
An Architecture for Interspatial Communication
Anil Madhavapeddy

Computer Laboratory
University of Cambridge

avsm2@cl.cam.ac.uk

KC Sivaramakrishnan
Computer Laboratory

University of Cambridge
sk826@cl.cam.ac.uk

Gemma Gordon
Computer Laboratory

University of Cambridge
gg417@cl.cam.ac.uk

Thomas Gazagnaire
Tarides

Paris, France
thomas@tarides.com

Abstract—Digital infrastructure in modern urban environ-
ments is currently very Internet-centric, and involves transmit-
ting data to physically remote environments. The cost for this is
data insecurity, high response latency and unpredictable reliabil-
ity of services. In this paper, we lay out a software architecture
that inverts the current model by building an operating system
designed to securely connect physical spaces with extremely
low latency, high bandwidth local-area computation capabilities
and service discovery. We describe our early prototype design
OSMOSE, which is based on unikernels and a distributed store.

I. INTRODUCTION

In his classic essay on “Computing for the 21st Cen-
tury” [1], Mark Weiser observed that:

The most profound technologies are those that
disappear. They weave themselves into the fabric of
everyday life until they are indistinguishable from it.

Since then, there have been tremendous advances in mobile
and sensing technologies, and there is an ongoing rapid
deployment of “smart” digital infrastructure that augments the
physical environment. Consider the following scenario for a
next-generation building:

“A group of people are meeting in an coworking space to
discuss a project they are working on together. They are the
first to arrive at the building on a cold winter morning, and are
directed to a meeting room automatically by audio directions
individually projected to them. As they walk into the room
the lights are already on and the heating has been preset to
a comfortable level. They wave to a wall where a display
appears, and the building recognises the gesture and projects
a shared folder of the project. It begins to record and encrypt
the conversation with a group secret keyed to the participants.
One of the participants receives a tight-beam audio notification
informing them that they are needed elsewhere briefly. When
they leave the room the shared recording is immediately
paused within milliseconds to allow other participants to
casually chat among themselves. Subsequently, the encrypted
recording is transcribed, and made available in the datastores
of each participant under the terms of their shared disclosure
agreement for their project.”

This scenario illustrates the distance between Weiser’s 1999
vision of ubiquitous computing and where we currently are
almost two decades on. The above narrative features no
wearables or mobiles among the human participants – instead
of an array of individual smart phones, watches and laptops,
the situated environment of the building is providing secure,

shared, multi-tenant infrastructure for audio and visual com-
munications among the human participants. This is analogous
to the shift from individual computers to multi-tenant cloud
infrastructure in the past decade [2], but applied to the sharing
of physical places and devices.

Another aspect to consider in the scenario is the seamless,
low-latency nature of the interactions that were described
between humans and electronic devices. When a human takes
an action the environment is able to react within milliseconds
to take action immediately, rather than delaying for seconds
and causing the awkward delays that we have become used to
with modern Internet-connected mobile devices. By providing
immediacy, the technology can complement social interactions
rather than interrupting them [3].

Encouragingly, much of the hardware required to physically
assemble the described building is available off the shelf. E-ink
display wallpaper, parametric audio speakers for directional
broadcast, gesture recognition and smart lighting and heating
are all available or relatively easy to construct. The missing
link is the foundational software that manages, coordinates
and secures the distributed hardware – the operating system
for digitally connecting physical spaces together.

In this position paper, we begin to bridge this gap between
available hardware and missing software. We construct an
architectural model for interspatial networking – an operating
system for the dense, interconnected and shared urban spaces
that most humans live in. It aims to shift us away from the
wide-area, mobile-oriented devices that are permeating early
deployments of smart infrastructure, and towards a sustainable
digital model that is far more similar to a conventional utility
such as electricity or gas. Our system aims to make it far
simpler and more secure to introduce, manage and rely on
digital devices during day-to-day life in urban environments.

There is also an exciting new generation of upcoming
applications that demand vast amounts of bandwidth and low-
latency responses. Augmented and virtual reality, environmen-
tal e-ink displays, parametric directional sound, and robotic ap-
pliances simply do not work well if the latencies of interactions
with them rise above a certain point. This paper proposes an
operating software architecture aimed at fully supporting these
new applications on modern hardware platforms. We will next
describe some of the challenges in more detail (§II), discuss
the design principles behind interspatial applications (§III),
then present the design of our OSMOSE prototype OS (§IV),
and finally discuss examples and some implications (§V).



II. THE PROBLEM WITH EXISTING MOBILE SOFTWARE

Given that the hardware is all available, why is the above
scenario difficult to implement? The answer lies in the
traditional operating systems and network architecture that
power the current generation of smart devices. Because of
the rise of cloud computing, they are typically built around
communication to centralised Internet services. For example,
consider what happens when we speak into an Apple Watch
in order to retrieve some information. For this to work, the
watch must be connected to a mobile phone, which in turn
needs to establish a wireless connection to the Internet, where
Apple voice recognition services will dispatch a query to the
Google search engine. If any one of the services in this chain
breaks (for example, the common case of the phone signal
being “trapped” by a wifi authentication page), then the user
experience is broken. Even when it does work, it can take
seconds to respond to the voice query, and with very variable
latency. Once the response comes through, handoff to other
devices is also difficult unless they are owned by the user.

A. Reliability

Services deployed in physical environments need to work
all the time, and be locally debuggable when they do fail.
How do we shift from a light switch that “almost works”
after being pressed several times to seamless voice or gesture-
driven services that are always tuned and available in a
given environment? They also need to work independently of
Internet connectivity, so that every building can be an island
of digital services even when offline.

B. Security

The amount of sensitive data being captured in these envi-
ronments is tremendous, and much of it should not leave the
confines of the physical space without explicit permission from
all parties involved. This is extremely difficult to police given
the amount of Internet-wide coordination used in existing
devices, but can be fixed if the local environment provides a
structured mechanism for handling such storage securely with
respect to local environmental policies.

C. Latency

Interactive services require response times beneath the un-
canny valley of human perception. For the scenario above to
really feel seamless, we need a new “latency first” application
architecture that makes data and computation capacity avail-
able physically near the human users, with scheduling toler-
ances for responses in the milliseconds rather than seconds.

Solving these problems is difficult to do piecemeal across
individual parts of the software stack, since they are currently
general-purpose and loosely coupled. A typical IoT device
might run its own copy of the Linux kernel, with an embedded
userspace, a VPN into a centralised management server oper-
ated by the vendor for updates, and a mobile application for
the user to manage it. There is little synergy or dependence
on shared infrastructure to assist with the process.

III. TOWARDS INTERSPATIAL APPLICATIONS

Before proposing a solution, we consider some design prin-
ciples to underpin how applications in physical spaces operate.
When dealing with physical devices, the latency of response
to external events is paramount. Safety critical systems often
require “hard realtime” operation, or more often attempt to
provide soft guarantees about when they respond. As we move
further up the stack to modern mobile applications, there are
no such guarantees. Pressing a button on an iOS or Android
device goes through many layers of scheduling and network
connectivity before a response is generated.

Our interspatial architecture needs to allow us to deploy
“latency-first apps” into physical environments – ones that
are designed to run on local devices with response budgets
in the milliseconds, and with minimal external connectivity
needs. This implies that there is simply no time for doing
conventional operations such as network scanning or service
discovery in serial – by the time the user has asked a question,
the physical environment should already have the appropriate
resources established. We thus need to rearrange the program-
ming models around building interspatial applications to make
them suitable for such an environment.

A. Incremental Networking

While it is currently possible to spin up services on demand
within milliseconds [4] it is difficult to transmit a response for
complex clustered services within a time budget of a few mil-
liseconds. A device that is starting “cold” will need to establish
a network connection to the local node, most commonly via
TCP and subsequently a secure transport via TLS. The number
of hops required to establish a secure connection have been
recognised as a problem on the wider Internet, and new low-
latency protocols such as QUIC [5] are being deployed in
browsers. However, even these newer protocols only solve part
of the problem, since they do not integrate closely with the
application layer. Once the connection has been established,
we still need to authenticate the user(s), negotiate security
keys, perhaps perform version negotiation between devices,
and usually interrupt the user at an inconvenient time for a
software security update.

The reason that every device has to currently do all this
work is partly due to the end-to-end principle that guides the
design of Internet protocols. Every IP node is a “dumb” router
that knows how to forward protocol packets, but lacks higher-
level application information. Existing system interfaces (such
as the BSD sockets API, or DNS resolution) implement this
network stack, which is in turn baked into existing application
logic. Each device needs to repetitively perform the same
actions to establish connectivity, with the surrounding network
environment being unable to assist.

An alternative interface in a physical environment is to
move away from just-in-time connectivity towards a model
of establishing connectivity incrementally as the opportunity
arises. When sufficient information from the environment
arises to establish a partial connection (for example, upon
entering a building but before making any service requests)



the application needs to perform the operations that it can
do so then, such as negotiating security keys or ensuring
that software versions match. When a service request does
finally happen, the previously derived connection information
can be used to perform a single hop. Incremental connectivity
requires fundamental programming interface changes in order
to combine information across the traditional operating system
and application stacks, and for us to move away from the
venerable sockets API [6].

B. Spatial Interfaces

Incremental networking lets an individual network connec-
tion to a node be established quickly. In a physical environ-
ment it is also necessary to mesh wired sensors (such as motion
detectors or cameras) with mobile ones (humans carrying
location beacons). The wired systems need to be establishing
connectivity with services required by applications, and the
wireless ones need to be searching for nearby network nodes
via Zigbee [7] or Bluetooth [8]. This connectivity mesh is
necessary to ensure that all of the distributed components that
comprise a physical environment can all communicate with
predictable and very low latency.

Internet protocols such as TCP have not traditionally not
handled connection handoff well – extensions such as multi-
path TCP are effective [9] but have struggled with extending
existing interfaces such as the sockets API with the new
routing semantics available to applications [10].

For our interspatial applications, a building needs to be
able to manage all the local resources (include bandwidth or
storage) just as it does so with other utilities such as electricity.
In return, individual applications do not need to manage their
own networking, storage and authentication needs as they
are provided by the surrounding environment. This requires
a change in the traditional programming model to allow
applications to multiplex their connectivity needs around a
networking environment that is multipath and dynamic as
humans move around the physical space.

C. Native Hardware

Applications are traditionally built for a specific device
profile in mind – for example, a mobile phone or a desktop
application. The proliferation of multiple display form factors
has resulted in a new mode of “responsive” design [11] that
can adapt an interface to multiple resolutions and sizes.

With interspatial applications, we wish to eliminate the need
for importing wearable and mobile devices into a building
as the sole mechanism of interaction with a user. Hardware
present in the environment such as parametric speakers for 3D
positional audio [12] or wallpaper projections [13] should be
able to be used by local users, rather than being constrained to
the single form factor mobile devices (e.g. a watch or a mobile
phone) that we carry around. For this to work, interspatial
applications needs to be designed to have responsive user
interfaces, but also a suitable trust model to let users establish
secure connections to environmental hardware that is not
directly owned by them [14].

D. A Cross-Layer Unikernel Software Architecture

The three design principles for interspatial applications
programming interfaces (incremental networking, spatial in-
terfaces and use of native hardware) require cross-cutting
changes across traditional operating system and application
programming interfaces. What would a software solution to
operating embedded physical infrastructure might look like, if
designed with a clean slate in mind? The first step to making
this a practical prospect is to adopt the discipline of deploying
unikernels [15] on the hardware, and replacing the traditional
layered OS stack.

Unikernels are specialised operating systems that are com-
piled together with application source code and configuration,
resulting in a specialised binary that can boot in millisec-
onds [16] and eliminates traditional runtime layers in favour
of optimised build-time assembly. Unikernels were originally
developed from the concept of library operating systems [17]
and applied to cloud computing. We now find that the same
approach is a perfect fit to driving the world of resource-
constrained embedded hardware found in physical environ-
ments.

In a library operating system, the functionality that is
conventionally found in a monolithic operating system kernel
is broken out into software libraries that are available for use
by the application in exactly the same way as other higher-
level functionality currently is. All of the software libraries
are linked together with a small boot layer – this includes
traditionally kernel-based interfaces such as hardware device
drivers, which can now run in the same privilege level as the
application driving them. This model is ideal for embedded
devices, since it can result in direct low-latency and energy-
efficient access to the hardware.

Crucially, the approach also allows the application to be
tailored to the operational model of the embedded hardware.
For example, the same application source code could be
compiled to a tiny embedded processor without an MMU,
or also be recompiled into a conventional Unix process. One
downside of this specialisation approach is that traditional
multi-user (e.g. UNIX processes) operation is more difficult
in a single device once the unikernel has been deployed (we
address this in §IV-B). An upside is that the baseline operating
system can be highly stripped down and easily substituted –
for example, a conventional Linux kernel can be replaced by
a small, formally verified microkernel such as seL4 without
having to rewrite the rest of the application code [18].

The unikernel approach is thus important to the long term
sustainability of designing software for physical environments.
It lets us close the gap between the requirements of application
programming interfaces and the diverse requirements of the
embedded hardware. Instead of forcing vendors to squeeze
an ever-growing operating system stack for trivial tasks (such
as driving a lightswitch), adopting unikernel-based interfaces
means that the same unified software codebase can be tailored
across the variety of hardware that we can expect to see in a
typical situated environment in the next few decades.



IV. THE INTERSPATIAL OPERATING SYSTEM

We now discuss the design of a prototype interspatial
operating system based on a unikernel architecture, dubbed
OSMOSE. Its scope is to drive all the hardware in a single
physical space – such as a building – including the thousands
of sensors and actuators that may be present. As background
requirements, we assume that:

• we have a reliable physical topology available of the
situated environment. Details are out of scope for this
position paper – there are a number of indoor localisation
technologies available [19].

• users and devices have an out-of-band method to authen-
ticate to the operating system – this might be biometric
or face recognition or a password or hardware token [20],
but this has to happen as they enter the physical space.

• there is ample hardware available locally for applications
– for example an array of embedded devices in each
room – and the hardware is all connected via room-local
reliable wired networks, with wireless at the last hop only.

Since OSMOSE needs to run across a variety of hardware
with differing resource constraints, the traditional model of
booting a single image no longer holds. Instead of application
binaries, the input to the system is a collection of declarative
application fragments that represent processing logic and how
it ties together. This is then combined with physical topology
information and security policies to compile a set of unikernels
that are booted on the building’s hardware. This cycle of
compilation happens continuously and incrementally – as
applications are introduced or policies change, the unikernels
are recompiled in real-time to all the devices.

Applications do not communicate freely between each other
over the network with conventional TCP/IP – instead, the OS
sets up explicit channels that provide a high-level streaming
interface suited to the application needs (for example, a
low-bandwidth control channel vs a high-bandwidth video
processing ring buffer). The resulting set of communication
circuits is tracked as a dynamic dataflow graph, with the
building hardware representing nodes and the application logic
as edges. All communications in the system are dispatched
through a distributed storage system that immutably stores
interactions for audit and debugging purposes.

Figure 1 illustrates the overall architecture of OSMOSE. It
implements these components using the MirageOS1 unikernel
framework, written in the OCaml programming language.

A. Declarative Layer

Applications are partitioned up into declarative source code
fragments that represent units of computation, and then sched-
uled together by via a structured event stream using the Capnp2

RPC framework. This is becoming a popular architecture on
container-native computing infrastructures via the Serverless
movement [21], since it allows applications to run on dis-
tributed virtual machines that can be rescheduled depending on

1See https://mirage.io
2See http://capnproto.org

load and hardware availability. In an interspatial deployment,
the application logic is compiled to run directly on the phys-
ical hardware as a unikernel [22], with appropriate network
channels established depending on the available circuits (e.g.
a local point-to-point wireless link).

The services are composed together via the domain-specific
language of combinators provided by MirageOS. For example,
a voice recognition application can request an audio stream,
which can then be mapped onto a feature extraction module.
The application does not know the exact source of the audio
stream at this stage. In the case of our prototype design, we
use the MirageOS device driver model to define many of these
sources and sinks. The resulting programming model is event-
driven and reactive, and encourages the programmer to provide
ongoing incremental updates so that user interfaces can be
updated rapidly.

B. Builder and Artefact Layer

Once we have all the source code (in the form of application
logic, topology and configuration code), we need to compile
it into executable unikernels that can run on the available
hardware. Unlike a conventional operating system that runs
on a single hardware host, the code is compiled into a
heterogenous set of bootable kernels that are specialised to
the various devices available in the cluster. For example, a
portion of the application logic may be compiled to run on
a GPU or FPGA, and another piece to run on an embedded
ARM CPU without an MMU. This is accomplished via an
incremental build service that can rapidly link and specialise
the source code into unikernels.

The build service tracks all of the source code that via a
branching datastore that is similar to Git. Every single line
of application, operating system and configuration logic is
stored in the same place, and so the builder can easily track
precisely what code is running on the array of hardware. We
use the Irmin [23] datastore in our prototype design. Irmin is
a unikernel implementation of the Git model for MirageOS,
and provides the facility to handle complex distributed datas-
tructures just like source code.

Irmin is structured as a series of OCaml libraries that
expose increasingly complex storage functionality. Applica-
tions request the minimal functionality they need for their
purposes, and the appropriate storage layer is crafted from the
combination of requirements. For example, one application (a
button) might just need a key-value store, whereas another
(a projector) might want a read-only filesystem. Importantly,
all of the storage is backed by the same Merkle-tree-based
storage, granting us the ability to precisely track the behaviour
of every hardware node.

C. Scheduler Layer

The scheduler is responsible for triggering the builder, de-
ploying the resulting unikernels to hardware, and establishing
network circuits between devices. It receives an event stream
from the hardware (such as network topology changes, or
node failures). This layer is the most radical departure from a



ApplicationsDeclarative

Runtime

Topology Policies

Incremental Builder Event Stream

Branch StorageUnikernels

Secure Enclave

Audit Log

Actuators SensorsCPUs

Network Flows

Scheduler

Fig. 1. Architecture of the interspatial operating system. The system is configured declaratively via a set of application source code, policies and network
topology, and is then incrementally built and deployed onto hardware. All communications happens via the Merkle-tree based branch storage.

conventional operating system model. Instead of a process-
based system, a deployment can be viewed as a graph of
distributed hardware nodes, through which event stream data
from the environment flows.

Every coordination operation between nodes is piped
through the Irmin datastore, allowing the complete state of the
system to be tracked with strong provenance. We assume that
there is a large amount of persistent local storage available in
the deployment, but this can run in a separate processing node
from the low-power embedded hardware. The basic model for
the Irmin-based communication has been validated over the
past decade via a series of shared-memory implementations in
the Xen hypervisor [24]. In order to keep latency down despite
the use of Merkle-tree-based coordination, Irmin can expose
a shared-memory endpoint to each node, and local operations
between two nodes are asynchronously reconciled to a remote
store via a set of short-lived branches.

When applications need access to the outside world, they
do so via RPC calls to the scheduler. We use the Capnp
RPC framework for this purpose, which effectively acts as
the system call layer. Capnp features a very efficient low-
level serialisation mechanism (important when communicating
between embedded devices), but also a compiler for protocol
schemas that integrates secure capabilities [25]. These capa-
bilities can be passed around nodes as opaque references and
used to authenticate access to different parts of the system.
Since a capability can only be generated and communicated
through the Irmin store, this means that tracing distributed
function calls through a deployment are available “for free”
by inspecting and reconstructing the storage.

Interspatial applications require a lot of immediate interac-
tion with the physical environment. This could involve reading
sensor input (e.g. gesture recognition, audio inputs, pressure
sensors) and actuating outputs to sensors (e.g. heating, light-
ing, speakers, displays). The scheduler layer thus maintains
multipath network connections that track a physical network
topology that describes the containment relationships present

in a physical environment – a chair is on a floor beside a
wall within a room that is on the first floor of a building in
Cambridge in the United Kingdom.

As users interact with their environment, network connec-
tions are set up as they move in parallel with their actions. In
our earlier scenario, when the user first enters the building they
are authenticated with the building systems and given a session
key that is used to subsequently track them. As they walk
towards the meeting room, their preferences are reconciled
with other participants. Once they enter the room, they are
allocated a network slot inside that room’s network, and their
voiceprint details uploaded to local embedded processors. Ev-
ery time a new participant enters, their collection of identities
are aggregated to generate temporary encryption keys for any
shared communication. Video and voice are encrypted in real-
time using these keys and saved to secure storage enclaves
within the walls, available for immediate processing by locally
connected computation. Once a participant leaves a space, their
session keys are deleted and the hardware resources such as
displays are freed, ready for re-use by other humans.

This design inverts the conventional model of establishing
on-demand connections to remote services with a model that
incrementally establishes nearby circuits for applications, with
local data processing and resource allocation done as the
humans move around the situated environment in real time.
Since connections are established incrementally as humans
move around, when an action actually has to be taken it can be
done so with a single-hop packet, thus minimising round-trip
times and error-prone connection establishment protocols that
would normally add latency variance to an interaction.

D. Hardware Layer

The unikernels stored in the artefact layer are regularly
booted on the various pieces of embedded hardware through-
out the deployment. There is no need for dynamic network
discovery since static topology information is baked into every
booting kernel. If the network environment changes, then the
scheduler will trigger a recompile via the branch store and



Fig. 2. A shared co-working space where OSMOSE is deployed. There are two users collaborating using a shared display on the table, while another user is
listening to a personalised audio stream. The barista is receiving music and audio notifications while working.

perform a rolling upgrade. This is a similar discipline to
a Continuous Integration / Deployment pipeline commonly
adopted in the cloud, except applied to embedded firmware
via unikernels. It is a model that is easily possible as a result
of the pervasive use of the Irmin datastore.

At an individual device level, it is now common to find
domain-specific hardware. The most notable is the presence
of a secure enclave (e.g. SGX [26] or Trustzone [27]) that can
be used to store private user data [28]. All of the data that
is captured from sensors can only be committed to the local
Irmin store, and so it can be directly encrypted via a secure
enclave before ever being stored persistently. Although this
may seem expensive from a resource usage perspective, the
data is not stored for long periods of time, and nor does it
need to be transmitted externally. It can, however, be buffered
for long enough for interested local applications to process it
directly (e.g. transcribe a voice recording to a smaller, but still
encrypted, textual equivalent).

The design of OSMOSE that we have described in this
section is still quite a low-level one, and is concerned with
establishing the basic primitives required to boot and run
unikernel code on an array of embedded hardware. However,
the use of a schema-based RPC compiler for inter-component
communication means that it is very easy to extend the system

to accommodate new device drivers and data processing mod-
els. The MirageOS application framework that we are using
has been under development since 2007, and has a growing
set of library-based abstractions for networking, storage and
coordination that work well for cloud-based deployments. We
anticipate that as OSMOSE matures, there will be many equiv-
alent abstractions (e.g. real time video processing) contributed
for interspatial device drivers.

V. DISCUSSION

A. An Example Deployment

Figure 2 illustrates what an OSMOSE deployment might be
in a shared co-working space. Instead of the usual crowded
array of laptops, mobile phones and headphones, the users
benefit from use of the hardware present in the situated
environment. The two users on the bottom left can collaborate
using a touchscreen built into the table, and their conversation
transcribed and encrypted via local microphones that can filter
out noise from other tables due to their proximity to the user.
Meanwhile, the lone worker on the bottom right can listen
to an encrypted podcast via parametric audio speakers that
project the sound directly from the ceiling, without a need for
the user to hook up headphones and a mobile device. Finally,
the barista at the top right can work while listening to their



music selection with personalised notifications, and also pause
it as soon as a customer requires the barista’s attention.

Behind the scenes, OSMOSE is providing important operat-
ing system services to this scenario: each of the users has been
authenticated upon entry to the building and could install their
interspatial applications using the local wireless network. They
each have their own personal policies (e.g. audio sources and
conversation transcription) that have been installed into the
building. Each of the users need to be tracked by the building
with low latency to ensure that they can immediately interact
with the devices in front of them, while also enforcing isolation
of their data across the shared hardware in the building such
as the microphones and parametric audio speakers. As they
purchased their caffeinated beverages and took their seats,
other services such as payments could also be potentially
performed securely using this infrastructure.

Our next task is to design user studies of particularly
interactive local applications (with some inspiration drawn
from the field of ambient intelligence [29]) and evaluate them
in OSMOSE versus a conventional cloud-driven deployment.

B. Security and Privacy

Cyberphysical security is vital to creating a trustworthy
digital future for our smart environments. Accordingly, every
layer of OSMOSE is engineered with this in mind. At the
lower levels, the unikernel approach is designed to eliminate
unnecessary code and promote the use of safer programming
languages throughout the software stack. At the hardware
level, unikernels can compile flexibly and efficiently enough
to make use of the limited resources in CPU-based secure
enclaves [28]. At the storage level, the use of capabilities
and distributed ledgers (aka “blockchain”) to track provenance
throughout the system means that there is accountability
builtin from the ground up.

The broader concern about systems like OSMOSE are the
drawbacks that arise from pervasive data recording. Any such
highly personalized and context-aware system builds brings up
societal and cultural concerns about individual privacy [30].
This is mainly a concern due to data leakage that arises
from third parties (e.g. cloud providers) gaining access to this
private data. Our approach of primarily keeping data local
to the building (due to the need to operate without external
Internet connectivity) provides a natural defence against data
leakage. To be practical however, the applications running
on OSMOSE need to provide the same or better levels of
data analysis as cloud-based recommender systems currently
operate. There is complementary research ongoing to house
data silos near the user [31], and combining this local data
with broader global data from online social networks [32].
The data capture systems in OSMOSE can replace the role
currently taken by mobile devices [33], and also provide a
corresponding increase in accuracy due to not requiring the
data to be transmitted remotely before being processed.

The European General Data Protection Regulation [34] that
is being introduced from mid-2018 means that any interspa-
tial deployment also needs to engineer deletion for all the

tracked data. OSMOSE is designed to ensure that deletion is
an expensive but reliable operation – since every bit of data is
tracked, a distributed garbage collector can traverse everything
and rewrite history on all nodes to remove any individual data
that should be excised. The system also regularly runs garbage
collection on data to compact or delete it once the imme-
diate processing needs are met. Most obviously, OSMOSE is
designed to move computation to the data instead of uploading
the data to a remote cloud. This is the biggest improvement for
security and privacy for individuals – they can benefit from the
futuristic augmented reality interactions while knowing that
their data is kept physically on the premises.

VI. CONCLUSION

We have presented an early design for a distributed op-
erating system designed for deploying a new generation of
low-latency, interactive applications in urban environments.
Our design inverts the existing model of funnelling data to
the cloud, and instead provides the infrastructure for rapidly
processing data locally. In return, this will provide a foun-
dation for sustainably and securely managing the trillions
of embedded devices that form the emerging smart cities
movement.

Our OSMOSE prototype design brings the traditional benefits
of an operating system to the distributed array of hardware
that comprises a physical building — resource scheduling,
hardware isolation and a userlevel programming interface. The
programming model is aimed at building real-time, interactive
interfaces that can do complex data processing local to the
user, without being forced to ship data remotely to the cloud.

Any operating system is only worth the applications that
run on it. While our application interfaces are intentionally
not backwards compatible with existing frameworks to give
us room to experiment, their underlying programming model
is a familiar one to those who program cloud-based infrastruc-
ture [35]. We are hoping that the micro service-like application
model combined with automated deployments on embedded
devices [36] will be compelling to developers.

Our next steps are to create a fuller specification of the
design outlined in this position paper and evaluate realistic
next-generation interactive applications on this platform, and
to build a real physical implementation of our design in a
building environment. All of the source code of the constituent
components discussed here such as MirageOS and Irmin are
available under a BSD-style license from https://github.com/
mirage.

ACKNOWLEDGEMENTS

The authors would like to thank Mark Wormald from
Pembroke College for coining the term “interspatial”. We also
thank the MirageOS development team for their contributions
that made OSMOSE possible, and in particular to Thomas
Leonard for writing the Capnp MirageOS library. The ideas
in this paper have also benefited from discussions with Ian
Leslie, Allison Randal, Zahra Tarkhani, Jon Crowcroft, David
Scott, Thomas Haggett, Sadiq Jaffer and Richard Mortier.



REFERENCES

[1] M. Weiser, “The computer for the 21st century,” SIGMOBILE Mob.
Comput. Commun. Rev., vol. 3, no. 3, pp. 3–11, Jul. 1999. [Online].
Available: http://doi.acm.org/10.1145/329124.329126

[2] B. Hayes, “Cloud computing,” Commun. ACM, vol. 51, no. 7, pp. 9–11,
Jul. 2008.

[3] J. Deber, R. Jota, C. Forlines, and D. Wigdor, “How much faster is
fast enough?: User perception of latency,” in Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems, ser.
CHI ’15. New York, NY, USA: ACM, 2015, pp. 1827–1836.

[4] A. Madhavapeddy, T. Leonard, M. Skjegstad, T. Gazagnaire, D. Sheets,
D. Scott, R. Mortier, A. Chaudhry, B. Singh, J. Ludlam, J. Crowcroft,
and I. Leslie, “Jitsu: Just-in-time summoning of unikernels,” in 12th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 15). Oakland, CA: USENIX Association, 2015, pp. 559–573.

[5] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar, J. Bailey, J. Dorfman,
J. Roskind, J. Kulik, P. Westin, R. Tenneti, R. Shade, R. Hamilton,
V. Vasiliev, W.-T. Chang, and Z. Shi, “The QUIC transport protocol:
Design and internet-scale deployment,” in Proceedings of the Conference
of the ACM Special Interest Group on Data Communication, ser.
SIGCOMM ’17. New York, NY, USA: ACM, 2017, pp. 183–196.
[Online]. Available: http://doi.acm.org/10.1145/3098822.3098842

[6] G. V. Neville-Neil, “Whither sockets?” Commun. ACM, vol. 52, no. 6,
pp. 51–55, Jun. 2009. [Online]. Available: http://doi.acm.org/10.1145/
1516046.1516061

[7] D. Gislason, Zigbee Wireless Networking, pap/onl ed. Newton, MA,
USA: Newnes, 2008.

[8] M. Dideles, “Bluetooth: A technical overview,” Crossroads, vol. 9,
no. 4, pp. 11–18, Jun. 2003. [Online]. Available: http://doi.acm.org/10.
1145/904080.904083

[9] C. Paasch and O. Bonaventure, “Multipath TCP,” Commun. ACM,
vol. 57, no. 4, pp. 51–57, Apr. 2014. [Online]. Available: http:
//doi.acm.org/10.1145/2578901

[10] B. Hesmans and O. Bonaventure, “An enhanced socket api for multipath
TCP,” in Proceedings of the 2016 Applied Networking Research
Workshop, ser. ANRW ’16. New York, NY, USA: ACM, 2016, pp.
1–6. [Online]. Available: http://doi.acm.org/10.1145/2959424.2959433

[11] B. Gremillion, Responsive Web Design: Getting the New Baseline in
Web Design Right. Smashing Magazine, 2013.

[12] N. Muramatsu, K. Ohshima, R. Kawamura, O. C. Wei, Y. Sato, and
Y. Ochiai, “Sonoliards: Rendering audible sound spots by reflecting the
ultrasound beams,” in Adjunct Publication of the 30th Annual ACM
Symposium on User Interface Software and Technology, ser. UIST ’17.
New York, NY, USA: ACM, 2017, pp. 57–59. [Online]. Available:
http://doi.acm.org/10.1145/3131785.3131807

[13] W. Sun, I. Sobel, B. Culbertson, D. Gelb, and I. Robinson, “Calibrating
multi-projector cylindrically curved displays for ”wallpaper” projection,”
in Proceedings of the 5th ACM/IEEE International Workshop
on Projector Camera Systems, ser. PROCAMS ’08. New York,
NY, USA: ACM, 2008, pp. 1:1–1:8. [Online]. Available: http:
//doi.acm.org/10.1145/1394622.1394624

[14] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady, “Security in
embedded systems: Design challenges,” ACM Trans. Embed. Comput.
Syst., vol. 3, no. 3, pp. 461–491, Aug. 2004. [Online]. Available:
http://doi.acm.org/10.1145/1015047.1015049

[15] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gaza-
gnaire, S. Smith, S. Hand, and J. Crowcroft, “Unikernels: Library
operating systems for the cloud,” SIGPLAN Not., vol. 48, no. 4, pp.
461–472, Mar. 2013.

[16] F. Manco, C. Lupu, F. Schmidt, J. Mendes, S. Kuenzer, S. Sati,
K. Yasukata, C. Raiciu, and F. Huici, “My VM is lighter
(and safer) than your container,” in Proceedings of the 26th
Symposium on Operating Systems Principles, ser. SOSP ’17. New
York, NY, USA: ACM, 2017, pp. 218–233. [Online]. Available:
http://doi.acm.org/10.1145/3132747.3132763

[17] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr., “Exokernel: An op-
erating system architecture for application-level resource management,”
in Proceedings of the Fifteenth ACM Symposium on Operating Systems
Principles, ser. SOSP ’95. New York, NY, USA: ACM, 1995, pp.
251–266.

[18] K. Elphinstone, A. Zarrabi, K. Mcleod, and G. Heiser, “A performance
evaluation of rump kernels as a multi-server os building block on

sel4,” in Proceedings of the 8th Asia-Pacific Workshop on Systems,
ser. APSys ’17. New York, NY, USA: ACM, 2017, pp. 11:1–11:8.
[Online]. Available: http://doi.acm.org/10.1145/3124680.3124727

[19] Z. B. Tariq, D. M. Cheema, M. Z. Kamran, and I. H. Naqvi, “Non-gps
positioning systems: A survey,” ACM Comput. Surv., vol. 50, no. 4, pp.
57:1–57:34, Aug. 2017.

[20] F. Stajano, “Pico: No more passwords!” in Proceedings of the 19th
International Conference on Security Protocols, ser. SP’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 49–81. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-25867-1 6

[21] A. Kanso and A. Youssef, “Serverless: Beyond the cloud,” in Proceed-
ings of the 2Nd International Workshop on Serverless Computing, ser.
WoSC ’17. New York, NY, USA: ACM, 2017, pp. 6–10.

[22] S. Kuenzer, A. Ivanov, F. Manco, J. Mendes, Y. Volchkov, F. Schmidt,
K. Yasukata, M. Honda, and F. Huici, “Unikernels everywhere: The case
for elastic CDNs,” SIGPLAN Not., vol. 52, no. 7, pp. 15–29, Apr. 2017.

[23] B. Farinier, T. Gazagnaire, and A. Madhavapeddy, “Mergeable persistent
data structures,” in Vingt-sixièmes Journées Francophones des Langages
Applicatifs (JFLA 2015), D. Baelde and J. Alglave, Eds., Le Val d’Ajol,
France, Jan. 2015.

[24] T. Gazagnaire and V. Hanquez, “Oxenstored: An efficient hierarchical
and transactional database using functional programming with reference
cell comparisons,” in Proceedings of the 14th ACM SIGPLAN Interna-
tional Conference on Functional Programming, ser. ICFP ’09. New
York, NY, USA: ACM, 2009, pp. 203–214.

[25] T. A. Linden, “Operating system structures to support security and
reliable software,” ACM Comput. Surv., vol. 8, no. 4, pp. 409–445, Dec.
1976.

[26] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson,
R. Leslie-Hurd, and C. Rozas, “Intel software guard extensions
(Intel SGX) support for dynamic memory management inside
an enclave,” in Proceedings of the Hardware and Architectural
Support for Security and Privacy 2016, ser. HASP 2016. New
York, NY, USA: ACM, 2016, pp. 10:1–10:9. [Online]. Available:
http://doi.acm.org/10.1145/2948618.2954331

[27] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh, J. Ma,
and W. Shen, “Hypervision across worlds: Real-time kernel protection
from the ARM TrustZone secure world,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’14. New York, NY, USA: ACM, 2014, pp. 90–102.
[Online]. Available: http://doi.acm.org/10.1145/2660267.2660350

[28] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. L. Stillwell, D. Goltzsche,
D. Eyers, R. Kapitza, P. Pietzuch, and C. Fetzer, “Scone: Secure
Linux containers with Intel SGX,” in Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation, ser.
OSDI’16. Berkeley, CA, USA: USENIX Association, 2016, pp. 689–
703.

[29] F. Sadri, “Ambient intelligence: A survey,” ACM Comput. Surv.,
vol. 43, no. 4, pp. 36:1–36:66, Oct. 2011. [Online]. Available:
http://doi.acm.org/10.1145/1978802.1978815

[30] D. Wright, S. Gutwirth, M. Friedewald, E. Vildjiounaite, and Y. Punie,
Safeguards in a World of Ambient Intelligence (The International Library
of Ethics, Law and Technology), 1st ed.

[31] A. Chaudhry, J. Crowcroft, H. Howard, A. Madhavapeddy, R. Mortier,
H. Haddadi, and D. McAuley, “Personal data: Thinking inside the box,”
Aarhus Series on Human Centered Computing, vol. 1, no. 1, p. 4, 2015.

[32] S. S. Rodrı́guez, L. Wang, J. R. Zhao, R. Mortier, and H. Had-
dadi, “Personal model training under privacy constraints,” CoRR, vol.
abs/1703.00380, 2017.

[33] S. A. Ossia, A. S. Shamsabadi, A. Taheri, H. R. Rabiee, N. D. Lane, and
H. Haddadi, “A hybrid deep learning architecture for privacy-preserving
mobile analytics,” CoRR, vol. abs/1703.02952, 2017.

[34] P. Voigt and A. v. d. Bussche, The EU General Data Protection
Regulation (GDPR): A Practical Guide, 1st ed. Springer Publishing
Company, Incorporated, 2017.

[35] N. Savage, “Going serverless,” Commun. ACM, vol. 61, no. 2, pp. 15–16,
Jan. 2018. [Online]. Available: http://doi.acm.org/10.1145/3171583

[36] P. Persson and O. Angelsmark, “Kappa: Serverless IoT deployment,” in
Proceedings of the 2nd International Workshop on Serverless Comput-
ing, ser. WoSC ’17. New York, NY, USA: ACM, 2017, pp. 16–21.


