
The OCaml Platform v1.0

Anil Madhavapeddy (speaker), Amir Chaudhry, Jeremie Diminio,
Thomas Gazagnaire, Louis Gesbert, Thomas Leonard, David Sheets,

Mark Shinwell, Leo White and Jeremy Yallop

The OCaml Platform combines the OCaml compiler
toolchain with a coherent set of tools for build, documen-
tation, testing and IDE integration. The project is a collab-
orative effort across the OCaml community, tied together
by the OCaml Labs group in Cambridge and with other
major contributors listed above. The requirements of the
Platform are being guided by the industrial OCaml Con-
sortium (primarily Jane Street, Citrix and Lexifi).

This talk follows up the OCaml 2013 talk that intro-
duced the Platform. Since then, many tools have been re-
leased in parallel via the OPAM package manager, and
this year’s talk will demonstrate the concrete workflow
that ties them together (see Figure 2). We will first recap
the Platform ethos briefly, update on the OPAM package
manager v1.2, and conclude with the Platform workflow.

1 Background
We have initially taken direction from major industrial

users because these groups have a great deal of experience
of using the language at scale. For the Platform to be con-
sidered successful, it has to be a viable product for those
heavy users of OCaml. However, each of the users also
have large codebases with distinct coding styles, and of-
ten have built their own extensive libraries to complement
the OCaml standard library and open-source ecosystem.

A defining characteristic of OCaml programming is
modularity, where one component can be swapped out for
another component with the same interface. The Platform
follows the same philosophy; it does not mandate any
given set of libraries, but instead focusses on providing
the tooling to assemble, build, test and document a set of
packages suitable to a particular problem domain. Exam-
ple domains include the Core standard library from Jane
Street, the Ocsigen client and server web framework that
compiles OCaml into JavaScript, and the Mirage uniker-
nel operating system.

2 OPAM
OPAM plays a key role in the tooling for the Platform,

by providing a frontend that can control a concurrently in-

Figure 1: Growth in OPAM packages in the central repos-
itory. Note that this plots all unique versions, since OPAM
supports installing older revisions of a given package.

stalled set of compiler versions and package sets. Since its
public release, thousands of packages and revisions have
been added to the central repository, and growth contin-
ues strongly in 2014 (see Figure 1). An important feature
of OPAM is that it tracks multiple revisions of a single
package, thereby letting packages rely on older interfaces
if they need to. It also supports multiple package repos-
itories, letting users blend the global stable package set
with their internal revisions, or building completely iso-
lated package universes.

The OPAM 1.2 release has been adapted to make it eas-
ier to package up on different operating systems, and fea-
tures better support for external solvers to deal with the
growth of the package database. Most importantly, much
of its logic is available as an OCaml library, making it
easy for other tools to interface directly with OPAM.

One major use of OPAM as a library is that we now
have the capability to run tests over the complete package
set to understand the ramifications of proposed compiler
changes and any breaking effects they might have. This
substantially improves the usage data available to anyone
working on compiler modifications, and has been used ex-
tensively during the development of OCaml 4.02.



Create 
Local 

Package

Write 
source 
code

Build and 
Local 
Install

Push to 
GitHub

Code 
Review

Create 
OPAM 

metadata

Submit 
OPAM 

package

Online 
docs

Platform 
tests

Develop

IDE Tools
(Merlin)

IOCamlJS

OPAMdoc

Jenga

OCamlot

Code Review 
Tool

Ctypes

Unit
tests

Docker/Xen

0install

Multiarch
Binary

Releases

Issue
Tracking

Publish to 
central 
OPAM

Publish to 
local 

OPAM

Publish Maintain Tools

OPAM2web

Figure 2: Workflow of building, publishing and maintaining a package using the OCaml Platform tools. On the right
are the tools that are used in various stages of the workflow (described in the text).

2



3 Workflow
The OCaml Platform tools that we will demo during the

talk will follow this workflow depicted in Figure 2.

3.1 Development
This covers the initial development of a new library

from scratch, and is intended to highlight editor assistance
and the Platform build tools.

Create Local Package: We will initialize a new pack-
age intended to bind to a C library installed on the system.

Write Source Code: While writing the source code
(using the Ctypes1 library), the editor will give feedback
to the user in the form of type annotations and code com-
pletion using the Merlin IDE assistant.

Build and Local Install: Building takes place us-
ing the Jenga build tool, designed to operate on large
codebases far more efficiently than alternatives such as
ocamlbuild. Jenga also has built-in rules for all the
Platform tools, and is easily extensible via a library.

3.2 Publish
Push to Git: Once the package has been written, it is

time to publish it online. We use GitHub through our
demo as the default online site, but the Platform is in-
tended to work with any similar Git-style hosting platform
in the future (to avoid lockin to one provider). There is a
pure OCaml Git implementation now available in OPAM
to make manipulating such repositories easier from within
Platform tools.

Code Review: An emergent trend in new OPAM pack-
ages has been for users to request code reviews of their
newly uploaded package. This is possible, although awk-
ward, in the GitHub interface, and we are evaluating sev-
eral alternatives (including a home-grown one developed
at Jane Street).

Create OPAM Metadata: Publishing a package on
OPAM requires specifying some metadata, such as the
archive URL and dependency constraints. OPAM 1.2 im-
proves support for this by letting a new package be created
by adding an opam file directly into the package source
code, and prompting interactively for the data.

Submit OPAM Package: This is automated via a
command-line plugin to OPAM that stores the user’s
GitHub login token and creates the pull request to the cen-
tral Git repository without having to use the web interface.

Platform and Unit Tests: When a new package is
submitted to OPAM, it is automatically run through the
OCamlot continuous integration system that initially tests
it on Ubuntu Linux. The tests are run inside a Linux con-
tainer or a Xen VM, with extra system libraries specified

1https://github.com/ocamllabs/ocaml-ctypes

in the package metadata. Every new package must pass
this test before being merged into the package repository.
Unit tests can also be run inside the sandbox environment.

To ensure the ongoing health of the repository, daily
bulk build regression tests are also run (using a combi-
nation of Docker2 and Xen). The results are logged to a
central Git repository3 and failures triaged by a combina-
tion of automated tools and the OPAM developers.

The final set of bulk runs test the package database
on “unusual” platforms that casual developers are un-
likely to have access to, such as ARM, PowerPC and
Sparc devices, and a combination of MacOS X, FreeBSD,
OpenBSD and Linux distributions.

3.3 Maintain
Online documentation: When a package is published,

a central set of online documentation is regenerated using
opamdoc. This is built using a patch to the OCaml 4.02
compiler that stores documentation strings in the .cmt
files. These are gathered across all the packages and com-
bined into a cross-referenced HTML site, with an interac-
tive JavaScript console using the IOCamlJS notebook.

Publish to Local and Central OPAM: When a pack-
age passes its unit tests, it can be sent either to the global
OPAM repository, or to a custom one designed for a par-
ticular set of packages, with the opam2web tool building
the site. For instance, Citrix maintain their own OPAM
remote just for Xen packages, as do the Ocsigen team.
The testing tools described here work fully against cus-
tom repositories too, permitting different (and potentially
conflicting) standard libraries to each maintain their own
universe of packages. This is of importance to industrial
users who may need to commercially maintain a particular
package set long beyond the usual open-source lifecycle.

Multi-arch Binary Releases: While OPAM is a
source-based package manager, it is important to allow
users to quickly download a binary snapshot for their op-
erating system to get started quickly. The 0install4 binary
distribution system is written in OCaml and supports the
redistribution of signed binaries. The bulk build systems
can upload binaries to 0install repositories, thus providing
binary releases for slower platforms such as the rPi.

4 Conclusions
This talk will demonstrate the workflow and a wide va-

riety of tools that comprise the first version of the OCaml
Platform. Note: This talk would benefit from a slightly
longer timeslot due to the nature of the demo.

2http://docker.io
3http://github.com/ocaml/opam-bulk-logs
4http://0install.net

3


