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Abstract. Application compartmentalization and privilege separation
are our primary weapons against ever-increasing security threats and
privacy concerns on connected devices. Despite significant progress, it is
still challenging to privilege separate inside an application address space
and in multithreaded environments, particularly on resource-constrained
and mobile devices. We propose MicroGuards, a lightweight kernel modi-
fication and set of security primitives and APIs aimed at flexible and fine-
grained in-process memory protection and privilege separation in multi-
threaded applications. MicroGuards take advantage of hardware support
in modern CPUs and are high-level enough to be adaptable to various
architectures. This paper focuses on enabling MicroGuards on embedded
and mobile devices running Linux kernel and utilizes tagged memory
support to achieve good performance. Our evaluation show that Micro-
Guards add small runtime overhead (less than 3.5%), minimal memory
footprint, and are practical to get integrated with existing applications
to enable fine-grained privilege separation.

1 Introduction

More than ever, we depend on highly connected computing systems in today’s
world, where over 6.3 Billion people use smartphones, and 35.82 billion IoT
(Internet of Things) devices are installed worldwide [49]. Our growing reliance on
edge-cloud services in recent years has been constantly and increasingly threat-
ened by a wide range of security and privacy breaches at scales never seen before
[4,5,41,53]. The attack surface of modern applications includes a mixture of tra-
ditional attack vectors with new threats within/across various dependencies and
system abstractions.

Many software attacks target sensitive content in an application’s address
space, usually through remote exploits, malicious third-party libraries, or unsafe
language vulnerabilities. Processing highly sensitive data in a single large com-
partment (e.g., process or enclave) leads to real threats that require effective
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protection against: (i) attackers can exploit vulnerabilities in less secure parts
of the code to leak information, escalate privileges, or take control of the appli-
cation or even the host. (ii) an application’s secret data (e.g., private keys or
user passwords) can be leaked in the presence of untrusted code parts or com-
promised third-party libraries like OpenSSL [23]; (iii) privileged functions or
modules can be misused to access private content [22]; (iv) applications writ-
ten in memory-safe languages such as Rust or OCaml are vulnerable via unsafe
external libraries that jeopardize all other safety guarantees [6,35]; and (v) in
multithreaded use cases, attackers can exploit vulnerabilities (e.g., TOCTOU or
buffer overflows) so the compromised thread can access sensitive data owned by
other threads [1]. This whole class of attacks could be avoided by providing a
practical way to enforce the least privilege within a shared address space. Table 1
summarizes some of these real threats that intra-process protection is effective
against.

Hence, the importance of in-address space security threats results in sig-
nificant improvement in hardware support for efficient memory isolation [9,11,
31,58]. However, existing simple APIs for utilizing such hardware features are
not effective due to the complexity of attacks as well as various hardware limita-
tions [20,43,55] in security and performance particularly for resource constrained
devices. These systems mainly require specific programming languages or rely
on x86 features which are not practical for wide range of IoT and mobile devices.

Table 1. A representative selection of vulnerabilities that cause sensitive content leak-
age. The attacks with a tick can be mitigated by using MicroGuards protection.

example CVE Description MicroGuards

In-Process threats CVE-2021-3450 Improper access control in shared library ✓

CVE-2021-29922 unsafe language binding ✓

CVE-2021-31162 Rust runtime memory corruption ✓

CVE-2019-9345 Shared mapping bug ✓

CVE-2021-45046 thread-based privilege escalation ✓

CVE-2019-9423 missing bounds check ✓

CVE-2019-15295 unsafe third party library ✓

CVE-2019-1278 unsafe third party library ✓

CVE-2018-0487 unsafe third party library ✓

CVE-2017-1000376 unsafe native bindings ✓

CVE-2014-0160 Heartbleed bug ✓

CVE-2021-3177 Python ctypes memory leak ✓

CVE-2021-28363 Python ctypes memory leak ✓

Other CVE-2018-0497 SW side-channels

CVE-2017-5754 HW side-channels

Many security-sensitive applications such as OpenSSH [44] rely on process-
based isolation to separate their components into different privileged processes.
However, this usually requires redesigning an application from scratch using a
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multiprocess architecture (e.g., Chrome) and is difficult for many multithreaded
applications such as web servers. Previous work such as Privtrans [18] and
Wedge [16] provide automatic process-based isolation of applications with a huge
overhead (≈80% − 40x slowdown).

Conventional process abstractions such as fork introduce security and effi-
ciency issues [13], and alternatives such as clone are not fine-grained enough
to switch between data sharing and copying between process address spaces
for security-critical resources. This lack of flexibility in the underlying inter-
faces means developers cannot easily prevent in-process attacks, and so mul-
tithreaded applications are difficult to privilege separate. This class of attacks
could be avoided by providing a practical way to protect memory within an
address space.

In this paper, we present MicroGuards, a new OS abstraction for enforcing
least privilege on slabs of memory within the same address space. It takes advan-
tage of modern hardware features to provide a flexible and efficient way to define
trust boundaries to isolate sensitive data while supporting familiar APIs for
secure multithreading and memory management. We provide a virtual memory
tagging and access control abstraction within the kernel, then extend the kernel
to support mapping MicroGuards to threads; hence, any thread can selectively
protect or share its memory compartments from untrusted code within itself or
from any untrusted thread (see Fig. 1).

Hence, we designed a new memory compartmentalisation abstraction to
overcome this limitation efficiently. MicroGuards virtual memory tagging layer
bypasses most of the kernel’s paging abstraction to enable isolated blocks of
tagged memory which could be mapped to the undelying hardware features such
as ARMMD (memory domains) or MTE (memory tagged extension) for stronger
isolation enforcement and performance optimization. Moreover, these hardware
features are difficult to use securely (require a strong access control mechanism)
and portably due to differing semantics across the Linux Kernel virtual memory
abstraction and hardware provided features (Sect. 2). Note that MicroGuards
virtual memory layer can also be enabled with available simple address space
translation mechanism and without hardware-based memory tagging capabil-
ities. However, it is specifically designed for properly utilizing such beneficial
hardware security features. Hence, MicroGuards is a high-level OS abstraction
that aims to:

– develop a new kernel-assisted mechanism based on mutual-distrust for intra-
process privilege separation that supports isolating private contents, a secure
multithreading model, and secure communication within a shared address
space.

– explain how to utilize modern CPU facilities for efficient memory tagging to
avoid the overhead of existing solutions (due to TLB flushes, per-thread page
tables, or nested page table management).

– show that the implementation is sufficiently lightweight (≈5K LoC) to be
practical for IoT and mobile devices with a minimal memory footprint.
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Fig. 1. High-level architecture of MicroGuards: it provides in-process isolation as well
as thread-granularity privilege separation so each MicroGuard thread can tag itself, its
address space, and define its own trust boundaries.

– evaluate our implementation using real-world software such as Apache HTTP
server, OpenSSL, and Google’s LevelDB, which shows MicroGuards add neg-
ligible runtime overhead for lightly modified applications.

The remainder of this paper elaborates on the CPU hardware features we
use (Sect. 2), describes the architecture (Sect. 3) and implementation of Micro-
Guards (Sect. 4), presents an evaluation (Sect. 5) and the tradeoffs of our app-
roach (Sect. 6).

2 Background

2.1 ARM VMSA

ARM virtual memory system architecture (VMSA) is tightly integrated with the
security extensions, the multiprocessing extensions, the Large Physical Address
Extension (LPAE), and the virtualization extensions. VMSA provides MMUs
that control address translation, access permissions, and memory attribute deter-
mination and checking for memory accesses. The extended VMSAv7/v8 pro-
vides multiple stages of memory system control; for operation in Secure state
(e.g., EL1&0 stage 1 MMU) and for operation in Non-secure state (e.g., EL2
stage 1 MMU, EL1&0 stage 1 MMU, and EL1&0 stage 2 MMU). VMSAv8.5
adds more MMUs for additional isolation in the secure world. Each MMU uses
a set of address translations and associated memory properties held in TLBs. If
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an implementation does not include the security extensions, it has only a single
security state, with a single MMU with controls equivalent to the Secure state
MMU controls. A similar argument is valid for when am implementation does
not include the virtualization extensions.

System Control coprocessor (CP15) registers control the VMSA, including
defining the location of the translation tables. They include registers that con-
tain memory fault status and address information. The MMU supports mem-
ory accesses based on memory sections or pages, supersections consist of 16MB
blocks of memory, sections consist of 1MB blocks of memory or 64KB blocks
of memory, and pages consist of 4KB blocks of memory. Operation of MMUs
can be split between two sets of translation tables, defined by the Secure and
Non-secure copies of TTBR0 and TTBR1, and controlled by TTBCR. For hyp mode
stage 1, The HTTBR defines the translation table for EL2 MMU, controlled by
HTCR. For stage 2 translation, The VTTBR defines the translation table, controlled
by VTCR. Access to a memory region is controlled by the access permission bits
and the domain field in the TLB entry.

ARM Memory Domains (MDs). A domain is a collection of contiguous
memory regions. The ARM VMSAv7 architecture supports 16 domains, and
each VMSA memory region is assigned to a domain. First-level translation
table entries for page tables and sections include a domain field. Translation
table entries for super-sections do not include a domain field (super-sections
are defined as being in domain 0). Second-level translation table entries inherit
a domain setting from the parent first-level page table entry. Each TLB entry
includes a domain field. A domain field specifies which domain the entry is in,
and a two-bit field controls access to each domain in the Domain Access Control
Register (DACR). Each field enables access to an entire domain to be enabled and
disabled very quickly without TLB flushes so that whole memory areas can be
swapped in and out of virtual memory very efficiently. Hence DACR controls the
behavior of each domain and is not guarded by the access permissions for TLB
entries in that domain. Also, DACR defines the access permission for each of the
sixteen isolation domains. The DACR is a 32-bit read/write register and is acces-
sible only in privileged modes. When the security extensions are implemented
DACR is a banked register, and write access to the secure copy of the register
is disabled when the CP15SDISABLE signal is asserted high. To access the DACR
you read or write the CP15 registers. For example: ‘MRC p15, 0, <Rt>, c3, c0, 0’
for reading from DACR and ‘MCR p15, 0, <Rt>, c3, c0, 0’ for writing to DACR. Data
Fault Status Register (DFSR) holds status information about the last data fault
in MDs. It is a 32-bit read/write register, accessible only in privileged modes.
These registers are banked when security extensions are enabled, so we could
have separate 16 domains inside TrustZone secure world as well as the normal
world.
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Table 2. ARM memory domains access permissions

Mode Bits Description

No Access 00 Any access causes a domain fault

Manager 11 Full accesses with no permissions check

Client 01 Accesses are checked against the page tables

Reserved 10 Unknown behaviour

The four possible access rights for a domain are No Access, Manager, Client,
and Reserved (see Table 2). Those fields let the processor (i) prohibit access
to the domain mapped memory–No Access; (ii) allow unlimited access to the
memory despite permission bits in the page table– Manager; or (iii) let the access
right be the same as the page table permissions–Client. Any access violation
causes a domain fault, and changes to the DACR are low cost and activated
without affecting the TLB.

ARM MDs look like a good building block for in-process memory protection.
Changing domain permissions does not require TLB flushes, and they do not
require extensive modifications to the kernel memory management structures
that might otherwise introduce security holes due to inevitable TLB and memory
management bugs [61].

Though ARM MDs are a useful isolation primitive in concept, the current
hardware implementation and OS support suffer from significant problems that
have prevented their broader adoption:

Scalability: ARM relies on a 32-bit DACR register and so supports only up to
16 domains. Allocating a larger register (e.g., 512 bits) would mean larger page
table entries or additional storage for domain IDs.

Flexibility: Unlike Intel MPK, ARM-MDs only apply to first-level entries; the
second-level entries inherit the same permissions. This prevents arbitrary gran-
ularity of memory protections to small page boundaries and reduces the perfor-
mance of some applications [21]. Also, the DACR access control options do not
directly mark a domain as read-only, write-only, or exec-only. So the higher-level
VM abstraction should resolve these issues.

Performance: Changing the DACR is a fast but privileged operation, so any
change of domain access permissions from userspace require a system call. This
is unlike Intel MPK that makes its Protection Key Rights Register (PKRU)
accessible directly from userspace.

Userspace: There is no Linux userspace interface for using ARM-MD; it is only
used within the kernel to map the kernel and userspace into separate domains.
In contrast, Linux already provides some basic support for utilizing Intel MPK
from userspace.

Security: Though the DACR is only accessible in privileged mode, any syscall that
changes this register is a potential breach that could cause the attacker to gain
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full control of the host kernel (e.g., through the misuse of the put user/get user
kernel API in CVE-2013-6282). Also, since only 16 domains are supported, guess-
ing other domains’ identifiers is trivial, making it essential not to expose these
directly to application code.

Address Space Identifier. The VMSA permits TLBs to hold any translation
table entry that does not directly cause a translation fault or an access flag fault.
To reduce the software overhead of TLB maintenance, the VMSA differentiates
between global pages and process-specific pages through the Address Space Iden-
tifier (ASID). A global virtual memory page is available for all processes on the
system, and a single cache entry can exist for this page translation in the TLB.
A non-global virtual memory page is process-specific, associated with a specific
ASID. The ASID identifies pages associated with a specific process and provides
a mechanism for changing process-specific tables without maintaining the TLB
structures. Hence, multiple TLB entries can exist for the same page translation,
but only TLB entries that are associated with the current ASID are available
to the CPU (x86 supports a similar mechanism, called PCID). On ARMv7, the
current ASID is defined by the Context ID Register (CONTEXTIDR), and on
ARMv8, the ASID is defined by the translation table base registers that causes
better performance compare to ARMv7. Each TTBR contains an ASID field, and
the TTBCR.A1 field selects which ASID to use. If the implementation supports 16
bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being affected only uses 8 bits. ASIDs/PCIDs are useful for
relatively faster context switching [38] and more efficient page table isolation as
shown in design of kernel page-table isolation (KPTI or PTI, previously called
KAISER [27]) for mitigating Meltdown vulnerability [37].

MTE and PAC. Memory Tagging Extension (MTE), also called memory col-
oring, is introduced in Armv8.5-A. Memory locations are tagged by adding four
bits of metadata to each 16 bytes of physical memory (this is the Tag Granule).
Tagging memory implements the lock. Hence, pointers and virtual addresses
are modified to contain the key. In order to implement the key bits without
requiring larger pointers, MTE uses the TBI (top byte ignore) feature of the
Armv8-A Architecture. When TBI is enabled, the top byte of a virtual address
is ignored when using it as an input for address translation similar to PAC
(Pointer Authentication Code) design. This allows the top byte to store meta-
data. Memory tagging and pointer authentication both use the upper bits of
an address to store additional information about the pointer: a tag for memory
tagging, and a PAC for pointer authentication. Both technologies can be enabled
at the same time. The size of the PAC is variable, depending on the size of the
virtual address space. When memory tagging is enabled at the same time, there
are fewer bits available for the PAC.

MTE adds a new memory type, Normal Tagged Memory, to the Arm Archi-
tecture. A mismatch between the tag in the address and the tag in memory
can be configured to cause a synchronous exception or to be asynchronously

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-6282
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reported. When the asynchronous mode is enabled, upon fault, the PE updates
the TFSR EL1 register. Then the kernel detects the change during context switch-
ing, return to EL0, kernel entry from EL1, or kernel exit to EL1. MTE is currently
supported by LLVM, and when it is enabled, a call to malloc() will allocate
the memory and assign a tag for the buffer. The returned pointer will include
the allocated tag. If software using the pointer goes beyond the limits of the
buffer, the tag comparison check will fail. This failure will allow us to detect
the overrun. Similarly, for use-after-free, on the call to malloc() the buffer gets
allocated in memory and assigned a tag value. The pointer that is returned by
malloc() includes this tag. The C library might change the tag when the mem-
ory is released. If the software continues to use the old pointer, it will have the
old tag value, and the tag-checking process will catch it.

Fig. 2. Simple MicroGuards simple threading example: each MicroGuard thread is a
security principal, it can define security policies for controlling its own MicroGuards
collection, and pass its capabilities to other threads for secure sharing. The kernel then
enforces MicroGuard security policies and handles its virtual memory management.

3 MicroGuards

We now describe the implementation of MicroGuards, which is an abstraction
over the underlying kernel and hardware memory management for efficient intra-
process isolation. MicroGuards abstraction has an emphasis on security, perfor-
mance, and extensibility to support various hardware memory tagging primitives
through a higher-level interface that hides the hardware limitations (Sect. 2.1).
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3.1 Design Principles

The MicroGuards interface aims to enforce least privilege principle for memory
accesses via the following guidelines:

Fine-Grained Strong Isolation: All threads of execution should be able to
define their security policies and trust models to selectively protect their sensitive
resources. Current OS security models of sharing (“everything-or-nothing”) are
not flexible enough for defining fine-grained trust boundaries within processes
or threads (lightweight processes).

Performance: Launching MicroGuards, changing their access permissions,
sharing across processes, and communications through capability passing should
have minimal overhead. Moreover, untrusted (i.e., MicroGuards-independent)
parts of applications should not suffer any overhead.

Efficiency: MicroGuards should be lightweight enough even for mobile and IoT
devices running on a few megabytes of memory and slow ARM CPUs.

Compatibility: It is difficult to provide strong security guarantees with no
code modifications, and MicroGuards is no exception. We move most of these
modifications into the Linux kernel (increasingly popular for embedded deploy-
ments [2]) and provide simple userspace interfaces. MicroGuards should be imple-
mented without extensive changes to the Linux and not depend on a specific
programming language, so existing applications can be ported easily.

To achieve fine-grained isolation with mutual-distrust, we need a security
model that lets each thread protect its own MicroGuards from untrusted parts
of the same thread as well as other threads and processes. Simply providing
POSIX memory management (e.g. malloc or mprotect) is inadequate. As a
simple example, attackers can misuse the API for changing the memory layout
of other threads MicroGuards or unauthorized memory allocation. The Micro-
Guards interface needs to (i) provide isolation within a single thread; (ii) be
flexible for sharing and using MicroGuards between threads, and (iii) provides
the capability to restrict unauthorized permission changes or memory mappings
modification of allocated MicroGuards. Previous work such as ERIM [55] or
libMPK [43] does not offer such security guarantees since their focus is more on
performance and domain virtualization.

We derive inspiration from Decentralized Information Flow Control
(DIFC) [34] but with a more constrained interface – by not supporting informa-
tion flow within a program, we avoid the complexities and performance overheads
that typically involves. Existing DIFC kernels such as HiStar [59] achieve our
isolation goals, but requires a non-POSIX-based OS that opposes our compati-
bility goal. To have a practical and lightweight solution, we therefore built Micro-
Guards over a modified Linux kernel, and internally utilizing modern hardware
facilities such as ARM MDs for good performance.
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3.2 Threat Model and Assumptions

This paper focuses on two types of threats. First, memory-corruption based
threats inside a shared address space that lead to sensitive information leak-
age; these threats can be caused by bugs or malicious third-party libraries (see
Table 1). Second, attacks from threads that could get compromised by exploit-
ing logical bugs or vulnerabilities (e.g., buffer overflow attacks, code injection,
or ROP attacks). We assume the attacker can control a thread in a vulnera-
ble multithreaded application, allocate memory, and fork more threads up to
resource limits by the OS and hardware. The attacker will try to escalate privi-
leges through the attacker-controlled threads or gain control of another thread,
e.g., by manipulating another thread’s data or via code injection. The adver-
sary may also bypass protection regions by exploiting race conditions between
threads or by leveraging confused-deputy attacks.

MicroGuards thus provides isolation in two stages: firstly within a single
thread (through mg lock/unlock calls), and then across threads in the same
process. We consider threads to be security principals that can define their secu-
rity policies based on mutual-distrust within the shared address space. We pro-
tect each thread’s MicroGuards against unauthorized, accidental, and malicious
access or disclosure. Therefore, the TCB consists of the OS kernel, which per-
forms this enforcement. It also assumes developers correctly specify their poli-
cies through the userspace interface for allocating MicroGuards and transferring
capabilities.

MicroGuards are not protected against covert channels based on shared hard-
ware resources (e.g., a cache). Systems such as Nickel [47] or hardware-assisted
platforms such as Hyperflow [25] could be a helpful future addition for side-
channel protection on MicroGuards.

3.3 MicroGuards Access Control Mechanism

Each MicroGuard is a contiguous allocation of memory that (by default) only
its owner thread can access, add/remove pages to/from it, and change its access
permission. Our modified Linux kernel enforces the access control via a dynamic
security policy based on DIFC [59] and a simpler version of the Flume [34]
labeling model.

Each MicroGuard thread t has one label Lt that is the set of its unique
tags. Privileges are represented in forms of two capabilities θ+ and θ− per tag
θ for adding or removing tags to/from labels. These capabilities are stored in a
capability list Cp per thread p. To improve its performance, MicroGuards have
only one unique secrecy tag assigned internally by the kernel when created by
mg create. For improving security, none of MicroGuards API propagates tags
in the userspace; all APIs access control is done internally within the kernel.
The kernel allows information flow from α to β only if Lα ⊆ Lβ . Every thread
p may change its label from Li to Lj if it has the capability to add tags present
in Lj but not in Li, and can drop the tags that are in Li but not in Lj . This is
formally declared as (Lj − Li ⊆ C+

p ) ∧ (Li − Lj ⊆ C−
p ).
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Table 3. MicroGuards access control system calls. Pi represents principal i, L as a
label that is a list of tags (t∗) and their capabilities (c∗).

syscalls Description

mg alloc tag()→ t allocate a unique tag

mg modify label(L) modify a thread’s label/tag

mg transfer caps(L → c∗, p) passing capabilities to thread p

mg declassify(L → t∗) thread declassification or endorsement

mg grant(L → t∗, p1, p2) adds an acts-for or a delegation link

mg revoke grant(L → t∗, p1, p2) removes an acts-for or a delegation link

mg lock (L → t∗) disables access to an object

mg unlock (L → t∗) enables access to a locked object

mg clone (L, int(∗fn)(void∗)...) → p creates a thread

When a thread has θ+ capability for MicroGuard θ, it gains the privilege to
only access MicroGuard θ with the permission set by its owner (read/write/ex-
ecute). The access privileges to each MicroGuard can be different; hence, two
threads can share a MicroGuard, but the access privileges can differ.

Having a θ− capability lets it declassify MicroGuard θ. This allows the thread
to modify the MicroGuard memory layout by add/remove pages to it, change
permissions, or copy the content to untrusted sources. Unsafe operations like
declassification require the thread to be an owner or an authority (acts-for
relationship) then via mg grant and mg revoke calls (see Table 3).

3.4 MicroGuards Threads

Each MicroGuard thread may have multiple MicroGuards attached to it. There is
no concept of inheriting capabilities by default (e.g., in the style of fork) as this
makes reasoning about security difficult [13]. Here, a tagged thread can create
a child by calling mg clone; the child thread does not inherit any of its parent’s
capabilities. However, the parent can create a child with a list of its MicroGuards
and selected capabilities as an argument of mg clone. For instance, in Fig. 2,
thread 3 is a child of MicroGuard thread 2, which only gets “plus” capabilities
for both shared MicroGuards 18 and 46 via mg clone with a specific Label passed
by its parent thread.

For a MicroGuard to propagate, it must be through transferring capabilities;
this can be done directly by calling mg transfer caps for “plus” capabilities and
mg grant for declassification. Both these operations are also possible via specific
arguments of mg clone syscall when creating a child thread. Figure 2 shows how
each thread can use the MicroGuards API for creating tags, changing labels,
and passing capabilities to other threads. For instance, thread 1 gains access
to MicroGuard 18 by directly getting the b+ capability from thread 2. Since it
does not have the b− capability, it cannot change MicroGuard 18 permissions or
its memory mappings.
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Table 4. Some of userspace MicroGuards memory management API. Each MicroGuard
has an id and is a tagged kernel object internally. MicroGuards access control is checked
within the kernel.

Name Description

mg create → id Create a new MicroGuard

mg kill(id) Destroy a MicroGuard

mg malloc(id, size) → void* Allocate memory within a MicroGuard

mg free(id, void∗) free memory from a MicroGuard

mg mprotect(id, ...) change an MicroGuard’s pages permission

mg mmap(id, ...)→ void* Map a page group to a MicroGuard

mg munmap(id, ...) Unmap all pages of a MicroGuard

mg get(id)→ perms Get a MicroGuard permission

Table 3 describes the userspace MicroGuard API. A thread can create a tag
by calling mg alloc tag, and the kernel will create and return a fresh unique tag.
The thread that allocates a tag becomes its owner and can give the capabilities
for the new tag to other threads. Each thread specifies its security policies by
mutating its labels via mg modify label, and can declassify its own MicroGuards
via mg declassify.

Threads can lock access or permission changes of their MicroGuards via
mg lock, which temporarily change MicroGuard tag to restrict any modifications
of MicroGuards state. A locked MicroGuard can only be accessed by calling
mg unlock.

MicroGuards Memory Management. To provide in-process isolation with
good performance (Sect. 3.1) we provide a virtual memory management abstrac-
tion within the kernel for MicroGuards-aware memory tagging, mappings, pro-
tection, page faults handling, and least privilege enforcement. This abstraction
bypasses most of the kernel paging abstraction that improves its performance.
Furthermore, it hides the intricacies of hardware domains. Then we provide
a userspace library on top of our modified kernel, using our MicroGuards-
specific system calls, for managing MicroGuards memory. An application cre-
ates a new MicroGuard by calling mg create; the kernel creates a unique tag
with both capabilities (since it is the owner) and adds it to the thread’s label
and capability lists, and returns a unique ID. A MicroGuard can be kernel-
backed (just depending on commodity pagetable for isolation) or hardware-
backed which maps a MicroGuard to finer-grained memory safety/tagging fea-
tures. We extend the kernel VM layer to support MicroGuards and maintain a
private per-MicroGuard virtual page table (pgd t) that is loaded into the TTBR
register when the thread needs to do memory operations inside an MicroGuard
during a lightweight context switch. An internal MicroGuard data structure
maintains its address space range and permissions as shown in the following
codelisting 1.1.
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struct mg_struct {

// operation bitmaps: set to 1 if mg[i] is allowed to do this operation , 0 OW

DECLARE_BITMAP(mg_Read , MG_MAX);

DECLARE_BITMAP(mg_Write , MG_MAX);

DECLARE_BITMAP(mg_Execute , MG_MAX);

DECLARE_BITMAP(mg_Allocate , MG_MAX);

int mg_id;

struct mutex mg_mutex;

struct mem_segment *mg_range;

};

Listing 1.1. Internal MicroGuard data structure

Threads (or Linux tasks) in a process share the same mm struct that
describes the process address space. Having separate mm struct for threads
would significantly impact system performance, as all the memory operations
related to page tables should maintain strict consistency [29]. Instead, we extend
mm struct to embed MicroGuard metadata within it as lightweight protected
regions in the same address space as shown in Listing 1.2. It stores a per-
MicroGuard pgd t for threads and other metadata for memory management,
fault handling, and synchronization.

The standard Linux kernel avoids reloading page tables during a
context switch if two tasks belong to the same process. We modified
check and switch context to reload MicroGuard page tables and flush related
TLB entries if one of the switching threads owns an MicroGuard. We further
mitigate the flushing overhead using ASID tagged TLB feature and ARM MDs.
We modify mmap.c to keep track of MicroGuard-mapped memory ranges and
add mg mmap/mumap operations.

The kernel handle mm fault handler is also extended to specially manage
page faults in MicroGuard regions, so an MicroGuard privilege violation results
in the handler killing the violating thread.

struct mm_struct {

...

#ifdef CONFIG_MG

struct mg_struct *mg_metadata[MG_MAX ];

atomic_t num_mg; /* number of mgs */

pgd_t *mg_pgd_list[MG_MAX ]; /*mg Page tables per threads.*/

int curr_using_mg;

spinlock_t sl_mg[MG_MAX ];

struct mutex mg_metadata_mut;

DECLARE_BITMAP(mg_InUse , MG_MAX);

#endif

... };

Listing 1.2. Extending the Linux kernel mm struct with MicroGuards metadata.

Example code 1.3 shows a basic way of using MicroGuards to protect sensitive
content in a single thread. Then the owner thread maps pages to its MicroGuard
by calling mg mmap that updates the MicroGuard’s metadata with its address
space ranges. The kernel allows mappings based on the thread’s labels and free
hardware domains. If there is a free hardware domain, it maps pages to that
domain and places it to MicroGuards cache. When the MicroGuards already
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exists in the cache, further access to it is fast. When there is no free hardware
domain, we have to evict one of the MicroGuards from the cache and map the
new MicroGuard metadata to the freed hardware domain; this requires storing
all the necessary information for restoring the evicted MicroGuard, such as its
permission, address space range, and tag. The caching process can be optimized
by tuning the eviction rate and suitable caching policies similar to libMPK [43].

The application uses mg malloc and the MicroGuard ID to allocate mem-
ory within the MicroGuard boundaries (mg malloc), and mg free to deallocate
memory or mg mprotect to change its permissions (see Table 4). The owner
thread can use mg lock to restrict unauthorized access to it by accident or other
malicious code; this is helpful for mitigating attacks inside a single thread. Then
application developer can allow only his trusted functions or necessary parts of
the code to gain access by calling mg unlock (e.g., our single-threaded OpenSSL
use case in Sect. 5.2).

/* create a microgaurd (i.e., mg_id) */

int mg_id = mg_create();

/* map a memory region to the mg */

memblock = (char*) mg_mmap(mg_id , addr , len , prot , 0, 0); //

// set permissions by mg_mprotect

/* allocate memory from mg */

private_blk = (char *) mg_malloc(mg_id , priv_len);

/* make mg inaccessible */

lock_mg(mg_id);

// ... untrusted computations ....//

/* make mg accessible */

unlock_mg(mg_id);

// ... trusted computations ....//

/* cleanup mg */

mg_free(private_blk);

mg_munmap(mg_id , memblock ,len);

Listing 1.3. Basic MicroGuards usage

Our current implementation of MicroGuards utilizes ARM-MDs for efficient
in-process virtual memory tagging; as a result, only code running in supervisor
mode can change a domain’s access control via the DACR register (Sect. 2.1) or
remap private addresses to another domain through the TTBR domain bits.
However, note that MicroGuards abstraction is designed to support similar
hardware memory tagging features such as MTE and PAC with straightfor-
ward changes; mostly by replacing the backed for MicroGuards memory man-
agement API (mg malloc layer) since the threading and other kernel changes
are architecture-agnostic. Our API and mappings prevent unauthorized permis-
sion changes for MicroGuards, and we also do not provide a userspace API for
direct modification of the DACR. Threads security policy enforcement is done by
adding custom security hooks in the kernel’s virtual memory management and
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task handling layers. It checks access based on the correct flow of threads labels
(Sect. 3.4). We extend the kernel page fault handler for MicroGuards-specific
cases. Illegal access to MicroGuards causes domain faults which our handler logs
(e.g., violating thread information) and terminates it with a signal.

4 Implementation

MicroGuards Kernel: The MicroGuards core access control enforcement and
the security model is implemented in the form of a new Linux Security Mod-
ule (LSM) [42] with only four custom hooks. The LSM initializes the required
data structures, such as the label registry and includes the implementation of all
access control system calls (Table 3) for enforcing least privilege. This includes
locking MicroGuards, changing labels, transferring capabilities, authority oper-
ations, and declassification based on the labeling mechanism (Sect. 3.4).

We modify the Linux task structure to store the metadata required to distin-
guish MicroGuards tasks from regular ones. Specifically, we add fields for stor-
ing MicroGuards metadata, label/ownership as an array data structure holding
its tags (each tag is a 32-bit identification whose upper 2 bits stores plus and
minus capabilities), a capability list; all included as task credential data struc-
ture. We implemented a hash table-based registry to make operations (e.g., store,
set, get, remove) on these data structures more efficient.

The LSM also provides custom security hooks for parsing userspace labels
to the kernel (copy user label), labeling a task (set task label), checking
whether the task is labeled (is task labeled), and checking if the informa-
tion flow between two tasks is allowed (check labels allowed). These security
hooks are added in various places within the kernel to MicroGuards are guarded
against unauthorized access or permission change by either the POSIX API (e.g.,
mmap, mprotect, fork) or the MicroGuards API. For example, forking a labeled
task should not copy its labels and capability lists, and this is enforced using
the MicroGuards LSM hooks. As another example, to avoid a task performing
unauthorized memory allocation into a random MicroGuard or mapping pages
to it, the security hooks are in the kernel’s virtual memory management layer
where the MicroGuards memory management engine (Table 4) can enforce cor-
rect access.

The MicroGuards virtual memory abstraction is implemented as a set of ker-
nel functions similar to their Linux equivalents (e.g., do mmap, do munmap and
do mprotect) with similar semantics but with additional arguments that are
required for enforcing the least privilege on MicroGuards. When an applica-
tion creates a MicroGuard by calling mg create (or mg mmap for the first time),
a MicroGuard ID passed as an argument that is associated with in-kernel meta-
data, together with the MicroGuard tag, and its capabilities that would be added
to the task credentials.

When MicroGuards are mapped to hardware domains, the exact physical
domain number is hidden from the userspace code to avoid possible misuse of the
API. The mappings between MicroGuards and hardware domains are maintained
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through a cache-like structure similar to libmpk [43]. A MicroGuard is inside
the cache if it is already associated with a hardware domain; otherwise, it evicts
another MicroGuards based on the least recently used (LRU) caching policy
while saving all require metadata for restoring the MicroGuard mapping and
permission flags.

Users can get their MicroGuards permissions by calling mg get, and quickly
change its permission through mg mprotect if the requested permission change
matches one of the domain’s supported options (Table 2) or undergo the small
overhead of a dynamic security check otherwise. Any violation of MicroGuards
permissions causes a MicroGuards fault that leads to the violating thread being
terminated. To protect MicroGuards against API attacks, all memory manage-
ment system calls check whether the caller thread has the appropriate capabili-
ties using the security hooks.

Creating a MicroGuard adds a new tag and owner capabilities to the task
credential, and the userspace library also provides a management API for modi-
fying labels and capabilities. Each thread can use mg transfer caps for passing
the plus capabilities to other threads, mg grant revoke for handling authorities,
mg lock to prohibit access to a MicroGuard, and mg unlock to restore access.
The mg lock/unlock operations are helpful in limiting in-process buggy code
from accessing MicroGuards content.

Userspace: To reduce the size of the TCB, we did not modify existing system
libraries and instead provided a userspace library to invoke MicroGuards sys-
tem calls. This library supports a familiar API for memory management within
a MicroGuard, including mg malloc and mg free for memory management. We
provide a custom memory allocator similar to HeapLayer [15] that allocates
memory from an already mapped MicroGuard. For each MicroGuard, there is
a memory domain metadata structure that keeps essential information such as
the MicroGuard address space range (base and length) and the two lists of free
blocks from the head and tails of the MicroGuard region that is used when
searching for free memory.

5 Evaluation

We evaluated our implementation of MicroGuards on a Raspberry Pi 3 Model
B [3] that uses a Broadcom BCM2837 SoC with a 1.2GHz 64-bit quad-core ARM
Cortex-A53 processor with 32KB L1 and 512KB L2 cache memory, running a
32-bit unmodified Linux kernel version 4.19.42 and glibc version 2.28 as the
baseline. We use microbenchmarks and modified applications to evaluate Micro-
Guards in terms of security, performance, and usability (Sect. 3.1 and Sect. 2.1)
by answering the following questions:

– What is the initialization and runtime overhead of MicroGuards? How does
using hardware domains impact performance?
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– Are MicroGuards practical and adaptable for real-world applications? How
much application change and programming effort is required? What is the
performance impact? How does it perform in a multi-threaded environment?

– What is the memory footprint of MicroGuards? How much memory does it
add (statically and dynamically) to both the kernel and userspace?

5.1 Microbenchmarks

Creating MicroGuards: Table 5 tests the cost of creating and mapping pages
to MicroGuards using mg mmap when MicroGuards are directly mapped to hard-
ware domains, 1MB aligned memory regions with only 16 MicroGuards support,
as compared to virtualized MicroGuards when there is no free hardware domain
and requires evicting MicroGuards from the cache. The results show that the
direct use of hardware domains improves MicroGuards performance by 4.9%
compare to the virtualized one. Note that creating MicroGuards is usually a
one-time operation at the initial phase of an application.

Fig. 3. Cost of MicroGuards memory allocation (malloc & free). On average mg malloc
outperforms malloc by a small rate (0.03%).

Table 5. Cost of creating MicroGuards when directly mapped to hardware domains
vs virualised mapping that requires MicroGuards caching. The results are average of
10000 runs.

Operation Overhead stddev

Direct mg mmap/munmap 4.8% ±0.17%

Virtualised mg mmap/munmap 10.01% ±0.15%
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Memory Protection and Allocation
We measure the cost of memory protection for baseline Linux where protection
is per-process, and on MicroGuard threads where protection is per-thread and
either implemented in software or hardware.

Table 5 shows the average results of 10000 runs of our microbenchmark
comparing the cost of mg mprotect with mprotect on baseline kernel. The
results show mg mprotect is 1.12x slower than mprotect, but the MD-backed
mg mprotect is 1.14x faster than baseline for some permissions (none and r/w)
that supported by DACR register and do not need a TLB flush. Note that since
hardware memory domains do not have flexible access control options, we cannot
benefit from a control switch of domains using the DACR register for all possible
permission flags such as the RO, WO, and EO variants.

Fig. 4. Overhead of creating MicroGuard-enabled threads: the results are the average
of 100000 runs with 1MB and 2MB heap sizes. On average, mg clone latency is 5.39%
lower than of pthread create.
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Table 6. Memory overhead of MicroGuards in Linux Kernel and userspace

Overhead Linux Kernel Userspace

Added LoC 3023 2405

Static Memory footprint static(7KB) slab(204KB) Static(10KB)

Allocating memory using mg malloc is on average 1.08x faster than glibc
malloc for blocks ≤64KB and introduces a small overhead (8.3%) for blocks
greater than 64KB (see Fig. 3). This cost can be optimised by using high-
performance memory allocators. The results are average of running microbench-
marks 20000 times, and shows using MicroGuards provides reasonable overhead
for memory allocation and permission changes.

Threading: We tested the cost of MicroGuard threading operations (creating
and joining) through mg clone that creates MicroGuard-aware threads. The test
uses the clone syscall with minor modifications to restrict any credential sharing
with the child by default (instead it provides additional clone options for pass-
ing parent’s capabilities to its child). We implemented mg join using waitpid.
Figure 4 shows mg clone outperforms pthread create by 0.56% and fork by
83.01%. This gain is attributed to the MicroGuard operations simply doing less
work for initializing new threads.

Codebase Overhead: Another factor towards the usability of MicroGuards is
the size of the codebase, which is important both from a security perspective
and the resource limitations of small devices. We implemented MicroGuards as
a Linux kernel patch with no dependency on any userspace libraries. As Table 6
shows it adds less than 5.5K LoC in total to both the kernel (≈3K LoC) and
userspace (2.5K LoC). It adds 7KB to the kernel image size and adds 204KB
for kernel slabs at runtime. The userspace library only needs ≈10KB of memory.
These results show the MicroGuards memory footprint is small and suitable for
many resource-constrained uses.

5.2 OpenSSL

Cryptographic libraries are responsible for securing all connected devices and
network communication, yet have been a source or victim of severe vulnerabili-
ties. Given these libraries’ critical role, a single vulnerability can have a tremen-
dous security impact. The well-known OpenSSL’s Heartbleed vulnerability [23],
for example, enabled attackers to access many servers’ private data (up to 66% of
all websites were vulnerable). More recently, GnuTLS suffered a significant vul-
nerability allowing anyone to passively decrypt traffic (CVE-2020-13777). Lazar
et al. [36] studied 269 cryptographic vulnerabilities, finding that only 17% of the
vulnerabilities they studied originated inside the cryptographic libraries, with
the majority coming from improper uses of the libraries or interactions with
other codebases. However, recent studies show that about 27% of vulnerabilities
in cryptographic software are cryptographic issues, and the rest are system-level
issues, including memory corruption and interactions with the host or other
applications/libraries [17].

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13777
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Hence, we modified OpenSSL to utilize MicroGuards for protecting private
keys from potential information leakage by storing the keys in protected memory
pages inside a single MicroGuard or multiple MicroGuards assigned per private
key. Using multiple MicroGuards provides stronger security while adding more
overhead due to the cost of caching MicroGuards.

To enable MicroGuards inside OpenSSL, all the data structures that store
private keys such as EVP PKEY needed protected heap memory allocation. This
meant replacing OpenSSL malloc wit mg malloc and using mg mmap at the ini-
tialization phase for creating one or multiple (per session) MicroGuards to store
private keys. After storing the keys, access to MicroGuards is disabled by call-
ing mg lock. Only trusted functions that require access to private keys (e.g.,
EVP EncryptUpdate or pkey rsa encrypt/decrypt) can access MicroGuards by
calling mg unlock. Modifying OpenSSL required fairly small code changes, and
added 281 lines-of-code.

We measured the performance overhead of MicroGuards-enabled OpenSSL
by evaluating it on the Apache HTTP server (httpd) that uses OpenSSL to
implement HTTPS. Figure 5 shows the overhead of ApacheBench httpd with
both the original OpenSSL library and the secured one with MicroGuards.
ApacheBench is launched 100 times with various request parameters. We choose
the TLS1.2 DHE-RSA-AES256-GCM-SHA384 algorithm with 2048-bit keys as
a cipher suite in the evaluation.

The results show that on average MicroGuards introduces 0.47% performance
overhead in terms of latency when using a single MicroGuard for protecting
all keys, and 3.67% overhead when using a separate MicroGuard per session
key. In the single MicroGuard case, the negligible overhead is mainly caused
by in-kernel data structure maintenance for enforcing privilege separation and
handling MicroGuards metadata. In the multiple-MicroGuards case, since httpd
utilizes more than 16 MicroGuards (allocates a new MicroGuard per session), it
causes higher overhead due to the caching costs within the kernel.

Fig. 5. Overhead of httpd on unmodified OpenSSL vs MicroGuards-enabled one.
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5.3 LevelDB

Google’s LevelDB is a fast key-value store and storage engine used by many
applications as a backend database. It supports multithreading for both concur-
rent writers to safely insert data into the database as well as concurrent read
to improve its performance. However, there is no privilege separation between
threads, so each could have its private content isolated from other threads. We
modified LevelDB to evaluate performance overhead of using the MicroGuards
threading model when each thread has its own private storage that cannot be
accessed by other threads.

We replaced the LevelDB threading backend (env posix) that uses pthreads
with MicroGuards-aware threading, where each thread creates an isolated Micro-
Guard as its private storage and computation. We used the LevelDB db bench
tool (without modification) for measuring the performance overhead of Micro-
Guards.

We generate a database with 400K records with 16-byte keys and 100-byte
values (a raw size of 44.3MB). The number of reader threads is set to 1, 2, 4, 8, 16,
and 32 threads for each successive run. The threads operate on randomly selected
records in the database. The results in Figs. 6 and 7 show how multithreading
can improve the performance of LevelDB, and utilising MicroGuards adds a
small overhead on write (5%) and read (1.98%) throughput. As with OpenSSL
previously, modifying LevelDB required only adding 157 lines-of-code around
the codebase.

Fig. 6. LevelDB: performance overhead ofMicroGuards-based multithreading compare
to pthread-based in terms of write throughput (5%).
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Fig. 7. LevelDB: performance overhead ofMicroGuards-based multithreading compare
to pthread-based in terms of read throughput (1.98%).

6 Discussion and Conclusion

We have shown that MicroGuards provides a practical and efficient mechanism
for intra-process isolation and inter-thread privilege separation on data objects.
It adds small performance overhead and minimal memory footprint, which in
essential for mobile and resource-constrained devices. However, the mechanism
can still be taken further.

6.1 Address Space Protection Limitations

For single-threaded scenarios (e.g., event-driven servers), although MicroGuards
can protect sensitive content from unsafe libraries or untrusted parts of the appli-
cations, it can be vulnerable if the untrusted modules are also MicroGuards-
aware and already use the MicroGuards APIs. The application can use mg get
to query MicroGuard information and use the API to access them. This is not
an issue when the untrusted code is running in a separate thread since the kernel
does not provide it the capabilities required for accessing the other MicroGuards.
It should be possible to modify popular event-driven libraries (e.g., libuv) to use
threads purely to separate sensitive information such as key material, but we
have not yet implemented this.

Various covert attacks [47] and side-channel attacks such as Meltdown [37]
and Spectre [32] demonstrate how hardware and kernel isolation can be
bypassed [30]. MicroGuards are currently vulnerable to these class of attacks,
although the existing countermeasures within the Linux kernel are sufficient pro-
tection. We believe these types of attacks are important security threats, and
hardening MicroGuards against them could be significant future work.
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6.2 Compatibility Limitations

Providing a solution that is compatible with various operating systems and het-
erogeneous hardware is challenging. Though we picked our base kernel on Linux
and built the abstraction with minimal dependencies, some application modifi-
cation is still required. We believe that building more compatibility layers into
our existing userspace implementation is possible and are open-sourcing our code
to gather further feedback and patches from the relevant upstream projects we
have modified.

Although Linux is the most widespread general-purpose kernel for embed-
ded devices, as well as being the base for Android, still many even smaller
devices depend on operating systems such as FreeRTOS. These often use ARM
Cortex-M based hardware features for isolation (such as memory protection units
(MPUs) [8,54]), or more modern CPUs with memory tagging extension [11]. We
plan to explore the implementation of the MicroGuards kernel memory manage-
ment on these single-address space operating systems, as well as broadening the
port to Intel and PowerPC architectures on Linux (where the memory domains
support is generally simpler to use than on ARM).

7 Related Work

There are many software or hardware-based techniques for providing process
and in-process memory protection.

OS/Hypervisor-Based Solutions: Hardware virtualization features are used
for in-process data encapsulation by Dune [14] by using the Intel VT-x virtualiza-
tion extensions to isolate compartments within user processes. However, overall,
the overheads of such virtualization-based encapsulation are more heavy-weight
than MicroGuards. ERIM [55], light-weight contexts (lwCs) [38] and secure mem-
ory views (SMVs) [29] all provide in-process memory isolation and have reduced
the overhead of sensitive data encapsulation on x86 platforms. The MicroGuards
provides stronger security guarantees and privilege separation, allows more flex-
ible ways of defining security policies for legacy code – e.g., without the use
of threads as in our OpenSSL example, its small memory footprint makes it
suitable for smaller devices, and it takes advantage of efficient virtual mem-
ory tagging by using hardware domains to reduce overhead. Burow et al. [19]
leverage the Intel MPK and memory protection extensions (MPX) to efficiently
isolate the shadow stack. Our efforts to provide an OS abstraction for in-process
memory protection is orthogonal to these studies, which all have potential use
cases for MicroGuards. Our focus has also been on lowering the resource cost to
work well on embedded and IoT devices, while these projects are also currently
x86-only. HiStar [59] is a DIFC-based OS that supports fine-grained in-process
address space isolation, which influenced our work, but we focused on provid-
ing a more general-purpose solution for small devices by basing our work on the
Linux kernel instead of a custom operating system. Flume [34] proposed process-
level DIFC as a minimal extension to the Linux kernel, making DIFC work with
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the languages, tools, and OS abstractions already familiar to programmers. It
also introduced a cleaner label system (which HiStar have later adopted). Like-
wise, other DIFC-based systems only support per-process protection. They also
add large overhead [34,57] or need specific programming language support [45].
MicroGuards, however, do no aim to enforce dataflow protection on all system
objects, but only focuses on threads and address space objects to enable very
lightweight privilege separation.

Compiler and Language Runtime: Various compiler techniques introduce
memory isolation as part of a memory-safe programming language. These
approaches are fine-grained and efficient if the checks can be done statically [24].
However, such isolation is language-specific, relies on the compiler and runtime,
and not effective when applications are co-linked with libraries written in unsafe
languages. MicroGuards abstractions are fine-grained enough to be useful to
these tools, for example, to isolate unsafe bindings. Software fault isolation
(SFI) [46,56] uses runtime memory access checks inserted by the compiler or
by rewriting binaries to provide memory isolation in unsafe languages with sub-
stantial overhead. Bounds checks impose overhead on the execution of all com-
ponents (even untrusted ones), and additional overhead is required to prevent
control-flow hijacks, which could bypass the bounds checks [33]. ARMLock [62] is
an SFI-based solution that offers lower overhead utilizing ARM MDs. Similarly,
Shreds [20] provides new programming primitives for in-process private mem-
ory support. MicroGuards also uses ARM MDs for improving the performance of
intra-process memory protection, but is a more flexible solution for intra-process
privilege separation; it provides a new threading model for dynamic fine-grained
access control over the address space with no dependency on a binary rewriter,
specific compiler or programming language.

Hardware-Enforced Techniques: A wide range of systems use hardware
enclaves/TEEs such as Intel’s SGX [7] or ARM’s TrustZone [10] to provide
a trusted execution environment for applications that against malicious ker-
nel or hypervisor [12,26,28,40,52]. The trust model exposed by these hardware
features is very fixed, and usually results in porting monolithic codebases to exe-
cute within the enclaves. Hence, there are wide ranges of attack vectors, which
many are memory vulnerabilities inside enclaves or their untrusted interface, in
such systems [48,50]. EnclaveDom [39] utilizes Intel MPK to provide in-enclave
privilege separation. MicroGuards provide better performance and more gen-
eral solutions with no dependency on these hardware features; hence it can be
used for in-enclave isolation and secure multi-threading to improves both secu-
rity and performance of enclave-assisted applications [51]. Ultimately, dedicated
hardware support for tagged memory and capabilities would be the ideal plat-
form to run MicroGuards on [60]. We are planning on supporting more of these
hardware features as future work, with a view to analyzing if the overall increase
in hardware complexity offsets the resource usage in software for embedded sys-
tems.
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