
Multicore OCaml

Stephen Dolan Leo White Anil Madhavapeddy

May 24, 2014

Currently, threading is supported in OCaml only
by means of a global lock, allowing at most thread
to run OCaml code at any time. We present ongo-
ing work to design and implement an OCaml runtime
capable of shared-memory parallelism.

1 Introduction

Adding shared-memory parallelism to an existing lan-
guage presents an interesting set of challenges. As
well as the difficulties of memory management in a
parallel setting, we must maintain as much backwards
compatibility as practicable. This includes not just
compatibility of the language semantics, but also of
the performance profile, memory usage and C bind-
ings. In the case of OCaml, users have come to rely
on certain operations being cheap, and OCaml’s C
API exposes quite a lot of internals.

The biggest challenge is implementing the garbage
collector. GC in OCaml is interesting because of per-
vasive immutability. Many objects are immutable,
which simplifies some aspects of a parallel GC but
requires the GC to sustain a very high allocation rate.

Operations on immutable objects are very fast in
OCaml: allocation is by bumping a pointer, initialis-
ing writes (the only ones) are done with no barriers,
and reads require no barriers. Our design is focussed
on keeping these operations as fast as they are at the
moment, with some compromises for mutable objects.

A previous design by Doligez et al. [1] for Caml
Light was based on many thread-private heaps and
a single shared heap. It maintains the invariant that
there are no pointers from the shared to the private
heaps. Thus, storing a pointer to a private object
into the shared heap causes the private object and
all objects reachable from it to be promoted to the

shared heap en masse. Unfortunately this eagerly
promotes many objects that were never really shared:
just because an object is pointed to by a shared object
does not mean another thread is actually going to
attempt to access it.

Our design is similar but lazier, along the lines of
the multicore Haskell work [2], where objects are pro-
moted to the shared heap whenever another thread
actually tries to access them. This has a slower shar-
ing operation, since it requires synchronisation of two
different threads, but it is performed less often.

2 Garbage collector overview

In our approach, the virtual machine contains a num-
ber of domains, each running as a separate system
thread in the same address space. Each domain has
a relatively small local heap, and a large shared heap is
shared between all domains. The local heaps are col-
lected with OCaml’s existing minor collector (modi-
fied to use thread-local instead of global state), and
long-lived objects are promoted to the shared heap.

We maintain the invariants that no domain ever
follows a pointer to another domain’s local heap, and
that immutable fields of objects on the shared heap
only point to other objects on the shared heap. Mu-
table fields of objects on the shared heap may point
to objects on a domain’s local heap, and we describe
how reads of such fields are handled in Section 4.

Since local heaps are only ever accessed by a single
domain, no synchronisation between threads is re-
quired when a domain collects its local heap. This
allows us to sustain the high rate of allocation of
short-lived objects that many OCaml programs ex-
hibit.

1



3 Collecting the shared heap
Our GC for the shared heap is a mostly-concurrent
mark-and-sweep collector. Each thread maintains its
own grey stack and periodically does some marking
work. Marking is by changing the GC bits in the
object header, which is done without any synchroni-
sation between threads. Multiple domains may at-
tempt to mark the same object, but this is safe since
marking is idempotent.

Each domain has a multiple-writer, single-reader
message queue which it frequently polls for new mes-
sages (using the mechanism currently used to handle
Unix signals). When a domain finishes marking, it
triggers a stop-the-world phase, and notifies the other
domains through their message queues.

During the stop-the-world phase, each thread scans
its roots and marks any unmarked objects it finds.
Generally, this does not involve much marking: the
stop-the-world phase exists so that all threads can
verify that marking has completed successfully. After
the stop-the-world phase completes, any unmarked
objects are garbage and available to be swept.

Our mark-and-sweep algorithm is based on the
VCGC [3], a design which avoids having explicit
phase transitions between ”marking” and ”sweeping”
which are a traditional source of bugs. Our shared
heap allocator is based on the Streamflow [4] design,
which uses size-segmented thread-local pages. This
has been shown to have good multicore behaviour
and fragmentation performance.

4 Reading and writing
The invariants maintined by our system allow reads of
immutable fields to proceed without additional over-
head. However, both writes and reads to mutable
fields – which can be statically distinguised in OCaml
– require barriers. These are required to prevent a
thread from attempting to access another thread’s
local heap.

Currently, OCaml has a write barrier but no read
barrier for mutable fields, so the addition of a read
barrier could affect the language’s performance pro-
file. However, our system has a efficient three-
instruction read barrier, whose fast path consists of
a single branch and no additional memory accesses.

The slow path of this barrier occurs when a domain
attempts to access an object in another domain’s lo-
cal heap, triggering a read fault. In this case, the
thread performing the access sends a message to the
thread that owns the local heap in question using the
same messaging system that triggers GC, asking it
to perform the read instead. Upon receipt of such
a request, a thread performs the read, copies the re-
sulting object to the shared heap, and replies with
the new shared copy.

During long-running C calls domains are unable to
handle messages. In such cases domains release a lock
allowing other threads to access their local heaps.

5 Mutable objects
Read faults cause objects to be copied from local
heaps to the shared heap. If a mutable object is
copied our system must ensure that all future mu-
table reads and writes to that object are performed
on the new shared version, rather than from a stale
local copy.

We have a number of options for dealing with this
issue. The differences between the options are slight
changes to allocation behaviour and barrier code, so
we intend to implement several alternatives and com-
pare them for performance, including:

• Allocate all mutable objects directly in the
shared heap.

• Detect reads from stale local copies during the
read barrier.

• Rewrite any pointers to the stale local copy dur-
ing the read fault.

References
[1] Damien Doligez and Xavier Leroy. A concurrent, gener-

ational garbage collector for a multithreaded implementa-
tion of ML. POPL 1993.

[2] Simon Marlow, Simon Peyton Jones, and Satnam Singh.
Runtime support for multicore Haskell. ICFP 2009.

[3] Lorenz Huelsbergen and Phil Winterbottom. Very concur-
rent mark-&-sweep garbage collection without fine-grain
synchronization. ISMM 1998.

[4] Scott Schneider, Christos D. Antonopoulos, and Dimitrios
S. Nikolopoulos. Scalable, locality-conscious multithreaded
memory allocation. ISMM 2006.

2


