developers with building blocks to audit and anal-
yse applications in hetero-compartment environments. Although
Deluminator can be useful in mitigating different classes of at-
tacks, it is not intended as an isolation or enforcement mechanism
(which requires a stronger threat model to fit the TEE/enclave’s
threat model [92]). It instead finds and analyzes information flow
violations across compartments. As an OS-assisted framework, De-
luminator does not force developers to use a specific programming
language and can thereforemigrate existing applications. To demon-
strate its extensibility, we use Deluminator on three compartment
types: process-based sandboxes, SGX enclaves, and TrustZone.

Achieving our goal requires overcoming several challenges. Het-
erogenous compartments have different granularity and security
models, and so preventing attacks within and across them requires
a principled specification of mutually distrustful security policies.
Developers need to efficiently trace dataflows on fine-grained ob-
jects between compartments located in the same or separate address
spaces, since some compartments are managed by a different kernel
than the host OS (such as in TrustZone). The framework needs to be
easy to integrate, deploy, and extend to more compartment types.

Currently developers need to manually investigate potential
security threats and combine fuzzing or analysis tools – an error-
prone and unscalable approach. We therefore contribute Delumina-
tor as a set of OS abstractions and security primitives for tracking
sensitive data and control flows in hetero-compartment environ-
ments. Deluminator provides the first extensible and fine-grained
tracing capability for hetero-compartment environments, and sup-
ports an essential set of system objects (including address spaces
and threads) and a POSIX-friendly API. We demonstrate an effi-
cient implementation on commodity TrustZone- and SGX-enabled
hardware, with reasonable modifications to the Linux kernel and
existing TEE/enclave stacks, and conduct a thorough security and
performance evaluation.

2 Motivation & Assumptions
We next discuss the attack vectors in hetero-compartment envi-
ronments that Deluminator can detect, examine, and audit (§2.1),
followed by our threat model (§2.2) and assumptions (§2.3).

2.1 Attacks on Compartmentalized Software
Unsafe sharing and interactions.Most compartmentalized appli-
cations follow a one-way trust model in which some compartments
are fully trusted, but still require the sharing of data and resources
with untrusted compartments or the untrusted host. An enclave-
assisted application may use untrusted memory to share results
across multiple enclaves, or use untrusted storage to persist inter-
mediate results, or an untrusted network/IPC to for IO. There are a
wide range of compartment interface vulnerabilities [45, 55] that
can be exploited to extract secrets, take control of compartments,
or attack the host/TEE [12, 54, 58]. For example, the Boomerang
vulnerability [58] is a confused deputy attack on TEE-assisted ap-
plications whereby a userspace compartment can leverage its TA
via untrusted shared memory to manipulate memory regions that
it does not own, including from the host Linux kernel.

The attack surface is harder to define in hetero-compartment
environments, since each compartment type can have its own secu-
rity model and view of system resources – a much bigger semantic
difference between compartments. Figure 1 illustrates six compart-
ment types (i.e., user space process, SGX enclave, TrustZone TA,
in-process, in-enclave, and in-TA) and shows how vulnerabilities
can be introduced and propagated in the cross-compartment bound-
aries within different or the same address spaces. Detecting and
analysing such a large attack surface is one of the primary obstacles
to securing the ever-growing hetero-compartment environment.
Combining per-attack security patches only addresses a few attack
vectors and is not a principled approach to dealing with future
security threats and unknown vulnerabilities.

Malicious TA/enclave A compromised or malicious enclave
can collect sensitive data [59, 84] and leak them using files, net-
work sockets, or pipes. Attackers can launch horizontal privilege
escalation (HPE) attacks [91] to compromise another application
process via a shared misbehaving TA/enclave (e.g., a compromised
third-party in-enclave cryptography service). When the host OS/-
TEE framework supports Deluminator, developers can investigate
and monitor these attack vectors during development or at runtime,
something that is not possible with existing tools. However, side
channel attacks [85, 107] are out of scope (§2.2).

Intra-address space threats Intra-address space threats are an
increasingly exploited attack vector in compartmentalized appli-
cations. Malicious third-party libraries in the same process (e.g.,
CVE-2021-3711, CVE-2019-15295, CVE-2016-6309) often lead to in-
formation leakage. New attacks have been shown recently within
an enclave address space, due to large in-enclave TCBs or within
process-to-enclave shared memory [34, 62, 97]. Despite diverse
in-enclave isolation techniques such as language runtimes (e.g.,
Civet Java extension [97]) or via Memory Protection Keys (MPK)-
based sandboxing [62], fully exploring cross-compartment attacks
requires enabling information flow tracking within same-address-
space objects. In-enclave isolation is not always possible due to the
platform, language, or performance limitations. Conffuzz [55] and
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Figure 1: Fine-grained and extensible information flow tracking within heterogeneous compartments by using Deluminator.

SGXRacer [16] enable fuzzing cross-compartment vulnerabilities
with a focus on memory and threading issues, which is aligned
with our goal. However, we argue it is time for commodity OSs
to provide a principled approach for also discovering non-trivial
policy and logic issues in hetero-compartment environments, and
not just focus on cross-compartment API sensitization. Such OS
abstractions can be used by fuzzing techniques as well.

Concurrency threatsAttackers can also launchmalicious threads
from inside the host application to exploit synchronisation vulner-
abilities such as TOCTTOU [105, 106] or concurrency attacks [45]
on shared resources between compartments. This greatly limits
the secure compartmentalisation within a multithreaded applica-
tion. Deluminator allows labeling threads and per-thread resources
which facilitates tracking and monitoring such attacks.

2.2 Threat Model

We model system resources (memory, threads, RPCs) as objects to
define a unified view of resources across different compartment
boundaries. We assume that each compartment𝐶 contains a private
set of execution threads 𝑇𝐶 and other arbitrary system objects 𝑂𝐶

such that 𝐶 = {𝑇𝐶 ∪𝑂𝐶 }. Each compartment has its own security
policy, an enforcement mechanism, and interfaces to the untrusted
world or other compartments. We assume that the compartmen-
talization framework has its own TCB and threat model and that
compartmentalization frameworks are responsible for enforcing the
security model and the isolation over compartment resources, as
well as cross-compartment sharing or data exchange mechanisms.

Since Deluminator is not an enforcement mechanism, its in-
formation flow tracking mechanism does not interfere with the
execution and isolation of compartments. It allows developers to
define mutually distrustful policies to track but does not enforce
those mutually distrustful policies. Deluminator considers commod-
ity systems running software from numerous independent vendors.
Deluminator also requires modifications to commodity systems
stack like the Linux kernel which is outside the TCB for TEE/en-
clave stacks, as well as modifications to TEE frameworks such as
the TrustZone kernel which slightly increases their TCB size. In fu-
ture re-writing Deluminator systems components in safe languages

like Rust would be ideal, particularly considering the increasing
progress in Rust-based Linux kernel extensions [41].

Deluminator assumes application developers correctly specify
their information flow policies through the Deluminator userspace
library and API. Similar to most security analysis tools, Deluminator
works best when application developers have basic knowledge
of potential attack vectors and security-sensitive parts of their
application. Additionally, Deluminator is not designed to target side
channel attacks [85, 107] which is more in the scope of hardware-
based information flow tracking [27].

2.3 System Assumptions
A key goal of Deluminator is to support commodity hardware, OSes
and existing compartmentalization frameworks. The Deluminator
implementation depends on the Linux kernel (versions later than
4.19) for non-TEE-based compartmentalization, and on the Trust-
Zone OPTEE-OS (on ARM Cortex-A) or SGX SDK (on x86-64) for
TEE-assisted compartmentalization. Supporting Deluminator on
other architectures such as RISC-V requires adding support to a
RISC-V TEE framework such as Keystone [53]. Deluminator system
components are written in C, since we extended existing system
software. However, developers can write their own userspace tools
or language extensions in any programming language as it does not
assume any specific language dependency. Deluminator is compati-
ble with existing Linux kernel security and auditing subsystems,
which makes it useful with sandboxing tools such as seccomp, Land-
Lock [79] or other LSM-based compartmentalization frameworks.

The current implementation introduces new system calls to the
Linux kernel (§3) to make prototyping easier. For eventual up-
streaming, most of these syscalls can be merged with existing ones;
e.g. d_mmap/d_munmap, d_clone, d_wait and d_execv can all be
merged with their corresponding syscalls. Deluminator labelling
options lie open, socket, and pipe already extend existing syscalls.
The Linux kernel auditing subsystem 1 design can also Delumina-
tor’s remaining syscalls further; for instance all of d_add, d_create,
d_remove and d_cleanup can be merged with the userspace kernel
tools similarly to the kauditd approach.

1https://github.com/linux-audit
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3 Deluminator Overview
Deluminator contains a tracing system and policy management
module running inside the OS kernel or TEE/enclave system stack,
depending on the target execution platform (Figure 1). It also in-
cludes a userspace library (LibDeluminator) that exposes the De-
luminator API via new syscalls to developers and analyzers for
specifying tracing policies on compartments and system objects.
Deluminator policy management captures userspace specifications
from LibDeluminator and converts them to associated policies based
on its underlying tracing model. The Deluminator tracing system
(DTS) is designed to efficiently trace the execution of a target com-
partment without any manual interaction. The tracing searches
for policy violations and unsafe information flows on a rich set
of system objects including tagged address spaces, threads, files,
sockets, pipes, and IPC/RPCs. The tracing mechanism is extensible
and customizable to add or remove different objects, and is cus-
tomized to support tracing within TEE kernel objects alongside the
Linux kernel (Figure 1.c). We next explain each of the Deluminator
components in detail.

3.1 Tracing & Labeling Model
To systematically model the attacks in our threat model (§2.2), we
need a tracing mechanism that simultaneously solves two issues in
existing solutions: coarse granularity and inextensibility. The Delu-
minator model supports tracing both intra- and inter-address-space
compartments by proposing a customizable tracing precision over
fine-grained system objects. It is designed for hetero-compartment
environments, which requires supporting mutually distrustful poli-
cies and security models between the compartments.

We model each system resource (threads, address spaces, RPCs,
files, pipes, and sockets) as an object to create a unified view of
resources across trust boundaries. We selected these objects after
analyzing real-world applications (§5.3), existing vulnerabilities,
and their interfaces to find the most frequently used objects. We
then map each compartment as a set of these system objects and
at least one execution thread object. The Deluminator API enables
developers and analyzers to define per-compartment policies over
objects, covering integrity, confidentiality, and sharing. Delumina-
tor then traces and reports any violations given such a policy.

Traditionally, many variants of information flow control (IFC)
are used to model or monitor vulnerabilities and enforce system
security. At their core, IFC models are a set of simple rules over
selective entities or objects. IFC systems check dataflows based
on a partial ordering of security contexts (usually a lattice) that

defines where data can flow legitimately. This is enforced by assign-
ing unique tags and labels (a set of tags) to the monitored entities.
In such systems each security principal (i.e., execution threads in
our system) can define per-object security policies by assigning
secrecy and integrity labels. All that is needed to define a security
policy in this model is to describe the desired information flows via
labels. Under the simplest model (Figure 2), object 𝐵 can receive
information from 𝐴 since 𝐴 ⊆ 𝐵, while 𝐵 (and also 𝐶, 𝐷, 𝐸) cannot
transmit to or access 𝐴 since 𝐵 ⊈ 𝐴. Similar rules are applied for
integrity flows. Information flow policies can be controlled either
explicitly or implicitly. With explicit flows, the security principal
makes data flow from one level to another by requesting and then
assigning labels. In implicit flows, the labelling changes happen in
the background as the data flows through the system. For instance,
when an untainted process accesses a tainted file the process be-
comes tainted automatically. Implicit labeling can thus silently lead
to label state explosions.

There are diverse IFC and labeling models depending on the
programming model, enforcement granularity, needed policies, per-
formance, and scalability requirements. The implementation of
complex security policies in hetero-compartment environments
via IFC in a practical and expressive way is challenging. A well-
known example is dynamic information flow tracking (DIFT), a
technique that analyzes the information flowing within the execu-
tion of a program [20, 26]. Since we target kernel system objects
and require tracing mutually-distrustful compartment policies, we
choose a tracing model based on core decentralized IFC (DIFC) con-
cepts [66]. This model is known to be well suited for monitoring
large systems and complicated dynamic mutually-distrustful poli-
cies [19, 42, 51, 67, 68, 77], and is efficient if provided with the right
support from the OS kernel [109]. Previous work has demonstrated
integration of DIFC into the Linux kernel [77] and Android [68].2

There are several labeling models to implement DIFC systems.
DC (Disjunction Category) labels [90] – inspired by capability-
based systems – provides a simpler and more expressive labeling
compared to the earlier Myers and Liskov decentralized label model
(DLM) [67]. This is suitable for userspace tools or languages – as
used in Haskell programming language[101] and Hails [29] – to
enable DIFC for monitoring privacy issues in web applications. The
Deluminator userspace API hides details of its labeling model and
so can support tracing for any labeling model that supports DIFC.
In our implementation, we followed the Flume [51] labeling model
due to its simplicity for OS abstractions, but there is no barrier with
replacing it with DC labels.

In Deluminator, every principal thread can enable or restrict
a flow by adding or removing tags from labels if they have the
capability—a right to perform an operation—to do so. It defines
two capabilities per tag, 𝑡+ and 𝑡− , that enable adding or removing
𝑡 to a label respectively. Capabilities are stored in capability list
of each principal 𝐶 = 𝐶+ ∪ 𝐶− (𝑡+ ∈ 𝐶+ and 𝑡− ∈ 𝐶−). So if
𝐶𝑝 = {𝑡+}, principal 𝑝 has the capability to add 𝑡 to its secrecy label
for accessing or reading the object that is tagged with 𝑡 , but cannot
remove it from its label since 𝑡− ∉ 𝐶𝑝 . A principal that owns both
capabilities for 𝑡 and can completely control how 𝑡 appears in its
labels. The set 𝐷𝑝 = {𝑡 |𝑡+ ∈ 𝐶𝑝 ∧ 𝑡− ∈ 𝐶𝑝 } represents all tags for

2Details and proofs for decentralized-IFCmodels are in previouswork [19, 42, 51, 67, 77]
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which 𝑝 has both 𝑡+ and 𝑡− capabilities (full ownership). Adding a
tag to a secrecy label 𝑆 and removing a tag from an integrity label 𝐼
are safe operations since the principal only tightens the constraints.
However, declassification (removing a tag from a secrecy label)
and endorsement (adding a tag to an integrity label) are unsafe
operations. For example, when 𝑡 ∈ 𝑆𝑝 ∧ 𝑡− ∉ 𝐶𝑝 , declassification
of tagged data with 𝑡 is not allowed, and so it must not be exported
to untrusted sources.

3.2 LibDeluminator
To detect and analyze unsafe dataflows, Deluminator provides
new APIs for defining per-compartment security policies. Each
policy describes a compartment—adding the objects that need to
be monitored—as well as assigning per-object secrecy/integrity
labels. The policy can be defined per thread of execution inside a
compartment, which can be userspace processes, SGX enclaves, or
TrustZone TAs, without dealing with the details of the underlying
tracing system and DIFC concepts (Table 1). As with language-
based tracing systems which require code annotations, Deluminator
requires minimal code modifications as the framework is program-
ming language agnostic. This enables extra annotations to existing
applications and not via modifications to third-party libraries.

Our userspace library enables seamless tracing of compartment
objects with few code changes. After switching to the tracing mode
(by calling d_enable), any execution thread inside a compartment
can assign/remove secrecy or integrity policies over single or multi-
ple objects (by calling d_add, d_remove or via a config file), which
leads to automatically initializing and labeling the objects. LibDelu-
minator is a standalone library which we ported to TrustZone TAs
and SGX enclaves for enabling cross-compartment tracing. Develop-
ers only need to specify if the tracing is looking for confidentiality
or integrity violations by passing the secrecy label SLABEL or the
integrity label ILABEL flags to the API.

For example, consider a TOCTOU attack, in which there is a
window of opportunity between when a program checks a file (e.g.,
fname in the following listing) and when it operates on that file. In
that window, an attacker can launch a thread to replace fnamewith,
for example, a symlink to /etc/passwd, and the operation meant
to perform on fname happens to an important system file instead.
But when the owner compartment creates a tagged fname using
LibDeluminator, no other thread can do any operations on fname
without being detected by Deluminator. So Deluminator detects it
when the attacker thread accesses fname or replaces it via symlink.
The following listing shows how the compartment thread can add
fname to its secrecy label (L4) to enable monitoring over it.

1 d_enable ();// enable tracing in this compartment
2 //add fname to start tracing secrecy violations
3 //use ILABEL for integrity violations
4 open(fname ,O_CREAT|O_SLABEL); // create a labeled file
5 // or use d_add(fname ,FILE ,SLABEL) to label an existing one
6 if(! access(fname ,W_OK)) {
7 //When an attacker thread launches TOCTOU e.g., by using

symlink to redirect fname , Deluminator can detect it
8 f = fopen(fname ,"w+");
9 operate(f);
10 ...}
11 else {...}

Listing 1: Simple use of Deluminator for detecting symlink-
based TOCTOU vulnerability on a file.

API Description
New system calls
d_enable()->𝑐 enable tracing for current 𝑐
d_add(obj, type, policy)->ret start tracing object from 𝑐

d_remove(obj, type, policy)->ret stop tracing obj from 𝑐

d_cleanup(𝑐)->ret cleanup the tracing
d_create(hw_mode)> mobj create a memory object
d_clone(&fn, policy, ...)->tid create a new labeled thread
d_execv(mobj, bin...) trace binary execution
d_wait(&policy) wait for labeled threads
Address space tracing calls
d_malloc(mobj, size) allocation from mobj
d_free(mobj, size) deallocation from mobj
d_mprotect(mobj, ...) change permissions of mobj
d_mmap/munmap(mobj, ...) change layout of mobj
memcpy, memcmp, memset, etc other memory operations
Modified system calls
open(*pathname, SLABEL|ILABEL,...) create labeled file
socket(domain, SLABEL|ILABEL,...) create labeled socket
pipe(pipefd, SLABEL|ILABEL,...) create labeled pipe

Table 1: Simplified LibDeluminator interface, where 𝑐 repre-
sents a compartment.

Address space objects. To analyze memory vulnerabilities, De-
luminator supports tracing virtual memory objects in the form of
tagged blocks of contiguous address space objects. In Section 4.2,
we describe our modifications to the host OS and TEE kernel/run-
time for efficiently tagging virtual memory objects and tracing
information flows over them. Our API allows developers to label
a memory object for tracing any unauthorized access or changes
in its layout or permissions to another thread. For instance, in the
code below, both the host process and enclave compartments can
label their sensitive memory objects to monitor heap leakage when
interacting with each other (L29 and L7). The enclave thread ex-
plicitly assigns policy (e.g., RW only for the enclave thread) over
its memory objects. LibDeluminator also provides malloc style
memory management API over the labeled memory objects.
1 // -------------Enclave compartment side --------------
2 void ecall_heap_leak(struct eData* data){
3 //.... initialization
4 d_enable ();// enable tracing
5 int mobj=d_create(MMU_MODE , MEMDOM_READ|MEMDOM_WRITE);
6 // change malloc -> d_malloc
7 data ->msg = (char*) d_malloc(mobj ,strlen(temp));
8 d_memcpy(mobj , data ->msg , temp , strlen(temp));
9 data ->len = strlen(temp);
10 data ->left = strlen(temp);
11 while(data ->left > 0){
12 buf = data ->msg + data ->len - data ->left;
13 ocall_write_out (&ret , buf , data ->left);
14 if(ret <= 0) return ;}}
15 // -------------App/process compartment side --------------
16 void ocall_write_out(char *buf , int left)
17 { printf("%c\n", buf [0]);
18 printf("%d\n", left -1);}
19 int main()
20 {//init enclave .....//
21 d_enable ();// enable tracing
22 int a_mobj=d_create(MMU_MODE ,MEMDOM_READ|MEMDOM_WRITE);
23 struct eData* data = (struct eData*) d_malloc(a_mobj ,sizeof(

struct eData));
24 ret = ecall_heap_leak(eid , data)
25 // cleanup enclave ......//}

Listing 2: Pseudocode of using Deluminator to detect enclave
heap leakage
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3.3 Policy Management & Tracing System
(PMTS)

The PMTS implements the Deluminator tracing model—including
all the information flow tracking rules—and enforces the userspace
specification from LibDeluminator into the required system objects.
Although the OS kernel is the best place to check dataflows within
fine-grained system objects efficiently, it is also a huge codebase that
exposes over 300 syscalls. Tracing and monitoring security policies
over arbitrary objects within such a complex stack is challenging.

A naive solution leads to label explosion, excessive modification
to the kernel, and huge performance overhead. This is difficult
due to Deluminator supporting intra-address space policies that
existing OSs typically do not support abstractions for. To resolve
this, Deluminator PMTS introduces a unified virtual address space-
based object extension for the Linux kernel and TrustZone OS over
their virtual memory abstraction, as we describe later in Section 4.2.

4 Implementation
We next explain the details of the Deluminator implementation,
beginning with a technical background (§4.1) and then a description
of the changes to the Linux kernel (§4.2), OPTEE-OS (§4.3), and the
SGX system stack (§4.4).

4.1 Technical Background
4.1.1 ARM VMSA & Security Extensions The ARM virtual memory
system architecture (VMSA) is tightly integrated with the security
extensions, the multiprocessing extensions, the Large Physical Ad-
dress Extension (LPAE), and the virtualization extensions. VMSA
implements MMUs that control address translation, access permis-
sions, and memory attribute determination and checking for mem-
ory accesses. The extended VMSAv7/v8 provides multiple stages
of memory system control for operation in both the secure state
(e.g. EL1&0 stage 1 MMU) and in the non-secure state (e.g., EL2
stage 1 MMU, EL1&0 stage 1 MMU, and EL1&0 stage 2 MMU).
VMSAv8.5 adds more MMUs for additional isolation in the secure
world. Each MMU uses a set of address translations and associated
memory properties held in TLBs. If an implementation does not
include the security extensions, it has only a single security state,
with a single MMU with controls equivalent to the secure state
MMU controls. A similar argument holds for when an implementa-
tion does not include the virtualization extensions. In ARM Cortex
processors, the security extensions or TrustZone are implemented
by splitting each physical core into two virtual CPUs. Depending
on the value of the Non-Secure (NS) bit, hardware resources (e.g.
DRAM or peripherals) may run either in the secure world (SW) or
the normal world (NW), where each run a separate software stack.
TrustZone’s one-way security model isolates SW by restricting NW
to only its own resources; however, code running in the SW can
access memory and I/O assigned for both worlds.

Each world has its own user-mode (EL0/SEL0) and kernel-mode
(EL1/SEL1). The control transition between the two worlds happens
through a Secure Monitor Call (SMC) instruction that invokes the
secure monitor code, which runs at the highest privilege level (EL3).
Although the TZ APIs are not uniform across different devices, the
popular implementations (e.g., OPTEE, Kinibi, Teegris or QSEE)
follow the GlobalPlatform [30] TEE specification. It requires TAs

(trusted applications) to run in the secure world userspace SEL0
and communicate with TZ OS kernel, which runs in SEL1, via
SVC supervisor calls (like processes). There are also privileged TAs
like Trusted Drivers (TDs) in Kinibi [11] or Pseudo TA (PTAs) in
OPTEE [3, 95] that have access to a richer set of operations and
SVCs to map physical memory, setting peripherals, manage threads,
and making SMC calls directly. OPTEE runs these privileged TAs
directly as a TZ kernel driver in EL1. RPC requests between the two
worlds consist of the TA identifier (a UUID), a command ID that
dictates which function to run, and a shared buffer for arguments
or data transfer. The TEE kernel driver in NW allocates shared
memory from the host application heap and only checks buffer
sizes and direction flags as a basic security mechanism. Inadequate
authorization allows unsafe communication between any set of
applications and TAs (§2).

4.1.2 Intel SGX An SGX enclave is part of the host userspace appli-
cation, sharing the same virtual address space. The enclave runs in
encrypted and integrity-protected memory after loading, although
they can access all of the host application memory. Only the enclave
memory is trusted whereas all other memory regions are untrusted.
Intel SGX encompasses two collections of instruction extensions
for enabling userspace enclaves, referred to as SGX1 and SGX2. The
SGX2 extensions allow additional flexibility in runtime manage-
ment of enclave resources (e.g. adding memory to an enclave after
the enclave is built and running) and thread execution within an
enclave. The enclave instructions available with SGX are organized
as leaf functions under three instruction mnemonics: ENCLS (ring
0), ENCLU (ring 3), and ENCLV (VT root mode). Each leaf function
uses EAX to specify the leaf function index and may require ad-
ditional implicit input registers as parameters. Enclave memory
management is divided into two parts: address space allocation and
memory commitment. Address space allocation is the specification
of the range of linear addresses that the enclave may use, called
the ELRANGE where no actual resources are committed to this re-
gion. Memory commitment is the assignment of actual memory
resources (as pages) within the allocated address space. During
enclave creation, code and data are loaded from a non-enclave
memory. Enclave code, data, and metadata reside in a protected
region of physical memory called the enclave page cache (EPC).
The EPC is divided into 4KB chunks called EPC pages that can con-
tain either an enclave page or an enclave control structure, SECS.
The host system software map the enclave virtual address space
to a valid EPC page and does not allow dynamic extensibility of
an enclave memory (will be supported in SGX2). Enclave memory
is protected by two main mechanisms, CPU access controls and
a dedicated memory encryption engine (MEE). CPU memory pro-
tection mechanisms physically block access to Processor Reserved
Memory (PRM) and EPC from all unauthorized access. MEE is a
hardware unit that encrypts and integrity protects EPC cache lines
written to and fetched from the main memory (DRAM).

SGX adds several instructions extensions for enclave handling.
Most of these instructions can only be accessed in privileged mode.
The host OS declare protected memory for the enclave (ECREATE),
allocates and load secrets into the enclave memory (EADD), initial-
ize an enclave and measure its memory (EEXTEND, EINIT), and
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cleanup enclave pages after the application have completed (ERE-
MOVE). Userspace applications can enter (EENTER), exit (EEXIT),
or resume (ERESUME) into their enclaves. An enclave may also
exit asynchronously due to interrupts or exceptions (AEX). In the
case of asynchronous exit, the enclave secrets will be protected. An
enclave can also request to get a signed measurement (EGETKEY,
EREPORT) for remote or local attestation. The Intel SGX SDK [23]
trusted runtime system (tRTS) is statically compiled into the enclave
code, while the untrusted runtime system (uRTS) is dynamically
loaded when the host executes. It provides an Enclave Description
Language (EDL) to defines the entry points into the enclave in the
form of ECALLs (enclave calls) and OCALLs (outside calls) to con-
trol the transition from enclave to outside. When the application
is compiled, the Edger8r tool parses the EDL file and generates
the appropriate ecall/ocall RPCs in the form of wrappers for the
functions mentioned in the EDL. Each interface function is assigned
with two wrappers, one in the untrusted half and one in the trusted
half. These interfaces marshal data inside and outside of the enclave
and maintain return status.

4.2 Enabling Deluminator in the Linux kernel

Our work on enabling Deluminator in the Linux kernel is distinct
from previous DIFC systems. Deluminator is the first system that
follows a distributed model to monitor dataflows locally as well as
across the host-TEE privilege boundary. Our primary design goal
is to achieve fine-grained information flow tracing while providing
good performance. Deluminator supports not only intra-address
space tracing but also enables efficient cross-compartment monitor-
ing. The Linux kernel is not currently designed to facilitate these
features efficiently, and so previous work is limited to process-level
monitoring [51], or had to build a non-POSIX kernel to label intra-
address space objects efficiently [109] or to support multithreading.
Any control switch and data exchange to and from TEEs and en-
claves are expensive. We next present techniques that reduce this
cost, particularly for embedded use cases, and that also integrate
smoothly with the Linux kernel and are compatible with existing
security or auditing features. We achieved this with an 8𝐾 LoC
kernel module and fairly small changes elsewhere in the kernel.

PMTS & security hooks. Deluminator’s PMTS dynamically
redirects every syscall on a tagged object to a separate path for
monitoring any policy violation. The PMTS is implemented from
scratch as an extension to the Linux Security Module (LSM) and en-
abled by configuring the kernel with CONFIG_EXTENDED_LSM_PMTS.
It is implemented at a lower-level than LSM, and any existing LSMs
can be enabled on top of it. PMTS thus avoids conflicts with any
existing Linux kernel security features like DAC, LSM, and seccomp
filtering. PMTS also implements the DIFC principles and adds new
syscalls and security hooks for managing label operations, capabil-
ity lists, and checking dataflows. PMTS extends LSM with 29 new
security hooks that are placed inside various kernel subsystems
to track and control dataflows within tagged objects. Some of the
hooks are object-specifics; e.g. the check_tasks_labels_allowed
hook checks whether the dataflow between two Linux tasks are
allowed. PMTS provides security hooks for labeling and tracing
other kernel objects such as inode,file, VA, socket, and pipe.

Tags and their corresponding capabilities (capability_t) are
represented by unsigned integers. Tags are generated from a mono-
tonically increasing counter and randomized to prevent an attacker
inferring the counter value. Each capability is represented by two
bits for the PLUS_CAPABILITY or MINUS_CAPABILITY types. When
labeling any object or execution entity, PMTS initialises and adds
their tags to the object_security_struct ->label_struct and
capabilities to the cap_segment list. There are two new helper
syscalls (alloc_label and set_task_label) for facilitating the
process of converting userspace policies and for labeling threads
and system objects. Each object struct is extended with with a
pointer to the Deluminator metadata which holds its label (e.g.
inode->s_obj_label) and corresponding capabilities. PMTS as-
signs the metadata before creating a labeled object.

Tagged threads.The task_struct->cred structure is extended
with a task_security_struct to tag kernel threads. There are
newhooks for labeling threads including difc_cred_alloc_blank,
difc_cred_free, difc_cred_prepare and difc_cred_transfer
as replacements for the existing LSM hooks cred_alloc_blank,
cred_free, cred_prepare and cred_transfer so that both tagged
and unmodified threads could be supported. There is no support for
inheriting credentials and capabilities by default in the style of fork,
and copy_creds and copy_process disallow cred inheritance by
allocating an empty cred per labeled thread.

Tagging virtualmemory objects. There is a new kernel virtual
memory abstraction to enable a mutually distrustful model for each
labeled thread to tag and monitor its own VAOs (virtual address
space objects). Each VAO is a labeled and contiguous range of virtual
memory that maintains a label, a virtual segment descriptor, and a
private virtual page table (pgd_t). Linux tasks in a single process
share the same mm_struct that describes the process address space.
Having separate mm_struct for tagged threads would significantly
impact system performance, as all the memory operations related
to page tables must maintain strict consistency. We instead extend
mm_struct to embed VAO metadata as lightweight protected re-
gions in the same address space (Listing 3). This stores a per-thread
pgd_t and metadata for memory management, fault handling, and
synchronization.
1 struct mm_struct {
2 ...
3 #ifdef CONFIG_EXTENDED_LSM_PMTS
4 struct vao_struct *vao_metadata[VAO_MAX ];
5 atomic_t num_vao; /* number of vaos */
6 /* vao page tables per thread */
7 pgd_t *vao_pgd_list[VAO_MAX ];
8 int curr_using_vao;
9 spinlock_t sl_vao[VAO_MAX ];
10 struct mutex vao_metadata_mut;
11 DECLARE_BITMAP(VAO_InUse , VAO_MAX);
12 #endif // CONFIG_EXTENDED_LSM_PMTS //
13 ... };

Listing 3: Extended mm_struct with VAO data structures.

The standard Linux kernel avoids reloading page tables dur-
ing a context switch if two tasks belong to the same process, and
so check_and_switch_context is extended to reload VAO-based
page tables and flush related TLB entries if one of the switching
threads owns a VAO. These private page tables are tagged via the
ASID/PCID or mapped to hardware memory domains (if available)
to reduce the number of TLB flushes. During this lightweight switch
the virtual page tables are loaded into the TTBR register (on AArch)
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and CR3 (on x86) when a labeled thread needs to do memory oper-
ations inside a VAO.

The Linux memory management module is extended with VAO-
based paging operations for allocation, deallocation, mapping, un-
mapping, tracking, and permission management and exposed to
userspace via 12 new syscalls. vao_ops and vao_mem_ops are imple-
mented as multi-purpose syscalls for either initialisation or cleaning
up a process. All these operations are only allowed after successfully
passing the Deluminator security hooks for monitoring informa-
tion flows. To keep track of VAO-mapped memory ranges there are
vao_mmap/mumap syscalls to manage the memory layout of each
VAO, and mmap.c is extended to check the virtual memory par-
titions of non-Deluminator processes from memory dedicated to
VAOs. The do_mmap call now checks if the caller thread is labeled
and has the right capabilities to change the memory layout of an
address space and also checks for any overlapping virtual memory
ranges by keeping lists of dedicated virtual memory ranges to Delu-
minator VAOs. The madvise syscall and mm/memory.c operations
are also now aware of VAO ranges and check for unauthorised
operations by labeled threads.

Files, sockets, & pipes. The VFS layer now monitors each
thread’s security policies for all operations on inode, file, and
VFS address space objects; these kernel abstractions are used to
perform operations on unopened files and file handles. The PMTS
checks all operations on tagged files to ensure no thread can operate
on them without having the right label and capabilities, including
any operation that changes file contents or other file attributes such
as its existence, location, size, or linkage type. The label of an inode
is stored in the inode-> i_security structure. The PMTS extends
the LSM with new file-specific security hooks for verifying safe
information flows. difc_inode_set_security is used internally
for labeling file objects and a new inode_permission security hook
checks DIFC rules before any file operation. Most inode operations
(e.g. create, link, mknod, mkdir, permission) require a lookup
to find related inodes and dcaches and so namei now has PMTS
security hooks to monitor unauthorized information flow earlier in
the lookup stages. The open syscall now has two new flags (SLABEL
and ILABEL) that a thread can use to create a labelled file (O_CREAT
| SLABEL) and new file/inode_permission security hooks trace
file operations such as open/close, read/write, stat, seek, link,
and so on.

The kernel networking subsystem is also extended to support
DIFC in operations like create, listen, connect, sendmsg, and
recvmsg by placing PMTS security hooks in those functions and
at the end of the lookup process (e.g. in sockfd_lookup_light).
Deluminator also monitors communications through pipes, which—
aswith files—are associatedwith inodes. Deluminator pipe labeling
is similar to files and checks the security context of a pipe against
the security context of the thread that is reading from or writing
to the pipe. The pipe syscall is extended with SLABEL and ILABEL
flags for facilitating the creation of labeled pipes.

4.3 TrustZone kernel
The Deluminator TrustZone OS is built on top of the OP-TEE (V3.14)
core kernel, which is a popular open-source TrustZone kernel. Com-
pared to the Linux kernel, OPTEE has a much less complex design
that only provides about 50 syscalls and supports fewer system

objects. We mainly modified it for threading, memory management,
shared memory, and RPC functionality. We added a simplified ver-
sion of PMTS as an OPTEE driver (i.e., PTA) to check DIFC rules
on the TA’s system objects (e.g., VAOs, threads, RPCs).

Deluminator configures the TTBRC registers to support several
L1 translation tables, one large spanning 4 GiB and two or more
small tables spanning 32 MiB. The large translation table handles
secure kernel mode mapping and matches all addresses not covered
by the small translation tables. The small translation tables are
assigned per thread and cover the mapping of the virtual memory
space for one TA context. This design facilitates mapping VAOs vir-
tual segments descriptors to small private page tables. TA-specific
page tables are managed with the page table cache. In OPTEE, a
memory object (MOBJ) describes a piece of memory. There are
different kinds of MOBJs describing physically contiguous memory,
virtual contiguous memory, and shared memory. To enable our
VAO abstraction inside TAs, Deluminator labels virtual and shared
memory MOBJs and uses OPTEE-PMTS security hooks (similarly
to the Linux-PMTS) to check and control information flows over
them. It also adds DIFC checking hooks on all sensitive MOBJs
interfaces.

1 enum thread_state {
2 THREAD_STATE_FREE ,
3 THREAD_STATE_SUSPENDED ,
4 THREAD_STATE_ACTIVE ,
5 #ifdef CONFIG_EXTENDED_PMTS
6 THREAD_STATE_LABELED
7 #endif // CONFIG_EXTENDED_PMTS //
8 };
9 struct thread_ctx {
10 struct thread_ctx_regs regs;
11 enum thread_state state;
12 vaddr_t stack_va_end;
13 uint32_t hyp_clnt_id;
14 uint32_t flags;
15 struct core_mmu_user_map user_map;
16 bool have_user_map;
17 #ifdef CONFIG_EXTENDED_PMTS
18 struct label_struct label; // secrecy and integrity labels
19 struct mutex m; // for thread -safe label operations
20 struct vao_struct *vao_list[VAO_MAX ]; // list of VAOs
21 #endif // CONFIG_EXTENDED_PMTS //
22 void *rpc_arg;
23 struct mobj *rpc_mobj;
24 struct thread_specific_data tsd;
25 };

Listing 4: Thread labeling data structures in modified OPTEE
(when enabling CONFIG_EXTENDED_PMTS kernel config)

Deluminator allows a static and configurable number of threads
to support running jobs in parallel within a TA. Each thread context
can be labeled and has a list of attached VAOs (Listing 4). RPC
services are built on top of the ARM SMC calling convention and
Deluminator ensures that labeled RPC objects are tracked based
on DIFC principles. An RPC exit occurs when the kernel needs
some service from the normal world. RPC can currently only be
performed with a thread that is in a running state, and is initiated
with a call to thread_rpc() that uses the OPTEE-PMTS interface
to label the RPC if required by user policies. This saves the state
such that when the thread is restored it will continue at the next
instruction as if the function did a normal return.
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Source/Project Attacker Victim Description Compartments Objects Policy Violation LoC
COIN [45] host app enclave heap info leak 𝐶1{𝑡𝑒 ,𝑚𝑜, 𝑟𝑝𝑐} 𝐶2{𝑡𝑎, 𝑟𝑝𝑐} 𝑡𝑒 ̸−→ 𝑜𝑐𝑎𝑙𝑙 (𝑚𝑜) ̸−→ 𝑡𝑎 5
COIN [45] host app enclave malicious calls 𝐶1{𝑡𝑒 ,𝑚𝑜𝑒 , 𝑟𝑝𝑐} 𝐶2{𝑡𝑎,𝑚𝑜𝑎, 𝑟𝑝𝑐} 𝑡⊗𝑎 ̸−→ 𝑒𝑐𝑎𝑙𝑙 (𝑚𝑜𝑎) 𝑡𝑒 ̸−→ 𝑜𝑐𝑎𝑙𝑙 (𝑚𝑜𝑒 ) 9
COIN [45] host app enclave heap overflow 𝐶1{𝑡𝑒 ,𝑚𝑜, 𝑟𝑝𝑐} 𝐶2{𝑡𝑎, 𝑟𝑝𝑐} 𝑡𝑒 ̸−→ 𝑜𝑐𝑎𝑙𝑙 (𝑚𝑜) ̸−→ 𝑡𝑎 6
SGX-tls [110] host app enclave stack info leak 𝐶1{𝑡1𝑒 ,𝑚𝑜1} 𝐶2{𝑡2𝑒 ,𝑚𝑜2} 𝑡1𝑒 ̸−→𝑚𝑜2 (𝑚𝑒𝑚𝑐𝑝𝑦 (𝑚𝑜2,𝑚𝑜1, 𝑠𝑖𝑧𝑒)) 21
SGX-SQLite [60] host app enclave malicious calls 𝐶1{𝑡1𝑒 , 𝑓𝑒 } 𝐶2{𝑡𝑎} 𝑡⊗𝑎 ̸−→ 𝑓𝑒 8
SGX-Tor [47] enclave host app export secret 𝐶1{𝑡𝑒 ,𝑚𝑜} 𝐶2{𝑡𝑢 , 𝑓𝑢 , 𝑠𝑢 , 𝑝𝑢 } 𝑡𝑒⊗ ̸−→ {𝑡𝑢 , 𝑓𝑢 , 𝑠𝑢 , 𝑝𝑢 } 15
SGX-Tor [47] host app enclave concurrent calls 𝐶1{𝑡𝑒 } 𝐶2{𝑡𝑎} 𝑡⊗𝑎 ̸−→ {𝑡𝑒 } 4
Boomerang [58] host app TA/kernel break TZ-OS 𝐶1{𝑡𝑒 ,𝑚𝑜𝑒 , 𝑟𝑝𝑐𝑒 } 𝐶2{𝑡𝑎,𝑚𝑜𝑒 , 𝑟𝑝𝑐𝑒 } 𝑡⊗𝑎 ̸−→𝑚𝑜𝑒 23
OPTEE [3] host app TA TA mem corr 𝐶1{𝑡1𝑒 ,𝑚𝑜𝑒 } 𝐶2{𝑡2𝑒 } 𝑡2𝑒 ̸−→𝑚𝑜𝑒 8
OPTEE [3] TA TA memory leak 𝐶1{𝑡𝑒 } 𝐶2{𝑡𝑎,𝑚𝑜} 𝑡𝑒 ̸−→𝑚𝑜 11
OPTEE [3] host app TA TA mem leak 𝐶1{𝑡𝑒 ,𝑚𝑜𝑒 , 𝑟𝑝𝑐𝑒 } 𝐶2{𝑡𝑎} 𝑡𝑎 ̸−→ 𝑟𝑝𝑐𝑒 (𝑚𝑜𝑒 ) 9
tale [99] host app enclave enclave mem corr 𝐶1{𝑡𝑒 ,𝑚𝑜1𝑒 , 𝑟𝑝𝑐𝑒 } 𝐶2{𝑡𝑎, 𝑟𝑝𝑐𝑒 } 𝑡⊗𝑒 ̸−→𝑚𝑜1𝑒 𝑡⊗𝑎 ̸−→ 𝑡𝑒 12
async [106] host app enclave concurrency 𝐶1{𝑡𝑒 ,𝑚𝑜𝑒 , 𝑟𝑝𝑐𝑒 } 𝐶2{𝑡𝑎,𝑚𝑜𝑎, 𝑟𝑝𝑐𝑒 } 𝑡⊗𝑎 ̸−→ 𝑟𝑝𝑐𝑒 𝑡⊗𝑎 ̸−→𝑚𝑜𝑒 ∧𝑚𝑜𝑎 18
HPE [91] host app other app break shared enclave 𝐶1{𝑡𝑒 , 𝑟𝑝𝑐1𝑒 , 𝑟𝑝𝑐2𝑒 } 𝐶2{𝑡𝑎, 𝑟𝑝𝑐𝑒 } 𝑡⊗𝑎 ̸−→ 𝑟𝑝𝑐2𝑒 9

Table 2: Utilizing Deluminator for investigating vulnerabilities across heterogeneous compartments. We use subscripts 𝑒 for
TA/enclave objects, 𝑎 for application process, 𝑢 for untrusted host source, ⊗ for attacker, 𝑡 for thread,𝑚𝑜 for memory object, 𝑟𝑝𝑐
for RPC object that means ocalls/ecalls, 𝑓 for file/db, 𝑠 for socket, 𝑝 for pipe, and ̸−→ for dataflow policy violations.

4.4 SGX runtime
Porting the Deluminator Linux kernel required only minor changes
to the VAO abstractions and MMU registers. For the Deluminator-
SGX implementation, we focused more on implementing a mini-
mal proof-of-concept to evaluate Deluminator usability and per-
formance for monitoring information flows in the host-enclave
boundary. We therefore built the Deluminator-SGX stack over
the Intel SGX driver and SDK.3 The driver handles enclave ini-
tialisation and resource management and provides ioctl calls
for the SDK (e.g. to manage memory via the ENCLAVE_ADD_PAGE
or ENCLAVE_PAGE_REMOVE ioctls) and is where we integrated the
PMTS functionality and VAO-based memory management for mon-
itoring labeled shared memory.

We modified the SGX Platform SoftWare (PSW), which commu-
nicates with the SGX driver and initializes and loads an enclave
memory image, handles enclave exceptions, attestation services,
and executes ecalls/ocalls. We also ported the PMTS DIFC module
as a standalone library to the SDK to provide proxy calls for mon-
itoring shared resources, as with the TrustZone implementation.
Table 3 shows that our approach requires less than 2𝐾 LoC changes
for porting to a new TEE system.

TEE system Linux kernel Userspace
AArch 5.2𝐾 8𝐾 3𝐾
x86-64 3𝐾 8𝐾 3𝐾

Table 3: Deluminator lines of code for each component.

5 Evaluation
Goals. We evaluate Deluminator to answer the following ques-

tions: (1) Is Deluminator practical for security analysis, auditing,
and attack investigation? (2) How it can help with vulnerability
analysis and auditing in real-world compartmentalized applications,
and how much overhead does it add? (3) How does Deluminator
help to detect and model fine-grained attack vectors?
3https://github.com/intel/linux-sgx and https://github.com/intel/linux-sgx-driver

Setup. We use NXP i.MX7Dual boards with two Cortex-A7 CPUs
and Intel Core(TM) i7-6820HQ CPU for our evaluation. We use
two sets of microbenchmarks, LMbench 3.0 [61] and a custom
benchmark for evaluating Deluminator overhead.

5.1 Attack investigation
We integrated Deluminator into some existing security bench-
marks including attack prototypes on already compartmentalized
TrustZone-and SGX-based applications. Note that in these security
benchmarks, all compromised applications are already compart-
mentalized and we do not change their structure. Our goal is to
evaluate the practicality of Deluminator in detecting and analyzing
these attack vectors through Deluminator-provided information
flow graphs. We picked 14 sets of vulnerabilities from the literature
(Table 2) with attack vectors ranging from privilege management
issues (e.g., HPE [91] vulnerabilities) to memory vulnerabilities
(e.g., COIN [45]) and unsafe interfaces (e.g., Asyncshock [106]).

We used two approaches for Deluminator integration into these
security benchmarks. In cases where we knew the scope of attacks,
we used Deluminator to monitor all key objects involved in the
process-enclave interactions, many of which are described in the
SGX SDK .edl files (or similarly in OPTEE RPC services). For exam-
ple, in COIN attacks on an SGX interface to leak information from
an enclave heap4 the SGX SDK provides a malloc-style function
to allocate heap memory in an enclave, and any data stored there
can be processed only explicitly via ECALLs. But a common unsafe
coding practice is storing public and secret data in the same data
structure and providing an OCALL interface for transferring this
public data. If an attacker modifies a pointer from the public data to
the secrets, such OCALLs can leak the sensitive data. We used the
Deluminator address space labeling APIs (Table 1) like d_malloc
and d_free on all buffers used for process-enclave interactions
as one the main targeted objects in that attack vector. As shown
in code 5, we used Deluminator to label ecall_heap_leak and
ocall_write_out with the SLABEL flag for enclave compartments
(with ecomp_id). Table 2 summarizes our changes as simplified poli-
cies. Deluminator detects when an information leak happens from

4https://github.com/mustakimur/COIN-Attacks/tree/master/PoCs
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Compartment types d_enable d_add d_remove d_cleanup
x86-64 process 30.1 32.3 32.82 35.8
SGX enclave 31.4 32.9 33.2 34.9
ARM process 37.2 39.4 41.5 41.9
TrustZone TA 37.8 40.2 42.1 40.8

Table 4: In average (5000 run) latency (µs) of Deluminator API
for compartment management.

the enclave compartment (𝐶1{𝑡𝑒 ,𝑚𝑜, 𝑟𝑝𝑐} that contains thread 𝑡𝑒 ,
memory object𝑚𝑜 , and labeled ecalls/ocalls as 𝑟𝑝𝑐), to the process
compartment (𝐶2{𝑡𝑎, 𝑟𝑝𝑐}); which the violation showed as unsafe
dataflow 𝑡𝑒 ̸−→ 𝑜𝑐𝑎𝑙𝑙 (𝑚𝑜) ̸−→ 𝑡𝑎 .

In other cases, when the attack vector is not clear, the simplest
way to integrate Deluminator is by identifying security-sensitive
objects (e.g., cryptography keys) and labelling objects that are di-
rectly or indirectly associated with the application’s secrets. We will
explain this approach in our application case studies in Section 5.3.
Note that like any other security analysis tool, Deluminator also
works best when developers relatively know the security-sensitive
parts of their application or have high-level knowledge of possible
attack vectors, which is usually a reasonable assumption since our
targets are already compartmentalized applications.
1 // in-enclave code
2 void ecall_heap_leak(struct eData* data){
3 char temp[] = "kioasdinkadssasdkjhsdaklj";
4 char *buf;
5 int ret ,ecomp_id ,mobj;
6 ecomp_id=d_enable ();
7 d_add(self , THRD);
8 int mobj=d_create(MMU_MODE , MEMDOM_READ|MEMDOM_WRITE);
9 //..... other initialization
10 data ->msg = (char*) d_malloc(mobj ,strlen(temp));
11 d_memcpy(mobj ,data ->msg , temp , strlen(temp));
12 //.... other computations
13 while(data ->left > 0){
14 buf = data ->msg + data ->len - data ->left;
15 d_ocall_write_out(cid ,&ret , buf , data ->left);
16 d_cleanup(ecomp_id);
17 //.... other computations
18 }
19 // Modified Enclave.edl
20 enclave {
21 from "sgx_tstdc.edl" import *;
22 include "../ eType.h"
23 trusted {
24 public void ecall_heap_leak ([slabel ,in] struct eData *

data);//add slabel flag
25 };
26 untrusted {
27 int ocall_write_out ([slabel , in, size=left] char* buf ,

int left);////add slabel flag
28 };
29 };

Listing 5: Changes to enclave side of COIN heap_leak PoC

5.2 Microbenchmarks
Effects on non-compartmentalized execution. Weempirically show

that Deluminator checks does not add a large overhead to the entire
system at runtime. We use a system stress test benchmark (LM-
Bench) to measure the worst case overheads per subsystem (Fig-
ure 3). Deluminator adds ≈ 16% latency overhead for the filesystem,
≈ 0.6% for networking, and ≈ 0.2% for IPC benchmarks. Delumi-
nator modifies fork to ensure a child thread does not inherit its
parents labels and capabilities by default (for mutually-distrustful
multithreading policies), which adds 0.1% overhead.
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Figure 3: Running Lmbench: impact of Deluminator on over-
all performance of the host system.

Costs per operation in compartmentalized execution. Table 4 shows
the average cost of 30𝜇𝑠 − 95𝜇𝑠 for Deluminator’s basic tracing API
within an application process and its enclave compartments. In-
enclave compartment operations are 2.1% slower than in-app ones
due to differences (e.g., memory management) in the kernel and
SGX runtime. Our implementation changes the memory manage-
ment performance and creating or deleting a tagged memory object
(d_malloc/free) is about 1.12x slower. Increasing the size of com-
partment labels only linearly affects the performance of operations
on that labeled object, without any change for other objects or
operations.

5.3 Case-studies
We utilize LibDeluminator to audit and detect security violations in
existing compartmentalized real-world applications to confirm that
Deluminator is practical for integrating into TA/enclave-assisted
applications with minimal code changes.

Auditing compartmentalized web services. Despite a large amount
of work on securing web services [13, 29, 43, 49, 52, 98], their attack
surface remains vast due to the lack of secure compartmentaliza-
tion, fine-grained isolation, and suitable access control mechanisms.
Various TA/enclave-assisted web services are available such as Ta-
LoS [8] and SGX-OpenSSL [1] that allow existing applications with
an OpenSSL interface to securely terminate their TLS connection
inside an enclave. TaLoS places security-sensitive code and data
of the TLS library inside an Intel SGX enclave while the rest of
the application remains outside. Such building blocks are used in a
wide range of security-critical applications for which the integrity
and/or confidentiality of their connections must be guaranteed.

OpenSSL is a widely used open-source library implementing
cryptography operations and the transport layer security (TLS)
protocol. It handles sensitive content such as private keys and
encrypted data and hence benefits from isolating its sensitive con-
tent in separate compartments to mitigate information leakage at-
tacks [25]. Many web servers, including Apache httpd, use OpenSSL
for various operations like the TLS protocol. If compromised, the
attacker can leak all private keys and certificates. There are multiple
implementations of compartmentalized OpenSSL, with different
architectures and levels of isolation enforcement, making it a good
case study for compartmentalization tools. We used Deluminator to
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Figure 4: Overhead of tracking dataflows in compartmentalized httpd-OpenSSL with OPTEE and ARMMD-based compartments
using Deluminator. For five minutes ApacheBench run per request size, with the TLS1.2 DHE-RSA-AES256-GCM-SHA384 algorithm
cipher suite.

explore three different forms of compartmentalized Apache httpd-
OpenSSL stack via (1) SGX-assisted compartments, (2) TrustZone-
assisted compartments, and (3) intra-process-based compartments.

SGX-OpenSSL partitions OpenSSL into three libraries; two trusted
libraries inside an enclave compartment (libsgx_tsgxssl.lib
and libsgx_tsgxssl_crypto.lib), and one library inside an un-
trusted compartment (libsgx_usgxssl.a) that provides an imple-
mentation of missing system APIs outside of an enclave. Since we
integrated Deluminator into SGX-SDK, labeling in-enclave systems
objects such as the SGX protected_fs_file, SGX pthread, and
socket (which has interactions with untrusted system) is straight-
forward for in-enclave compartments.

We modified the libsgx_tsgxssl.lib API, consisting of calls
to tmem_mgmt, tpthread, tsocket etc., to use Deluminator-enabled
SGX SDK services for labeling associated objects when Deluminator
is enabled. When Deluminator is not available, the build system
is modified such that all our modified wrappers are replaced by
the corresponding native ones, making it viable to support for
Deluminator in existing open source projects.

Listing 6 shows some ecalls/ocalls from the httpd SGX-SSL
interface that are labeled by the Deluminator slabel or ilabel
flags for tracking information flow. Note that we labeled all buffers,
files, sockets, and other enclave objects flagged as user_check. The
SGX SDK provides user_check tags for developers to clarify that
there are no security guarantees from the SDK over those objects
interacting with an untrusted process compartment.

We wrote custom attack PoCs to audit when a malicious httpd
worker thread attempts to compromise the enclave, by crafting dif-
ferent ecall requests, modifying their shared memory (e.g., when
make_asynchronous_ecall is enabled on memory management
operations), or by accessing enclave files used to storing sensi-
tive configurations. One example of such a sensitive file is via the
OpenSSL function ecall_SSL_CTX_use_PrivateKey_file used
to load private keys into an untrusted buffer. Although Delumi-
nator can detect unsafe dataflows in our custom tests, we need
more security benchmarks and attack PoCs with wider coverage
for a more through evaluation. The SGX-SSL architecture and im-
plementation is different from TrustZone-based, process-based, or
intra-process OpenSSL compartmentalization [74, 93, 94, 98].

1 enclave {
2 from "sgx_tstdc.edl" import *;
3 include "openssl/ossl_typ.h"
4 include "openssl_types.h"
5 trusted {
6 /* Other Apache ecalls */
7 public int ecall_OBJ_create ([slabel , ilabel , user_check]

const char *oid , [slabel , ilabel , user_check] const
char *sn, [slabel , ilabel , user_check] const char *ln);
// ilabel for most const objects

8
9 public X509_STORE *ecall_SSL_CTX_get_cert_store ([slabel ,

ilabel , user_check] const SSL_CTX *c);
10
11 public int ecall_SSL_CTX_use_certificate_chain_file ([slabel ,

slabel , user_check] SSL_CTX *ctx , [slabel , ilabel ,
user_check] const char *file);

12
13 public int ecall_SSL_CTX_check_private_key ([slabel , ilabel ,

user_check] const SSL_CTX *ctx);
14
15 public void ecall_SSL_set_connect_state ([slabel , user_check]

SSL *s);
16
17 public X509* ecall_SSL_get_certificate ([slabel , ilabel ,

user_check] const SSL *ssl);
18
19 public X509 *ecall_SSL_get_peer_certificate ([slabel , ilabel ,

user_check] const SSL *s);
20
21 public SSL_CTX *ecall_SSL_get_SSL_CTX ([slabel , ilabel ,

user_check] const SSL *ssl);
22 // ... remaining ecalls
23 }
24
25 untrusted {
26 void* ocall_mmap ([slabel , user_check] void *addr , size_t

length , int prot , int flags , int fd , off_t offset);
27
28 void* ocall_realloc ([slabel , user_check] void* ptr , size_t

size);
29
30 void ocall_free ([slabel , user_check] void* ptr);
31
32 void* ocall_fopen ([slabel , ilabel , user_check] const char *

path , [slabel , ilabel , user_check] const char *mode);
33
34 /* 2 ocalls to fwrite , depending on if ptr is allocated

inside the enclave (fwrite_copy) or outside (fwrite) */
35 size_t ocall_fwrite_copy ([in, size=size , count=nmemb] const

void *ptr , size_t size , size_t nmemb , [slabel ,
user_check] void *stream);

36 size_t ocall_fwrite ([slabel , ilabel , user_check] const void *
ptr , size_t size , size_t nmemb , [slabel , user_check]
void *stream);

37 // ... remaining ocalls
38 }

Listing 6: labeling Apache user_check-flagged ecall/ocall
objects with Deluminator
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Figure 5: Deluminator can be used in auditing or detecting threats in TEE-assisted and compartmentalized ML.

On OPTEE-enabled devices—due to more limited TEE memory—
it is impractical to run the entire OpenSSL stack (more than 45𝑀𝐵
RSS and 750𝐾 LoC) as a single TA compartment [3]. One approach
in an OPTEE compartmentalization framework is to provide an
in-TA PKCS11 OpenSSL engine5 to perform operations on cryp-
tographic objects such as private keys within a TA compartment
without requiring access to the objects themselves. For the OPTEE
httpd-OpenSSL use case, we again use two compartments. We la-
beled httpd compartment interfaces to in-TA private keys, session
keys, and certificates to track operations on them from any unautho-
rized worker threads. To also track possible malicious behaviours
from the enclave thread (e.g., transferring secrets through uncon-
trolled channels to another enclave, or via untrusted memory, file or
networking sockets) we labeled the enclave thread an all memory
and storage objects containing sensitive keys to track such unsafe
behaviours.

To evaluate the same use case with more than two compartments,
we also integrated Deluminator into an intra-process sandboxing
framework using ARM-MDs (memory domains) called uTiles [94].
This is similar to MPK-based isolation domains; to the best of our
knowledge there is no hardware available with both SGX and MPK
support simultaneously. uTiles provide per-thread lightweight com-
partments with private isolated domains which are used to com-
partmentalize OpenSSL private keys, session keys, and certificates
into three compartments. All the data structures that store private
keys (EVP_PKEY) are mapped to specific domains with per-domain
memory operations which can be replaced with the Deluminator
API (e.g., utile_malloc/free replaced by d_malloc/free as the
backend of CRYPTO_malloc/free). Deluminator can then monitor
the secrets that are being processed in these protected memory
regions. We also labeled the main httpd thread to be the only thread
with access to the EVP compartment and that can interact with
the FS to store encrypted content, keys, and certificates (e.g., in
OPENSSLDIR). We also labeled OpenSSL storage to detect unsafe

5See https://github.com/OP-TEE/optee_os/tree/5d6b6c795b8f/ta/pkcs11

dataflows from other httpd worker threads to monitor unauthorised
or accidental information leaks.

Figure 4 shows the overhead of ApacheBench applied against the
original OpenSSL library on a baseline kernel and the Deluminator-
assisted httpd. ApacheBench ran with a timeline of 5 minutes for
each request size, with the TLS1.2 DHE-RSA-AES256-GCM-SHA384
algorithm cipher suite. The results show that Deluminator adds
≈ 8% overhead to SGX-SSL compartments, ≈ 10.8% overhead over
OPTEE-based compartments, and adds 1.1x slowdown to ARMMD-
based compartment, with average added code of 180 LoC. This is a
reasonable overhead for compartmentalized applications that now
gain strong information flow tracking capabilities across heteroge-
neous compartments.

Auditing TEE-assisted ML frameworks. There have been various
TEE-based solutions for enabling more trustworthy Machine learn-
ing (ML), usually by running sensitive parts of ML service in an
enclave so that the remote platform can verify that the computation
is protected on the untrusted host [37, 63, 64, 80, 100].

Developers can use Deluminator to specify security policies
that they want to audit, test, or if they need to explore diverse
attack scenarios on such TEE-assisted ML solutions. We integrated
LibDeluminator into the DarkneTZ [63] (TrustZone-based) and
SGX-Darknet [44] frameworks. These two frameworks have slightly
different security goals. SGX-Darknet ports sensitive deep-learning
algorithms and layers, such as the connected layer, convolutional
layer, softmax layer, cost layer, and the maxpool layer, into an
SGX enclave. DarkneTZ focuses on membership inference attacks
(MIA) [88] and aims to only port the most sensitive layers since
OPTEE TAs usually have less memory available than SGX ones.

These two frameworks have originally added or modified around
350 LoC for DarkneTZ and 290 LoC for SGX-Darknet (from a 32K
LoC codebase) for compartmentalizing the framework. Most of
these changes are in the interface and system abstraction layer,
which we also modified to integrate Deluminator. Since Darknet is
heavily multithreaded, we modified its classifier (classifier.c)
to be able to audit synchronization and concurrency threats by
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enabling Deluminator labeling on process’s compartment threads,
we call it compartment 𝐶1, for communicating with in-enclave ML
compartment 𝐶2 and use regular threads for the rest of the data
loading logic. We further add RPC and shared memory objects to𝐶1
for tracing concurrency and interface attacks [81, 99, 106]. We also
enabled tracing on all sensitive resources located in the host OS
such as (/cfg), (/models), and (/data) to detect any unauthorized
access to them. Figure 5 simplifies some of these unsafe information
flows in these two attack vectors. We implemented multiple attack
scenarios to confirm that Deluminator can detect policy violations.

We evaluated the performance using AlexNet, a benchmark used
by prior works [63]. For evaluating Deluminator-enabled DarkneTZ,
we train a model with four layers outside and one layer inside
an enclave using standard CIFAR-100 dataset [50]. Compared to
native, Deluminator adds 4.3% overhead to train ML layers inside
an enclave, 7.8% to load a pre-trained model inside the enclave,
and 9.2% for in-enclave inference. Similarly, a Deluminator-enabled
SGX-Darknet, adds about 9% overhead.

6 Related Work
Compartmentalization techniques are significantly strengthened
via hardware-assisted security features that reduce the attack sur-
face of applications.We are nowmoving toward hetero-compartment
computing to take advantage of these, and there are numerous TEE
programming frameworks for ergonomic code development for a
single platform [3, 23, 56] or cross platform [24, 33] development.
The goal of these frameworks is to abstract the underlying TEE
details from the enclave programmers. We now see deployment
frameworks such as Enarx that support running the same binary
within enclaves in different hardware platforms. These systems are
inspired by Haven [10] which ports Drawbridge [75] (a Windows
library OS) inside an SGX enclave. Since a large portion of appli-
cations system support is provided by an in-enclave library OS, it
exposes only a small external interface. Following the in-enclave
LibOS approach for complex applications results in a huge TCB
through porting all dependencies inside the enclave. Graphene-
SGX [96] ports the Linux-based Graphene library OS in an enclave.
Scone [7] reduces the TCB by porting musl libc and a portion of the
Linux Kernel Library (LKL) [76]. TrustShadow [35] also protects un-
modified applications from the host OS following the overshadow
system [17]. All these systems can benefit from Deluminator since
it is the first fine-grained and extensible OS-assisted tracing tool for
security analysis tasks such as auditing, forensics, and vulnerability
investigation across heterogeneous compartments.

There have been several efforts towards enforcing information
flow control policies for enclaves via language-basedmechanisms [31,
32, 40, 72, 89, 97]. Although these systems can enforce fine-grained
policies, they are either language-specific or are hard to use. More
importantly, they are still limited to one compartment type and a
one-way trust model (i.e., fully-trusted enclave) which does not
allow for monitoring mutually-distrustful security policies.

Variants of dynamic IFC can be enforced at either the software or
hardware level, and granularity of policy enforcement and the com-
plexity of the target system are two key factors determining the prac-
ticality of any IFC mechanisms. At the programming language level,
these techniques assign explicit security policies (or labels) to every
variable and within operations between them [15, 66, 67, 77]. At the

OS level, dataflows are enforced within OS kernel objects such as
processes and files [19, 51, 108]. They can also be enforced within
hardware components [27]. No single IFC mechanism provides the
most efficient or practical solutions for these diverse use cases, and
Deluminator is the first tracing system over fine-grained system
objects that is designed specifically for these hetero-compartment
environments.

Some of the attack vectors targeted by Deluminator can also be
explored by dedicated tracing, debugging, fuzzing, and dynamic
analysis tools [20–22, 70]. No previous work targets the attack vec-
tors described earlier for hetero-compartment environments (e.g.,
heterogeneous TEE/enclave-assisted applications). Ninja [70] pro-
vides relatively expensive (4x to 154x slowdown) debugging and
tracing subsystems for transparent malware analysis on ARM that
also supports TrustZone-assisted usecases. TEEREX [21] automati-
cally analyzes SGX enclave binary code for memory vulnerabilities
introduced at the host-to-enclave boundary via symbolic execution.
Some TEE/enclave frameworks may provide debuggers and fuzzers
with limited functionalities inside a TA/enclave [22] but none are
designed to systematicaly tackle the challenges wementioned for se-
curity development across heterogeneous isolation boundaries(§ 2).
To the best of our knowledge, Deluminator is the first system that
provides a principled and extensible mechanism for monitoring
dataflows and tracing fine-grained system objects across completely
different types of compartments including processes, SGX enclaves,
and TrustZone TAs. Deluminator also provides intra-address space
tracing which can be used by in-TA/enclave compartmentalization
frameworks, such as Occlum [87], to monitor finer-grained security
violations or attack investigation. Additionally, Deluminator’s novel
kernel abstractions cause a relatively small performance overhead
(on average 7-29%) that is significantly less than related systems.

7 Conclusion
We have proposed Deluminator, a set of OS abstractions and a
userspace framework to enable extensible and fine-grained infor-
mation flow tracking in hetero-compartment environments. De-
luminator allows developers specify mutually-distrustful security
policies over shared system resources and cross-compartment inter-
actions. It provides building blocks to detect unsafe dataflows which
can be used for composing security analyses across heterogeneous
compartments. We implemented Deluminator on Linux-based ARM
and x86-64 platforms, with support for hardware-assisted compart-
ment types including processes, SGX enclaves, TrustZone Trusted
Apps (TAs), and intra-address space compartments. Our evalua-
tion shows that our kernel and hardware integration results in a
reasonable overhead (on average 7-29%) that makes it suitable for
real-world applications.

Our code is available at https://github.com/Deluminator-System
under liberal licenses, and we welcome feedback or patches to
improve it further.
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