
Irminsule; a branch-consistent distributed library database

Thomas Gazagnaire (speaker), Amir Chaudhry, Jon Crowcroft,
Anil Madhavapeddy, Richard Mortier,1 David Scott2

David Sheets and Gregory Tsipenyuk
University of Cambridge, University of Nottingham,1 Citrix Systems2

1 Introducing Irminsule
Nowadays, typical applications spawn a large set

of heterogeneous computing and storage devices
with very different technical properties. For in-
stance, the “cloud” is a high-latency, low bandwidth,
high-availability storage device but can be costly;
smart-phones and tablets are replaced every couple
of years and are very limited in term of battery us-
age; set-top boxes are always on at home and can
host plenty of data but are owned by your Internet
provider.

Distributed applications running on these devices
need to be able to choose between different kinds of
policies:

Where to store what ? Applications should be able
to choose to store only a subset of data in the
cloud, with backup on a peer-to-peer network
of set-top boxes

What level of trust ? Applications should be able to
parameterize the level of trust against the stor-
age device: for instance all data stored in the
cloud should be encrypted, but not the tempo-
rary data stored in memory.

When to migrate data ? Applications should keep
the different datastore in sync and they should
be able to choose when to migrate data between
them. For instance, smartphones should be syn-
chronized with the “cloud” only when wifi is
available.

How did that happen ? Monitoring and debugging
of distributed applications is often a nightmare.
We want applications (and users) to be able to
easily inspect the history of changes with a clear
explanation of the scheduling policies.

Instead of having a definitive answer to all
these questions, Irminsule provides a collection of

libraries for database primitives: base policies are
available to the programmer, who can combine them
to create a distributed application with persistent
storage with complex scheduling. Irminsule stores
can be fully compatible with the Git command-line
(using a bi-directional translation) and is written
in pure OCaml. Hence, it can run as a Mirage
application on embedded devices or be compiled to
JavaScript using js_of_ocaml.

Its source code is available under a BSD license:
https://github.com/samoht/irminsule

2 Consistency Model
One of the most famous results related to dis-

tributed systems is the CAP theorem [5], which
states that it is not possible to have a system which
simultanously guarantees global consistency, high
availability and resilience to network partition. The
“modern” answer to this is to mantain availability
but get rid of strong consistency [10, 6, 2]. This is also
the approach taken by Irminsule – although strong
consistency can be built on top of the existing sub-
strate using consensus protocols if needed.

The weak form of consistency that we consider is
inspired from distributed version controlled systems
such as Git [11] and we dubbed it “branch” consis-
tency: each device has its own (partial) replica which
corresponds to a branch in the global database.
Reads and writes are local, i.e. they happen only on
the current branch, on data owned by the current
replica.

Branches can then explicitly be merged together,
at points in time controlled by the application, and
using application-defined merge policies between
replicas. Irminsule provides a library of base content
implementations which satisfy the following signa-
ture:



1 module type CONTENTS = sig
2 type t
3 val merge: old:t -> t -> t -> t option
4 ...

5 end

The library includes conflict-free replicated
datatypes (CRDT) [9], custom-function and combi-
nators to assemble these together. An interesting
technical point: since we keep a complete history
of changes, merging replicas having a common
ancestor is much easier than with usual CRDTs
where you usually need to build and keep track
of vector clocks. For instance, mergeable counters
can simply keep track of changes since they were
forked:

2 type t = int
3 let merge ~old x y = old + (x-old) + (y-old)

3 Programming Model
We expose a mutable prefix-tree interface to

the user, with support for local transactions, syn-
chronization primitives across replicas, and snap-
shot/revert capabilities. The prefix tree path is usu-
ally a list of strings and node values are the user-
defined mergeable contents (see 2):

1 module type S = sig
2 type t
3 type path
4 type contents
5 val read: t -> path -> contents
6 val update: t -> path -> contents -> unit
7 val remove: t -> path -> unit
8 ...

9 end

The S signature also has the following properties:

Local Transactions Transactions are a useful tool to
maintain some kind of sequential semantics,
such as atomicity guarantees for a sequence of
reads and writes. Their scope is limited to sin-
gle replicas as argued in [1].

Synchronization A pub/sub [3] model similar to
distributed version control systems with event
notifications. The global “Agent” coordination
policies are available as a library.

Snapshot/Revert Irminsule stores share the same
property as any other Content-Addressed Store
(CAS) where provenance tracking and snap-
shot/revert come for free.

Consistency Validation Using a technique similar
to Merkle Tree [7] we can build proof of
database consistency after a synchronization
has taken place.

4 Heterogeneous Backends
The interface exposed by Irminsule is built upon

two user-provided simple store signatures:

1. The block store is a low-level key-value append-
only store, where values are a sequence of bytes
and keys are deterministically computed from
the values (for instance using SHA algorithms).
The interface is very simple:

1 module type BLOCK = sig
2 type t
3 type key
4 val read: t -> key -> bytes
5 val add: t -> bytes -> key
6 end

we provide a collection of base implementations
parameterized over the hash and the value seri-
alization functions (in-memory, Git, HTTP, bin-
io) and we anticipate the community will con-
tribute new backends as they must satisfy only
a very minimal signature.

The block store contains serialized values from
both application contents, prefix-tree nodes and
history meta-data. As there is no remove func-
tion, the store is expected to grow forever, but
garbage-collection and compression techniques
can be used to manage its growth. This is not
an issue as commodity storage steadily becomes
more and more inexpensive.

2. The tag store is the only mutable part of the sys-
tem. This store is expected to be local to each
replica, very small, and contains named point-
ers to keys in the block store (for instance, in a
Git-like system, the HEAD tag points to the most
recent commit object).

1 module type TAG = sig
2 type t
3 type tag
4 type key
5 val read: t -> tag -> key
6 val update: t -> tag -> key -> unit
7 val remove: t -> tag -> unit
8 end

The high-level store is automatically generated (as
a functor application) over a block store, a tag store
and the application contents description. It lifts im-
mutable operations on the block store to a mutable
interface to provide the interface discussed in 3.

1 module Make
2 (B: BLOCK)
3 (T: TAG with type key = BLOCK.key)
4 (C: CONTENTS):
5 S with type contents = C.t

2



The application can choose different block and tag
store backends (for instance, the block store can se-
rialized to Git and the tag store can be kept in mem-
ory).

5 Use-cases
We are co-developing Irminsule and different ap-

plications using it: The first one is a rewrite of
Xenstore [4, 8], an efficient, single-host, in-memory
database, with fast inter-process communication
channels, which is critical to the proper function-
ing of hosts running the Xen hypervisor. In this ap-
plication, Irminsule is being used to increase fault-
tolerance and to provide a full diagnostic event trac-
ing system.

We are also writing a versioned IMAP backend,
using Irminsule to merge replicas instead of using
the IMAP protocol. Finally, we are developing a new
filesystem implementation using the branch consis-
tency semantics, to explore and experiment with the
(poorly specified) POSIX concurrent semantics.

References
[1] Sebastian Burckhardt, Daan Leijen, Manuel Fähndrich, and Mooly Sa-

giv. Eventually consistent transactions. In Proceedings of the 21st Euro-
pean conference on Programming Languages and Systems, ESOP’12, pages
67–86, Berlin, Heidelberg, 2012. Springer-Verlag.

[2] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasub-
ramanian, Peter Vosshall, and Werner Vogels. Dynamo: amazon’s
highly available key-value store. In Proceedings of twenty-first ACM
SIGOPS symposium on Operating systems principles, SOSP ’07, pages
205–220, New York, NY, USA, 2007. ACM.

[3] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-
Marie Kermarrec. The many faces of publish/subscribe. ACM Com-
put. Surv., 35(2):114–131, June 2003.

[4] Thomas Gazagnaire and Vincent Hanquez. Oxenstored: An efficient
hierarchical and transactional database using functional program-
ming with reference cell comparisons. In Proceedings of the 14th ACM
SIGPLAN International Conference on Functional Programming, ICFP ’09,
pages 203–214, New York, NY, USA, 2009. ACM.

[5] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibil-
ity of consistent, available, partition-tolerant web services. SIGACT
News, 33(2):51–59, June 2002.

[6] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized
structured storage system. SIGOPS Oper. Syst. Rev., 44(2):35–40, April
2010.

[7] Ralph C. Merkle. A digital signature based on a conventional encryp-
tion function. In A Conference on the Theory and Applications of Crypto-
graphic Techniques on Advances in Cryptology, CRYPTO ’87, pages 369–
378. Springer-Verlag, London, UK, UK, 1988.

[8] David Scott, Richard Sharp, Thomas Gazagnaire, and Anil Mad-
havapeddy. Using functional programming within an industrial
product group: Perspectives and perceptions. SIGPLAN Not.,
45(9):87–92, September 2010.

[9] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
Conflict-free replicated data types. In 13th Int. Symp. on Stabilization,
Safety, and Security of Distributed Systems (SSS), Grenoble, France, Oc-
tober 2011. Springer.

[10] D. B. Terry, M. M. Theimer, Karin Petersen, A. J. Demers, M. J. Spre-
itzer, and C. H. Hauser. Managing update conflicts in bayou, a weakly
connected replicated storage system. In Proceedings of the fifteenth
ACM symposium on Operating systems principles, SOSP ’95, pages 172–
182, New York, NY, USA, 1995. ACM.

[11] John Wiegley. Git from the bottom up, May 2008.

3


