
Effectively Tackling the Awkward Squad

Stephen Dolan Spiros Eliopoulos Daniel Hillerström Anil Madhavapeddy
KC Sivaramakrishnan Leo White

Useful real-world functional programs must often confront
the Awkward Squad [7], a range of un-beautiful issues con-
cerning the interplay between concurrency, input/output, ex-
ceptions, resources, etc. We show that algebraic effects and
their handlers can elegantly express such programs without
compromising performance. In particular, we introduce asyn-
chronous effects and their handlers, and show how they ele-
gantly solve the interaction between user-level threads and
operating system services.

1 Introduction

Algebraic effects and their handlers have been steadily gain-
ing attention as a programming language feature for com-
posably expressing user-defined computational effects. While
several prototype implementations of languages incorporat-
ing algebraic effects exist, Multicore OCaml [2] incorporates
effect handlers as the primary means of expressing concur-
rency in the language [3]1. The modular nature of effect han-
dlers allows the concurrent program to abstract over different
scheduling strategies. Moreover, effect handlers allow con-
current programs to be written in direct-style retaining the
simplicity of sequential code as opposed to callback-oriented
style with either monadic concurrency libraries such as Lwt [8]
and Async [5] for OCaml or explicit callbacks.

2 Event-based I/O in direct-style

In a language with lightweight threads (fibers as we call them
in Multicore OCaml), invoking blocking function calls such
as Unix.accept would block the entire scheduler, preventing
other threads to run. The standard solution to this problem
is to use an event loop, suspending each task performing a
blocking I/O operation, and then multiplexing the outstand-
ing I/O operations through an OS-provided blocking mech-
anism such as select, epoll, kqueue, IOCP (IO Completion
Port), etc. Such asynchronous, non-blocking code typically
warrants callback-oriented programming, making the contin-
uations of I/O operations explicit through explicit callbacks
(à la JavaScript) or concurrency monad (Lwt and Async li-
braries for OCaml). This warrants a wholesale departure from
synchronous direct-style code. The resultant code is arguably
messier, though monadic concurrency libraries do have the
benefit of automatic mutual exclusion: context switches only
occur at bind points.

Effect handlers lets us retain the direct-style while still
allowing the use of event loops. We would declare an ef-
fect for an accept function effect Accept : file_descr → (
file_descr * sockaddr) with the handler:

| effect (Accept fd) k →

1We refer the interested readers to the full version of the paper for
a primer on effect handlers in Multicore OCaml: http://kcsrk.info/
papers/system_effects_may_17.pdf

0% 90.0% 99.0% 99.9% 99.99%99.999%
0

5

10

15

20

25

30

La
nt

en
cy

 (m
s)

Async
Go
Effects

Figure 1: Latency profile of client requests. 1k connections,
10k requests/sec.

if poll_rd fd then
try continue k (Unix.accept fd)
with e → discontinue k e

else (block_accept fd k; run_next ())

We first poll the file descriptor fd to see whether it is avail-
able to read. If so, we immediately perform the blocking call
(which is expected to succeed2), and resume the fiber with
the result. However, if the call would block, then we record
that the fiber is waiting to accept on fd and switch to the
next fiber from the scheduler queue as follows:
let run_next () =

if Queue.is_empty run_q then
if io_is_pending () then begin

wait_until_io_ready ();
do_io ();
run_next ()

end else () (* done *)
else Queue.pop run_q ()

run_next function first runs all the available threads, and
then if any I/O is pending it waits until at least one of the
I/O operations is ready. Then, it tries to perform the I/O
and continue. If the scheduler queue is empty, and there
are no pending I/O, then the scheduler returns. In a similar
fashion we can implement asynchronous variants of Unix.send
and Unix.recv. Using this API, we can write a simple server
that echoes client messages until client goes away as follows:
let rec echo_server sock =

let sent = ref 0 in
let msg_len = (* receive message *)

try recv sock buffer 0 buf_size [] with
| _ → 0 (* Treat exceptions as 0 length msg *)

in
if msg_len > 0 then begin

(* echo message *)
(try while !sent < msg_len do

let write_count =
send sock buffer !sent (msg_len - !sent) [] in

sent := write_count + !sent
done with _ → ()); (* ignore send failures *)
echo_server sock

end else close sock (* client left , close conn *)

The details of the code are not important, but observe that
the code is in direct-style and moreover it is the same code

2In reality, the call might not succeed due to a variety of exceptional
cases that must be handled for correctness [1]. But importantly, the
client-facing API remains in a direct-style.

1

http://kcsrk.info/papers/system_effects_may_17.pdf
http://kcsrk.info/papers/system_effects_may_17.pdf

for the synchronous, blocking echo server. In similar vein, we
have implemented an effect-based asynchronous I/O library,
aeio [1], that exposes a direct-style API to the clients. Exper-
imental results (Fig. 1) of using the library for as a backend
for httpaf, a full-featured OCaml web server demonstrates
that effect handlers perform on par with highly optimised
monadic concurrency libraries, while retaining the simplicity
of direct-style code.

3 Asynchronous effects

Effect handlers thus provide a nice abstraction for express-
ing user-level cooperative fiber schedulers. However, if a fiber
runs a long running pure computation, it leads to an unde-
sirable situation where the fiber hogs the core and does not
let other fibers run until the pure computation is complete.
The standard solution is to preempt the fiber periodically by
installing an interval timer. However, with a user-level sched-
uler, it is unclear how the signal handler for the timer inter-
rupt (which itself is an asynchronous computation) could get
hold of the continuation of the main computation. One could
envision supplying the signal handler function with the cur-
rent continuation, but this makes the API more awkward [6].

We make the observation that various asynchronous up-
calls from the OS such as timer expiry, interrupts, signals,
I/O completion notifications can be treated as asynchronous
effects. Rather than handling the timer interrupt in a signal
handler, the runtime raises an effect TimerTick in the current
fiber, which can be handled like a synchronous Yield effect to
implement preemptive scheduling:
| effect TimerTick k →

(* add current fiber to scheduler *)
enqueue (fun () → continue k ());
run_next ()

If the TimerTick is unhandled, it is a noop.

3.1 Signal handling

Signals are also modeled as asynchronous effects. On Unix-
like systems, when the user of a command-line program
presses Ctrl-z, the SIGTSTP signal is sent to the running pro-
gram. By default, this suspends the program. However, we
might want a different behaviour for Ctrl-z where we preempt
the running fiber if we are in the scheduler, and suspend the
program otherwise. We can achieve this by handling the asyn-
chronous Suspend event in the scheduler to handle the SIGTSTP
signal:
match f () with
| v → ...
|
| effect Suspend k → (* handle SIGTSTP *)

enqueue (fun () → continue k ());
run_next ()

This implementation, however, has a subtle bug; if Ctrl-z
was received while the control is in the body of clause for the
Suspend effect, then the program is suspended. This is not the
intended behaviour as we are in the middle of preempting a
thread, and we do not expect to be suspended. In order to
eliminate this possibility we require a means for temporarily
disabling asynchronous exceptions. We follow the good advice
of Marlow et al. in the design of GHC Haskell’s asynchronous
exceptions [4], and prefer scoped masking combinators:
mask (fun () →

match unmask f with
| v → ...
| ...

| effect Suspend k →
enqueue (fun () → continue k ());
run_next ())

The changes to the masking state made by mask and unmask
apply only to one scope, and are automatically updated when
entering and leaving the scope. Scoped combinators are also
exception safe: if run_next raises an exception which escapes
the handler scope, then the masking state is automatically
reset to that of the parent scope.

3.2 Asynchronous I/O notifications

Operating systems provide a number of different interfaces
with which to perform I/O. The simplest is the direct-style
blocking I/O, in which the program calls I/O functions pro-
vided by the operating system, which do not return until
the operation completes. This allows a straightforward style
of programming in which the sequence of I/O operations
matches the flow of the code. We aim to preserve this style
of programming, but implement it using alternative operat-
ing system interfaces that allow multiple I/O operations to
be overlapped.

Earlier we saw one way of accomplishing this with ef-
fects, by using operating system multiplexing mechanisms like
select, poll, etc., which block until one of several file descrip-
tors is ready. An alternative interface is asynchronous I/O,
in which multiple operations are submitted to the operating
system, which overlaps their execution. However, applica-
tions written using asynchronous I/O tend to have complex
control flow which does not clearly explain the logic being im-
plemented, due to the complexity of handling the operating
system’s asynchronous notifications of I/O completion.

We propose effects and handlers as a means of writing
direct-style I/O code, but using the asynchronous operating
system interfaces. We introduce two new effect operations:
Delayed, which describes an operation that has begun and
will complete later, and Completed, which describes its even-
tual completion. Both of these take an integer parameter,
which is an ID number identifying the particular operation.

Potentially long-running operations like read perform the
Delayed effect, indicating that the operation has been submit-
ted to the operating system but has not yet completed. Later,
upon receipt of an operating-system completion notification,
the asynchronous effect Completed is performed.

Using this mechanism, support for asynchronous comple-
tions can be added to the scheduler by adding clauses for the
Delayed and Completed effects, where ongoing_io is an initially
empty hash table:
| effect (Delayed id) k →

Hashtbl.add ongoing_io id k
| effect (Completed id) k →

let k’ = Hashtbl.find ongoing_io id in
Hashtbl.remove ongoing_io id;
enqueue (fun () → continue k ());
continue k’ ()

In this sample, the continuation k of the Delayed effect is
the continuation of the code performing the I/O operation,
which instead of being immediately invoked is stored in a hash
table until it can be invoked without blocking.

The continuation k of the Completed effect is the continua-
tion of whichever fiber was running when the I/O completed.
This scheduler chooses to preempt that fiber in favour of the
fiber that performed the I/O, by retrieving the continuation
k’ from the hashtable and continuing it. Equally, the sched-
uler’s policy could be to give priority to the already running
fiber, by swapping k and k’ in the last two lines.

2

References
[1] Aeio: An asynchronous, effect-based I/O library, 2017. Ac-

cessed: 2017-05-05 09:21:00.

[2] S. Dolan, L. White, and A. Madhavapeddy. Multicore OCaml.
OCaml Workshop, 2014.

[3] S. Dolan, L. White, K. Sivaramakrishnan, J. Yallop, and
A. Madhavapeddy. Effective concurrency through algebraic ef-
fects. OCaml Workshop, 2015.

[4] S. Marlow, S. P. Jones, A. Moran, and J. Reppy. Asynchronous
exceptions in Haskell. In Proceedings of the ACM SIGPLAN
2001 Conference on Programming Language Design and Im-
plementation, PLDI ’01, pages 274–285, New York, NY, USA,
2001. ACM.

[5] Y. Minsky, A. Madhavapeddy, and J. Hickey. Real World
OCaml - Functional Programming for the Masses. O’Reilly,
2013.

[6] Signal Handling in MLton Threads. http://www.mlton.org/
MLtonSignal, 2016. accessed: 1-Jun-2017.

[7] S. Peyton Jones. Tackling the awkward squad: monadic
input/output, concurrency, exceptions, and foreign-language
calls in Haskell, pages 47–96. IOS Press, January 2001.

[8] J. Vouillon. Lwt: A cooperative thread library. In Proceedings
of the 2008 ACM SIGPLAN Workshop on ML, ML ’08, pages
3–12, New York, NY, USA, 2008. ACM.

3

http://www.mlton.org/MLtonSignal
http://www.mlton.org/MLtonSignal

	Introduction
	Event-based I/O in direct-style
	Asynchronous effects
	Signal handling
	Asynchronous I/O notifications

