
Trevi: Watering Down Storage Hotspots with Cool
Fountain Codes

George Parisis1,2, Toby Moncaster2, Anil Madhavapeddy2 and Jon Crowcroft2

School of Engineering and Informatics, University of Sussex1 and Computer Laboratory, University of Cambridge2

G.A.Parisis@sussex.ac.uk1 and {firstname.lastname}@cl.cam.ac.uk2

ABSTRACT
Datacenter networking has brought high-performance stor-
age systems’ research to the foreground once again. Many
modern storage systems are built with commodity hardware
and TCP/IP networking to save costs. In this paper, we high-
light a group of problems that are present in such storage
systems and which are all related to the use of TCP. As
an alternative, we explore Trevi: a fountain coding-based
approach for distributing I/O requests that overcomes these
problems while still efficiently scheduling resources across
both networking and storage layers. We also discuss how
receiver-driven flow and congestion control, in combination
with fountain coding, can guide the design of Trevi and pro-
vide a viable alternative to TCP for datacenter storage.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Net-
work Architecture and Design—distributed networks,
network communications

General Terms
Design, Performance, Reliability

Keywords
Datacenter Storage; Fountain Coding; TCP Incast

1. INTRODUCTION
Datacenters bring new challenges to the design and

operation of storage systems. Several conflicting re-
quirements need to be met at the same time, including
scalability, data integrity [12, 3] and resilience, con-
sistency and line-speed performance. Often, the only

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
HotNets-XII, November 21–22, 2013, College Park, MD, USA.
Copyright 2013 ACM 978-1-4503-2596-7/13/11 ...$15.00.

cost-effective solution is to relax some of the require-
ments. Over the years, client-server systems [21, 5, 9]
have been succeeded by distributed systems that share
functionality across multiple nodes in the network. In
some cases, metadata servers are used to resolve the
location of data and help maintaining an updated view
of the storage resources so that consistency and data
resilience is preserved in case of failures [6, 19, 26, 10].
Other systems distribute said functionality to multiple
nodes or even across all storage nodes in order to sup-
port decentralisation and ease of management [30, 20,
18, 25, 24, 31].

We present Trevi, a radical new storage mechanism
that uses fountain codes [14, 27] to provide resilience,
high performance, and efficient resource utilisation. Trevi
runs on top of UDP or even raw Ethernet and does not
depend on TCP. We leverage the inherent ability of
fountain coding to multicast data blobs across storage
nodes, and to utilise multiple replicas in parallel when
reading data. Our approach is tolerant of losses and
requires no retransmissions. Trevi requires no changes
to the network stack; instead, we build on top of UDP or
raw Ethernet frames, thus ensuring easier deployability.

Common to most existing systems is the necessity of
balancing high throughput while keeping the deployment
costs low. Consequently, they are built using commodity
hardware and use TCP to communicate. The use of
TCP leads to a number of known limitations that Trevi
mitigates, as described next.

TCP Incast
A well known consequence of using TCP is TCP incast;
”a catastrophic TCP throughput collapse that occurs as
the number of storage servers sending data to a client
exceeds the ability of an Ethernet switch to buffer pack-
ets” [22]. Incast is obvious for specific I/O workloads
such as synchronised reads, but can also occur when-
ever severe congestion plagues the network, as TCP’s
retransmission timeouts are orders of magnitude higher
than the actual Round Trip Times (RTTs) in datacenter
networks. Several techniques have been proposed to

1

mitigate TCP Incast [29, 33, 32], but their deployment
is hindered due to requiring extensive changes in the
OS kernel or the TCP protocol itself, or by requiring
network switches to actively monitor their queues and re-
port congestion to end-nodes. Adopting fountain coding
eliminates the need for retransmission upon packet loss.
Instead, additional encoded symbols are transmitted
until the receiver can decode the missing data (§2.2).

Trading network resources for resilience
Existing systems either send multiple copies of the same
data [10, 30, 20] or apply an erasure code to the data
and send the encoded pieces to multiple storage nodes [1,
8] to support resilience. The first approach effectively
divides the performance of every write request by the
number of stored replicas since each one of them has to
be unicast separately. The latter does better in terms
of required storage space, but erasure blocks need to be
updated when writing to one or more blocks of data,
and their old value must be fetched before the update.
With fountain coding, write requests can be multicast to
all replica points, thereby minimising network overhead
and increasing energy efficiency (§2.3). Trevi, operating
as a transport mechanism, is orthogonal to the usage of
erasure codes as a means to provide storage resilience
and it can work when either k-way replication or erasure
coding is employed in the storage system.

Expensive switches to prevent packet loss
Realistic solutions to the TCP Incast problem are often
solved by using network switches with large (and energy-
hungry) memory for buffering packets in-flight. Packet
loss or out-of-order receipt is much less important when
using fountain coding. Consequently we can reduce the
size of network buffers, or treat storage traffic as a lower
QoS class with limited buffer space. Hence, our approach
requires less energy to power the memory required for
buffering storage requests (§2.2).

Lack of parallelism when multiple replicas exist
Systems that store copies of the same data in multi-
ple locations (and where consistency among replicas is
maintained or outdated replicas are flagged) only use a
single storage node to fetch the data, leaving the rest
of the nodes idle. Data reads are parallelised by strip-
ing a single blob to multiple disks and hoping that I/O
requests are uniformly large. Usually, deep read-ahead
policies are employed to force the system to fetch multi-
ple stripes simultaneously, although this approach can
be wasteful for workloads with small random reads. By
contrast, fountain coding allows simultaneous multiple
sources when reading data. This leads to more efficient
utilisation of storage resources even when the I/O work-
load cannot itself be parallelised in situations such as
smaller read requests involving a single stripe (§2.4).

No (or basic) support for multipath transport
Most datacenters now offer multiple equal (or near-equal)
cost paths through their fabric [11, 2] to support multi-
path transport, but exploiting these is hard. Protocol
extensions like multipath TCP [23] require extensive
changes in the network stack. Other efforts seek to
balance flows across different paths in a datacenter in
a deterministic and rather static fashion [2, 13]. More
dynamic approaches to balance packets across differ-
ent paths to the same host are prohibitive because
out-of-order packets can degrade TCP’s performance
significantly. Fountain coding schemes are much more
welcoming to such dynamic balancing, since all symbols
are useful and there is no notion of out-of-order packets.
Unlike TCP (where balancing happens on a per-flow
basis to avoid out-of-order packets throughout a flow’s
lifetime), in our approach encoded symbols can be bal-
anced independently. This provides a lot more flexibility
in the design of in-network multipath mechanisms (§2.2).

2. A STRAWMAN DESIGN
We start with a strawman design that focuses on how

blobs are transferred between clients and servers. We
abstract out details of the OS integration (e.g. as a dis-
tributed block device, file system or key-value store), and
omit details of how blobs are resolved to storage nodes,
failure recovery and system expansion. Trevi can be
integrated in any storage systems where blobs or pieces
of blobs are assigned to storage servers deterministically.

Our description is based on a simplified version of the
Flat Datacenter Storage (FDS) system [18]. In FDS,
data is logically stored in blobs. A blob is a byte sequence
named with a 128-bit GUID. The GUID can be selected
by the application or assigned randomly by the system.
Reads from and writes to a blob are done in units called
tracts. Every disk is managed by a process called a tract
server that serves read and write requests which arrive
over the network from clients. FDS uses a metadata
server, but its role during normal operations is simple
and limited: collect a list of the system’s active tract
servers and distribute it to clients. This list is called the
tract locator table (TLT). In a single-replicated system,
each TLT entry contains the address of a single tract
server. With k-way replication, each entry has k tract
servers. To read or write a tract from a blob, a client
first selects an entry in the TLT by computing an index
into it by hashing the blob’s GUID and adding the index
of the tract in the blob. This process is deterministic
and returns the same set of tract servers to all clients
that hold an up-to-date version of the TLT.

The only extension required to support Trevi is the
addition of a column that stores some multicasting infor-
mation (e.g. an IP multicast group) to the TLT. When
nodes fail, or new nodes join the system, the TLT, which
is cached locally to all clients, is updated [18]. Note

2

that storage nodes subscribe to multicast groups in a
deterministic fashion when they receive the TLT, and
update their subscriptions when servers join or leave
the storage network. Trevi’s operation does not involve
subscribing to and unsubscribing from multicast groups
to transfer data among clients and servers.

2.1 Fountain coding-based blob transport
Fountain coding [14, 27] is central to our approach as

it allows us to provide a storage service that is tolerant to
packet loss, but without retransmissions or timeouts. It
requires extra computing resources to encode and decode
symbols and it has a small penalty in terms of bandwidth
due to requiring a slightly larger number of encoded
symbols than the initial number of fragments to decode
the original information. This overhead can be as low
as 5% [7] and proprietary raptor code implementations
report a network overhead of less than 1%.1

As depicted in Figure 1, the sender calculates how
many MTU sized fragments of the blob will be encoded
in each symbol; this is called the degree of the encoded
symbol. For example, the degree of encoded symbol 2
is 3. Selecting the degree is a crucial step in the process
as it affects the efficiency of the information delivery in
terms of the number of symbols required to decode the
blob, and the decoding complexity.

Figure 1: Fountain Coding Blobs

Different statistical distributions have been proposed
for different coding techniques [14, 27]. The sender uni-
formly selects degree number of fragments and encodes
them into the final symbol by XORing them; this set is
called the symbol’s neighbours. For instance, the neigh-
bour set of symbol 2 includes fragments B1, B2 and B4.
A receiver utilizes symbols with degree 1 to partially
or fully decode other symbols by XORing them with
the decoded symbol. In Figure 1, the receiver utilizes
the encoded symbol 1, to decode fragment B1. It then
XORs it with symbol 2. B2 is decoded using symbol 3,
which is also XORed with symbol 2. Symbol 2, then,
only contains B4, which is decoded.

As shown in Figure 1, symbols may get lost on the way
or travel via different paths. This is totally transparent
to the endpoints. All encoded symbols contribute to the
decoding process regardless the order they arrive, there-

1Source: Qualcomm website article “why raptor codes are
better than reed-solomon codes for streaming applications”

fore there are no out-of-order symbols and, consequently,
there is no need to keep or care about any sequencing
information.

2.2 Receiver-driven flow control
Traditionally, the fountain coding transport model is

push based. Senders start sending symbols and continue
until all receivers have decoded the data and sent a noti-
fication to the sender or unsubscribed from a multicast
group. In receiver-driven layered multicast [16], receivers
play a more active role by subscribing to and unsub-
scribing from multicast groups that represent different
coding layers, according to the network congestion.

In Trevi receivers actively manage the rate at which
encoded symbols arrive (effectively providing flow and
congestion control), by employing a receiver-driven pull
communication scheme where a sender sends one or more
symbols only when explicitly requested by a receiver.
In §4.1, we discuss the applicability and benefits of a
mixed, push/pull transport scheme.

Trevi receivers include a statistically unique label
when requesting an encoded symbol so that the RTT can
be calculated upon receiving a symbol sent in response to
that request (and therefore carrying the same identifier).
No action is taken when symbols are lost. We use labels
instead of sequence numbers since packets can arrive
out-of-order.

A receiver-driven approach for requesting symbols
simplifies flow and congestion control and guarantees
that no extra symbols are sent after the receiver decodes
the initial data. A receiver adjusts the number of pend-
ing symbol requests (called the window of requests) to
handle changes in: 1) the rate at which a storage server
can store data, 2) the rate at which a sender can send
data and 3) the congestion in the network.

The first point has not been solved in past systems,
especially for storage servers with spinning disks. In such
cases the network bandwidth can be much higher than
the disk array’s throughput. Hence, there is no point in
a storage server requesting more data than the amount
it can actually store, sparing the extra bandwidth for
others in the network. TCP’s flow and congestion control
would allow to transfer more data than what a server can
actually store. This data would be buffered in memory
until stored but some network bandwidth could have
been spared to other data transfers.

The data rate of a sender is variable because it may
serve multiple requests from receivers at the same time.
Our approach ensures that senders will be requested to
send encoded symbols at a rate that they can actually
cope with. This rate can be achieved by adjusting the
window of pending symbol requests when the RTT in-
creases. Note that the RTT also increases when symbols
are buffered in switches, but in both cases the window
of pending requests should be decreased.

3

Congestion can be inferred and avoided by monitoring
variations of RTTs for each symbol request. Receivers re-
act when congestion occurs in the network by decreasing
the number of pending symbols’ requests. Additionally,
losses in the network can be estimated since a receiver
can know for which requests respective symbols did not
arrive. It is worth highlighting that the notion of the
window, as introduced above, is different from the classic
TCP flow and congestion windows. There are no time-
outs and no retransmissions in Trevi, and instead some
internal timeouts which are only necessary to remove
stale requests from the current window and update the
loss statistics. These timers are adjusted based on the
monitored RTTs but do not trigger any retransmission
requests. In the worst case, if such a timer expires and an
encoded symbol arrives after the respective request was
removed, the receiver just increases the timer value for
the upcoming requests; there is no penalty for the early
timer expiration because the encoded symbol will be
used in the decoding process just like any other symbol
(there are no out-of-order symbols!).

We are still developing the details about the pace at
which receivers populate the window of requests when
starting to receive a new blob, as well as how they adjust
its size when one of the three conditions mentioned above
change and, therefore, we will not elaborate more in this
paper but we envision approaches similar to [4] and [28].

Packet losses are less important than in TCP; we do
not identify packets with sequence numbers, we do not
ask for specific packets and, consequently, there is no
notion of retransmissions because of timeouts. Hence,
there is no need to extensively buffer packets and des-
perately try to deliver them to their destination. Less
buffering means cheaper and energy-efficient switches
and/or more buffering for other TCP traffic which can
be clearly isolated from Trevi’s traffic.

2.3 Multicasting data
Write requests for a (part of a) blob are first resolved

utilising the hash of a blob’s identifier to locate it in the
Tract Locator Table (TLT) (step 1 in Figure 2). This
gives the client the addresses of individual servers as
well as the multicast group(s) to which it should send
the tracts in the write request. Tract storage servers are
assumed to be already subscribed to the right multicast
groups, according to the information in the TLT (all
entities in the storage network have the same view of
the TLT [18]).

When a client needs to write a tract to a number of
servers, it first sends a prepare notification to all replica
points (step 2). This notification must be sent in a
reliable way, either via a separate control TCP connec-
tion or by employing a retransmission mechanism for
this packet, which includes the identifier of the specific
tract (an encoded symbol can be piggybacked in the

Figure 2: Multicasting Write Requests

notification). Upon receiving this notification, storage
servers start requesting encoded symbols from the client
(for write requests, servers are the receivers of symbols)
(denoted as r in step 3).

It is important to note that although servers run
their own flow and congestion control window, the client
always sends encoded symbols based on the requests
coming from the slowest server. The rest of the servers
slow down the rate at which they request symbols to
match the incoming rate (the separate windows of re-
quests converge to the one of the slowest storage server).
This way the client is able to multicast encoded symbols,
denoted as s in step 3, to all servers at a rate defined
by the slowest server (this feature is beneficial for the
network because the multicasting rate is smoothed by
the slowest server). Replication is by definition a syn-
chronised operation which is completed only when all
replicas acknowledge the reception of a tract. In §4.3,
we describe a potential optimisation in case one storage
server is straggling.

Finally, each server sends a stop notification contain-
ing the identifier of the stored tract, which must arrive
to the client reliably (step 4). The client stops sending
encoded symbols after receiving such notifications from
all storage servers that store the specific tract.

In our approach data replication happens with the
minimum network overhead and more energy-efficiency
by just multicasting data to a deterministically chosen
set of nodes. Existing systems [30, 18, 20] select nodes
for storing data deterministically, and therefore the only
requirement is to have these nodes subscribing to a
multicast group specific to the dataset assigned to them.

2.4 Multisourcing data
Reading tracts out of storage nodes follows similar

lines. After resolving the nodes that store a specific tract
(step 1 in Figure 3), a client sends a get blob request to
all these nodes (step 2). All servers acknowledge the
reception of the request (step 3) and a symbol can be
piggybacked in the acknowledgement packet (Figure 3).

After receiving acknowledgements from all servers, the

4

Figure 3: Multisourcing Read Requests

client simultaneously requests encoded symbols from all
storage servers that hold an updated version of the tract
(for read requests, the client is the receiver of symbols).
Some systems [18, 30, 20] provide mechanisms to ensure
that nodes with outdated data are never selected to fetch
data. Trevi adopts a similar approach to ensure that
such nodes will never be chosen. As shown in Figure 3,
the client keeps separate windows of pending symbols’
requests for each storage server.

Each storage node creates and sends encoded symbols
in an independent and uncoordinated way in response to
requests from the client (step 4). The only requirement
here is that symbols created by storage nodes have a
very high probability of being different, so we ensure
storage nodes randomise the seed used when calculating
the degree of each symbol. Different seeds will produce
statistically different encoded symbols. Note that there
is no need for any kind of synchronisation for this scheme
to work. Servers transmit symbols at different rates
(defined by the client’s flow control mechanism) and
each server only contributes the number of symbols that
it is able to produce and transmit. Servers never send
an encoded symbol unless they are requested to do so.

Finally, the client reliably sends a stop request (step
5) to (separately) let each server know that it decoded
the requested blob. The whole procedure ends when the
client passes the decoded blob to the application or the
file or block subsystem (step 6).

The multisource transmission provided by Trevi allows
storage resources to be fully utilised even when the I/O
workload cannot be parallelised (e.g. for smaller read
requests involving a single stripe). More specifically,
all storage nodes that hold an updated version of some
data can contribute to the transmission of the data to a
client. This feature provides a second, inherent level of
load balancing when fetching data, the first being the
striping of blobs to multiple storage nodes.

3. THE PRICE TO PAY
In the previous sections we discussed what the prob-

lems are with existing storage systems that are based

on commodity hardware and operate on top of TCP
and how Trevi deals with them. In this section we dis-
cuss the potential downsides of our approach, which
are all related with the fountain coding technique. We
believe, though, that none of these issues is significant
in a datacenter storage context.
CPU Overhead. Fountain coding involves encoding
and decoding of information on the sender and receiver
side, respectively. Here, the overhead comes from gener-
ating random numbers according to the used statistical
distribution (e.g. the Robust Soliton Distribution [14])
and, mainly, from XORing several pieces of the initial
information to produce each encoding symbol to be
transmitted. We are confident that this overhead will
not be prohibitive with respect to Trevi’s applicability.
First, modern hardware in datacenter networks consists
of fast, multi-core CPUs that could easily cope with
the encoding and decoding processes. Second, the pro-
cess itself is highly parallelisable, thus one could take
advantage of the multiple cores or even offload it to
hardware (e.g. GPU or NetFPGA). Finally, an oppor-
tunistic approach, where a master replica decodes and
stores the original blob while other servers serve the
statistically-required number of symbols to decode the
blob, can be used to minimise the overall CPU overhead
of the storage system.
Network Overhead. As mentioned in §2.1, fountain
coding involves a constant penalty in terms of network
overhead. This overhead is not significant given that in
Trevi, TCP incast, which can severely degrade the I/O
performance, is mitigated, and that we save network
resources by multicasting write requests.
Memory Overhead. In Trevi, a sender needs to have
fast access to a blob of data as long as it creates new
symbols (in response to respective requests). This im-
plies that a blob must be in memory until all receivers
successfully received and decoded the blob. This require-
ment could potentially have an impact on the required
amount of memory to support multiple I/O requests in
parallel. However, more control of the storage buffer
cache (using direct I/O and a userspace cache, or even
libOS techniques [15]) makes it possible to partially
map larger blobs into memory to allow encoding to be
suspended if the memory is required elsewhere. This
helps to mitigate the tail of requests for a given blob,
especially if there are stragglers in the storage cluster.
Energy Efficiency. We expect that Trevi will have a
positive effect on energy consumption, although we will
have to extensively evaluate this perspective with the
system we are currently implementing. Trevi adds some
energy intensive functionality; more processing power
is required to encode and decode data, and slightly
more data need to be transmitted compared to a regular
TCP blob transfer. Additionally when multiple servers
contribute to the transfer of data to a client multiple

5

disks spin so that a number of encoded symbols can
be served. However, data can be multicast instead of
multi-unicast and, because Trevi is tolerant to symbols’
loss, buffers’ size in network switches can be reduced.

4. FLOW CONTROL REFINEMENTS
The receiver-driven flow control of our strawman de-

sign can be refined in several ways.

4.1 Predictive Flow control
In order to minimise the overhead because of request-

ing encoded symbols separately, as described in §2, we
could use a simple push-pull flow control scheme. When
transmitting data, the source knows how many symbols
approximately need to be transmitted in the absence of
loss. This number depends on the statistical distribu-
tion that is used to calculate the degree of each symbol.
Initially the source is set to send this much data and
then pause. If no symbols have been lost, the source is
notified by all receivers that the blob is decoded, and
then it simply stops. In the opposite case, receivers start
issuing pull requests for additional required symbols, as
described in §2.

4.2 Priority and Scavenging
Fountain coding is inherently resilient to loss. This

makes it suitable for scavenger-type QoS. In such sys-
tems, scavenger traffic receives a very low priority which
means it will be preferentially dropped in the presence
of any congestion. But in the absence of congestion,
such scavenger traffic can be sent at near-line rate. In
order to make best use of such a system the sender must
rapidly detect how busy the network is. One way to
do this would be to modify the measurement approach
used for PCN.

Pre-Congestion Notification [17] is a measurement
based admission control system for real time traffic. Traf-
fic traversing each path through the network is viewed
as a single combined flow, called an ingress egress aggre-
gate. Central to PCN is the concept of a virtual queue
– a simple mechanism that behaves like a queue with
a slightly slower drain rate than the real queue.2 As
the virtual queue passes a lower threshold the queue is
defined as being in a pre-congested state. If the virtual
queue continues to grow it eventually passes a second
threshold which indicates that the real queue is about to
start to fill. In PCN, crossing either of these thresholds
causes arriving packets to be marked, and the aggregate
rate of marks is used to decide whether to admit new
flows or to drop existing flows.

A similar virtual queue technique could be applied
to our fountain storage system. This would allow the
storage control nodes to assess how much other traffic

2Since 2010, all Broadcom router chipsets have natively
supported a form of virtual queue called a threshold marker.

is competing with the storage traffic. This can then be
used to determine the safe rate at which to send data.
This is particularly relevant for the case of multi-sourcing
data from many replicas to one client machine. In this
instance there is a very real risk of causing the final
network queue nearest to the client to become congested.
Simply running a virtual queue on this and using this
as one of the parameters in the destination-driven flow
control would significantly reduce this risk.

4.3 Optimising for slow writes
If one storage node is writing data much more slowly

than the others in its group then it will have a dispro-
portionate effect on the rate at which all others can
write. There are two potential solutions to this problem.
Firstly any node that is significantly slower could be
removed from the multicast group. Secondly, the sender
may choose to ignore the slow node and simply go faster
than it can cope. If the node becomes overwhelmed it
can simply unsubscribe from that multicast group and
mark that tract as unreadable. Both of these approaches
have implications for the degree of replication within
the system, but may significantly improve performance.

5. CONCLUSIONS
In this paper we presented Trevi, a new storage mech-

anism based on fountain coding. Trevi overcomes the
limitations present in all storage systems that are based
on TCP. We described a strawman design which high-
lighted the main features of our approach, and also
presented an initial design for a receiver-driven flow and
congestion control mechanism that can better utilise
storage and network resources in a datacenter storage
network. Finally, we explored approaches for flow con-
trol refinements over our base mechanism.

We are implementing a complete storage system which
incorporates Trevi based on the flat datacenter storage
system [18] and built as a userspace application. We are
also studying several strategies for adjusting the request
window for the receivers according to changes in the
storage workload and in the network, as described in
§4. We will evaluate these mechanisms in multi-level
datacenter topologies, and experiment with different flow
control strategies using large scale simulations. Finally,
we will explore the design space by using our mechanism
in SDN-enabled topologies.

6. ACKNOWLEDGMENTS
We would like to thank Malte Schwartzkopf, Steve

Hand, Andrew Moore and the anonymous HotNets re-
viewers for their valuable feedback on earlier drafts of
this paper. The research leading to these results has
received funding from the European Union’s Seventh
Framework Programme FP7/2007-2013 under Trilogy 2
project, grant agreement no 317756.

6

7. REFERENCES
[1] M. Aguilera, R. Janakiraman, and L. Xu. Using

erasure codes efficiently for storage in a distributed
system. In Proc. of DSN 2005, 2005.

[2] M. Al-Fares, A. Loukissas, and A. Vahdat. A
scalable, commodity data center network
architecture. In SIGCOMM, 2008.

[3] R. J. Anderson. The Eternity service. In
Pragocrypt, 1996.

[4] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson.
TCP Vegas: new techniques for congestion
detection and avoidance. In SIGCOMM, 1994.

[5] P. Breuer, A. Lopez, and A. Ares. The Network
Block Device. Linux Journal, March 2000.

[6] P. H. Carns, W. B. Ligon, III, R. B. Ross, and
R. Thakur. PVFS: a parallel file system for Linux
clusters. In USENIX ALS, 2000.

[7] P. Cataldi, M. Shatarski, M. Grangetto, and
E. Magli. Implementation and performance
evaluation of LT and raptor codes for multimedia
applications. In IIH-MSP, 2006.

[8] A. G. Dimakis, V. Prabhakaran, and
K. Ramchandran. Decentralized erasure codes for
distributed networked storage. IEEE Transactions
on Information Theory, 52:2809–2816, 2006.

[9] L. Ellenberg. DRBD 9 and device-mapper: Linux
block level storage replication. In the Linux System
Technology Conference, 2009.

[10] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
Google File System. In SOSP, 2003.

[11] A. Greenberg, J. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. Maltz, P. Patel, and
S. Sengupta. VL2: a scalable and flexible data
center network. ACM SIGCOMM CCR, 39(4),
2009.

[12] S. Hand and T. Roscoe. Mnemosyne: Peer-to-Peer
steganographic storage. In IPTPS, 2002.

[13] C. Hopps. Analysis of an equal-cost multi-path
algorithm. RFC 2992, 2000.

[14] M. Luby. LT Codes. In Proc. of FOCS, 2002.
[15] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott,

B. Singh, T. Gazagnaire, S. Smith, S. Hand, and
J. Crowcroft. Unikernels: library operating systems
for the cloud. In ASPLOS, 2013.

[16] S. McCanne, V. Jacobson, and M. Vetterli.
Receiver-driven layered multicast. In SIGCOMM,
1996.

[17] M. Menth, F. Lehrieder, B. Briscoe, P. Eardley,
T. Moncaster, et al. A survey of PCN-based
admission control and flow termination.
Communications Surveys & Tutorials, IEEE,
12(3):357–375, 2010.

[18] E. B. Nightingale, J. Elson, J. Fan, O. Hofmann,

J. Howell, and Y. Suzue. Flat datacenter storage.
In USENIX OSDI, 2012.

[19] Oracle. The Oracle Clustered File System.
http://oss.oracle.com/projects/ocfs/.

[20] G. Parisis, G. Xylomenos, and T. Apostolopoulos.
DHTbd: A reliable block-based storage system for
high performance clusters. In CCGRID, 2011.

[21] B. Pawlowski, D. Noveck, D. Robinson, and
R. Thurlow. The NFS version 4 protocol. In SANE
2000, 2000.

[22] A. Phanishayee, E. Krevat, V. Vasudevan, D. G.
Andersen, G. R. Ganger, G. A. Gibson, and
S. Seshan. Measurement and analysis of TCP
throughput collapse in cluster-based storage
systems. In USENIX FAST, 2008.

[23] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda,
F. Duchene, O. Bonaventure, and M. Handley.
How hard can it be? designing and implementing a
deployable multipath TCP. In Proc. of USENIX
NSDI, 2012.

[24] Y. Saito, S. Frolund, A. C. Veitch, A. Merchant,
and S. Spence. FAB: building distributed
enterprise disk arrays from commodity components.
In ASPLOS, 2004.

[25] F. Schmuck and R. Haskin. GPFS: A shared-disk
file system for large computing clusters. In of
USENIX FAST, 2002.

[26] P. Schwan. Lustre: Building a file system for
1,000-node clusters. In Linux Symposium, 2003.

[27] A. Shokrollahi. Raptor codes. IEEE Transactions
on Information Theory, 52(6):2551–2567, 2006.

[28] K. Tan and J. Song. A Compound TCP approach
for high-speed and long distance networks. In
IEEE INFOCOM, 2006.

[29] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat,
D. G. Andersen, G. R. Ganger, G. A. Gibson, and
B. Mueller. Safe and effective fine-grained TCP
retransmissions for datacenter communication. In
SIGCOMM, 2009.

[30] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E.
Long, and C. Maltzahn. Ceph: a scalable,
high-performance distributed file system. In
USENIX SOSP, 2006.

[31] B. Welch, M. Unangst, Z. Abbasi, G. Gibson,
B. Mueller, J. Small, J. Zelenka, and B. Zhou.
Scalable performance of the Panasas parallel file
system. In USENIX FAST, 2008.

[32] H. Wu, Z. Feng, C. Guo, and Y. Zhang. ICTCP:
Incast congestion control for TCP in data center
networks. In Proceedings of CoNEXT, 2010.

[33] Y. Zhang and N. Ansari. On mitigating TCP
incast in data center networks. In Proc. of IEEE
INFOCOM, 2011.

7

