
Lost In the Edge: Finding Your Way With Signposts

Charalampos Rotsos, Heidi Howard, David Sheets, Richard Mortier1

Anil Madhavapeddy, Amir Chaudhry, Jon Crowcroft
University of Cambridge, 1University of Nottingham

Abstract
The de facto architecture of today’s Internet services

all but removes users’ ability to establish inter-device
connectivity except through centrally controlled “cloud”
services. Whilst undeniably convenient, the centralised
data silos of the cloud remain opaque and an attractive
target for attackers. A range of mechanisms exist for
establishing secure peer-to-peer connections, but are in-
accessible to most users due to the intricacy of their net-
work configuration assumptions. Users effectively give
up security, privacy and (when peers are both on the same
LAN) low-latency simply to get something useable.

We observe that existing Internet technologies suffice
to support efficient, secure and decentralized communi-
cation between users, even in the face of the extreme
diversity of edge connectivity and middlebox interven-
tion. We thus present Signpost, a system that explicitly
represents individual users in a network-wide architec-
ture. Signpost DNS servers create a “personal CDN”
for individuals, securely orchestrating the many differ-
ent available techniques for establishing device-to-device
connectivity to automatically select the most appropri-
ate. A DNS API gives application compatibility, and
DNSSEC and DNSCurve bootstraps secure connectivity.

1 Introduction

“DNS servers can play games. As long as they ap-
pear to deliver a syntactically correct response to
every query, they can fiddle the semantics.”

— RFC3234 [7]

Our requirements for inter-user and inter-device commu-
nication have grown in recent years, with the dramatic
increase in the number of personal devices driving the
need for networked resource sharing mechanisms. At
the same time, the growth of social networking has trans-
ferred a large part of users’ social activity onto the Inter-
net. Our online identities are closely associated with our

real life identities, and individuals are increasingly vul-
nerable to online digital threats, either from malicious
third-party attacks or mass-surveillance1.

Many Internet-wide services try to address the con-
nectivity requirements by using the public cloud to route
all device interconnection via third-party services, which
is unsatisfactory. Users offload their data to centrally
controlled third-party infrastructure, defining user-based
access policies under the assumption that they have full
control over access to their data. However, cloud services
introduce an additional application-layer hop to the com-
munication process, which as a result becomes suscepti-
ble to data eavesdropping and censorship, by both the
service provider and intermediate routing entities. Un-
fortunately, the interests of service providers and users
are not always aligned. Service providers have been ob-
served to capriciously modify their terms of service [23],
and provide very weak user service-level agreements
that minimise legal responsibility [11]. Governments
also legally force service providers to censor informa-
tion [20, 27], block services [10] and even demand en-
cryption keys [29].

The success of cloud services can be attributed in large
part to the current state of the Internet, which is broadly
divided into two halves: a high performance, global core
network and multiple, heterogeneous and complex edge
networks. User content is stored in the core network and
served from content delivery networks via high-speed
network links [28] from globally accessible hosts.

In contrast, edge networks are highly heterogeneous,
regulated, often constrained in their connectivity towards
the core, and plagued by transparent, programmable mid-
dleboxes. As a result, key properties of the Internet ab-
straction, such as bi-directional connectivity, have be-
come things of the past. Home network NATs hide
devices from the Internet and ISPs regulate application
functionality [12, 16], while enterprise network admin-

1http://guardian.co.uk/world/2013/jun/06/us-tech-giants-nsa-data

1



istrators restrict unwanted communications with coarse-
grained firewall policies [33]. The edge network is
thus where the end-to-end architectural principles of the
original Internet have been largely abandoned [6], to
be replaced by use of centrally controlled services as
a stepping stone to inter-device connectivity. Alterna-
tive peer-to-peer (P2P) approaches require extensive re-
implementation of existing Internet services and require
a critical mass of users, while their performance is sus-
ceptible to user resource altruism [25] and their coopera-
tive nature is subject to privacy threats [9].

We present Signpost, a network architecture for dis-
tributed, authenticated and encrypted user communica-
tions. Signpost automates the configuration and orches-
tration of off-the-shelf network connection mechanisms,
providing an abstraction layer to deploy distributed ap-
plications that can operate through the modern quagmire
of middleboxes, NATs and firewalls. Users explicitly
give their devices unique names in the DNS hierarchy
within their own zone. Signpost DNS servers then es-
tablish optimal ad-hoc paths between pairs of devices in
response to DNS lookups. Our prototype uses DNSSEC
[2] for authentication and DNSCurve [3] for encrypting
requests over existing resolver infrastructure, ensuring
that users never need to manually configure any tunnels.

We next elaborate some use-cases (§2) to motivate our
design goals, and then describe the Signpost architec-
ture and how to reuse existing Internet services to re-
establish a user-centric abstraction for identity and con-
nectivity (§3). We conclude with related work (§4) and
discussion of several challenges our design poses (§5).

2 Motivation & Threat Model

Local networks, including home networks, support an
ecosystem of applications and protocols, e.g., NFS, IPP
and VNC, enabling users to freely share data and re-
sources between devices; while service discoverability
mechanisms, e.g., Bonjour and SSDP, help to automate
device and network configuration. A number of open-
source tools exist that can create end-to-end communica-
tion channels with specific security properties across the
Internet. Our goal is to link these mechanisms together
programatically to enable direct device communication
without relying on a cloud-based solution and connec-
tivity to the global Internet. We next elaborate this moti-
vation by considering two distinct scenarios.

2.1 Alice: Secure, private file sharing
Alice has a mobile phone and a desktop PC. Her phone
normally achieves Internet connectivity using her mobile
provider’s 3G network while also opportunistically tak-
ing advantage of known WiFi networks when in proxim-

ity. Her desktop PC is located at her work, behind a NAT
and a stateful firewall which implements a “drop by de-
fault” policy. Alice has no control over the network pol-
icy and Universal Plug and Play (UPnP) port forwarding
is not supported. When both devices are connected to the
enterprise network, Alice can access files on her desktop
from her phone using SMB. When she is away from her
desk, she must remember to use her corporate VPN client
to enable this functionality, although this sometimes in-
terferes with her use of other services at her remote lo-
cation. Alice wants to securely access confidential work-
related files, independently of her location, in accordance
with her employer’s security policies.

Threats. If Alice uses a third-party file-sharing ser-
vice, she is vulnerable to the service provider snooping
the contents, and also to law enforcement pressuring the
provider to release the data to them. Furthermore, Alice
is vulnerable to a denial-of-service if her provider de-
cides to lock her online account, and the client access
software installed on her computer could potentially re-
mote wipe even her local copy of files. The contents
of the files also become physically spread across remote
datacenters, and so vulnerable to larger scale data leaks.2

Implications. Alice can bypass the threats above by
keeping her data local – she just needs a mechanism to
enable her smartphone to establish secure connectivity
with her desktop PC over the lower-layer channels as she
roams around different edge networks. It must be back-
wards compatible with existing applications and devices
to fit her existing user experience.

2.2 Bob: Private audio streaming
Another individual, known here as Bob, needs to com-
municate with a friend, Charlie. Bob’s government cen-
sors some Internet services through DNS and URL fil-
tering and Deep Packet Inspection. Bob wishes to chat
privately with Charlie, hiding such conversations from
his government-controlled ISP. Bob’s laptop is located
within his NATed home network, and connects to the In-
ternet via dynamic public IP addresses acquired by his
home DSL router.

Threats. Charlie is unable to disseminate information
to Bob using well-known 3rd party audio chat services
as they are censored or intercepted by Bob’s government.
Bob knows that he can use Tor to hide his conversation,
but still needs to ensure that the audio stream is encrypted
end-to-end.

Implications. Bob and Charlie require an authen-
ticated, globally-accessible rendezvous service through
which they can meet and privately negotiate subsequent

2E.g., In June 2011 the popular Dropbox service exposed all user
data without authentication for four hours. https://blog.dropbox.com/
2011/06/yesterdays-authentication-bug

2



DNSSEC

DNS

IP

Host

Edge

Internet
Bob's 

Signpost

DNS 
Resolver

Other hosts

Signpost DNSSEC 
Signalling

Applications

Signpost
Tunnel

Signpost
(home)

Signpost
(laptop)

Alice's 
Signpost

Signpost
(cloud)

Figure 1: Signpost architecture.

channel parameters. Such a rendezvous service must ac-
commodate aliases so that they can obfuscate the fact of
their communication. Finally, to avoid potentially dan-
gerous errors, particularly as they roam across differ-
ent networks, they need the service to automatically se-
lect among all available underlying channels, and imple-
ment the most appropriate, without relying on centrally
controlled cloud-hosted services that are easy targets for
surveillance.

3 Signpost Architecture

Figure 1 gives an overview of the Signpost architecture,
which has elements in the network core and edge and,
optionally, the end host. The goal is to map a domain
name hierarchy to a personal cloud of devices spread
across this network graph. Not all devices are created
equal and many, e.g., the Apple iPhone, only permit lim-
ited modification due to vendor restrictions. The ap-
plication interface is based on zero-TTL DNS, with re-
sponses dependent on the querying node’s identity, and
lightweight flows established to build a network model.

We define three types of Signpost devices:
(i) Signpost-enabled devices that can be fully soft-
ware patched and so use the architecture to its fullest
while remaining backwards-compatible with existing
applications; (ii) Signpost-aware devices that cannot
be fully patched but can host applications that take
advantage of local Signpost-enabled devices to route
via them; and (iii) Signpost-controllers, well connected

instances in the network core, e.g., on Amazon EC2,
bridging the control channel between devices and hiding
device locations from other users.

We will next describe the name hierarchy (§3.1), fol-
lowed by the connectivity (§3.2) and control (§3.3) func-
tionality, and the API (§3.4).

3.1 Naming
The majority of Internet-connected devices are nameless
from a network perspective by either residing behind a
NAT or with only an assigned name that map to tran-
sient addresses, e.g. via DHCP. The first step to unlock-
ing global connectivity is assigning devices stable names
in the global naming hierarchy, and providing an authen-
ticated mechanism to resolve these device names to con-
crete network addresses. The Domain Name System of-
fers a widely deployed, available and scalable naming
service. It is available in every Internet edge network
and middleboxes have been designed around it. The sec-
ond step is to use DNS to establish a delay-tolerant chan-
nel that conveys application connectivity intentions and
provides an excellent point of integration between appli-
cations and the Signpost architecture.

Using DNS as a control channel requires careful
thought about the interactions with the existing resolu-
tion infrastructure. We are confident this use will be
acceptable as Content Delivery Networks (CDNs) have
also used DNS to redirect requests to local caches for
many years [28], and we simply extend this to repre-
sent users on the network instead of content providers.
The incidence of low time-to-live DNS packets has also
steadily increased for the same reason, and studies have
shown that a further increase would not be harmful [4],

The other main deviation from conventional DNS is
the need to identify the query’s ultimate source, not just
the resolver via which the last query was performed. On
the server side, the Signpost architecture requires every
user to own a DNS zone and to provide an authoritative
Signpost-controller that serves responses for devices reg-
istered in this zone. On the client side we adopt a two-
pronged strategy as DNS clients can perform iterative or
recursive resolution, and may not be Signpost-aware:

When Signpost-aware clients communicate with a
Signpost-controller, they use iterative resolution to con-
nect directly to the origin server. DNSSEC extensions
introduced public key cryptography primitives: RRSIG
and SIG(0) records [13] contain signed information,
while DNSKEY and DS records establish a global, pub-
lic and authenticated key infrastructure. The Sign-
post DNS client signs iterative requests with a SIG(0)
record identifying the origin, and replies with an RRSIG
record. If iterative resolution is not possible, e.g., due to
a firewall blocking outbound UDP, a lightweight DNS

3



tunnel is established [1] that encodes the signatures
in the query.3 This initial query yields a DNSSEC-
authenticated DNSCurve nameserver to which all future
name resolutions are encrypted and authenticated.

Once a request has been authenticated, Signpost en-
hances the default name lookup process via an effectful-
naming mechanism. An authenticated name resolution
request triggers a tactic engine which probes the net-
work to establish a path between the devices, or (as a
low-latency first resort) routes them via a core-network
tunnel. This network probing, described in more detail
later (§3.2), requires a control channel between partici-
pating devices. This control channel is a low overhead
signalling mechanism that lets devices negotiate connec-
tion parameters and potentially reconfigure their edge
networks via, e.g., UPnP or NAT punching. This channel
is established via the Signpost-controller, via either SSL
(if outgoing TCP works) or a DNS tunnel. Signpost uses
DNS tunnelling only when connectivity is limited, and
its resource impact is limited to a small amount of con-
trol traffic between the authoritative server of the user
and the local resolver of the device.

Connecting with a Signpost-unaware client via a
Signpost-controller is currently inherently less secure,
though Signpost does attempt to reduce the window
of vulnerability. The controller, e.g., Alice, publishes
a time-limited DNS capability in the form of a large,
secret, one-time-use subdomain. This is shared out-
of-band with the user of the Signpost-unaware client,
e.g., Bob. Then, when Bob wishes to communicate with
Alice, he attempts to resolve the secret subdomain, ini-
tiating setup of a secure channel by Alice’s tactic en-
gine (see below). Assuming some channel can be con-
structed, its endpoint IP address is returned to Bob’s de-
vice as the result of the DNS resolution of the secret sub-
domain. Subsequent communication is then as private as
that channel allows. Alice’s Signpost DNS server will
fail any subsequent attempts to resolve this subdomain,
as well as being alerted to potentially nefarious activity.

3.2 Connectivity
Establishing a stable channel between devices on differ-
ent edge networks is a non-trivial task. Middlebox inter-
ference and NATs means all of the network limitations
must be dynamically probed. The simplest solution – a
tunnel routed via the cloud– is clearly not the optimal so-
lution if devices are co-located on the same edge network
or are in physical proximity. Signpost servers solve this
discovery problem in a similar manner to public CDNs.
The first time a client query is received, the first-available

3This would be simplified by permitting SIG(0) RRs in DNS
queries, a feature we are preparing as an IETF draft proposal.

Tactics Purpose
STUN/TURN, NAT Punch, NAT traversal
UPnP
Tor, I2P Anonymity
iodine Tunnelling through DNS
TUNS, SSH, IPsec, SSL, TLS Encryption & authentication
OpenVPN, L2TP Indirect encrypted tunnel
Privoxy Web proxy
Multipath TCP Multipath support

Table 1: Tactics to connect two devices.

solution – typically a tunnel – is returned in the DNS re-
ply. Meanwhile, the server and clients probe for alterna-
tive channels, to be included in any subsequent replies to
the same client. Since all replies are given a zero TTL,
subsequent queries are very likely.

We introduce two notions to build this: tactics and the
tactics engine. The tactic abstraction encapsulates the
logic a specific connection mechanism requires to probe,
connect, forward and detect disconnection. A short list
of tactics that can be used to establish connectivity in real
networks are presented in Table 1.

The tactic engine abstracts the logic to establish a
communication channel between two devices, using
available tactics, and runs on all Signpost-enabled and
Signpost-controller devices. Its role is to execute a range
of tactics in parallel, to try to create a communication
channel with specific security properties. Additionally,
if an active channel is disconnected, the tactic engine
is responsible for re-establishing connectivity, using the
same or different set of tactics. Establishing connectivity
through the tactic engine is fundamentally an optimisa-
tion problem, where constraints are defined by the policy
and the objective function is defined by the implementa-
tion, e.g., tactic selection maximises network throughput
or minimises path establishment latency.

Applications running on Signpost-aware devices can
adapt their behaviour to make optimal use of the system
using a library with an API similar to the POSIX resolver
API. The Signpost-aware device should be co-located in
the same network with a Signpost-enabled device and be
able to receive multicast DNS-SD [8] notifications. The
library uses the DNS-SD mechanism to discover nearby
Signpost devices and redirect traffic to them.

3.3 Control
Empowering users with control in Signpost requires two
key functions: policy expression and authentication.
User policy is defined through simple local configura-
tion, where users define network path security properties
on a per-domain basis. The tactics engine ensures pol-
icy enforcement during path establishment at runtime.
User authentication employs a public key cryptography

4



scheme and takes advantage of the DNSSEC key distri-
bution mechanism to bootstrap private DNSCurve chan-
nels. For each Signpost, at least one DNSKEY RR is
available in the global DNS graph, verifiable by any host
via DNS tree traversal or preconfigured trust anchors.

In addition, Signpost defines a key hierarchy for timely
control and revocation of device trust. At the top level of
the key hierarchy, we require a Key Signing Key (KSK)
for each user. This key is added in the existing DNSSEC
key infrastructure through a DS RR hosted on the au-
thoritative server of the parent domain. The KSK is up-
dated very infrequently and is used solely to express trust
on device security keys. Further, the top-level domain
of a Signpost user must also define a Zone Signing Key
(ZSK) which is signed by the KSK and authenticates de-
vice DNSKEY RR records. In addition, each Signpost
device requires a Device Signing Key (DSK) which is
used by the device to authenticate the control channel
and bootstrap authenticating tactics. Using this hierarchy
of keys and a zero TTL value for RR records, users can
easily revoke their trust for a compromised device by re-
moving DNSKEY records from the authoritative server.

The authentication mechanism assumes that the client
device is already a member of the user’s cloud of devices.
We can introduce new devices using the resurrecting-
duckling protocol [30]. To register a new device, a short-
lived passphrase is generated by a Signpost-enabled de-
vice and is entered by the user into the new device. A
keypair is then generated on the new device and the
passphrase is encrypted with the new device’s secret key.
The public key and encrypted passphrase are then sent to
the sponsoring device for registration.

3.4 Backward compatibility
Signpost provides full backward compatibility to exist-
ing applications in Signpost-enabled devices. The dæ-
mon exposes Signpost connectivity on the network layer
of the OS as a local subnet. OpenFlow [24] functionality
on end-hosts exposes network level programmability to
Signpost-enabled devices and Signpost-controllers. By
default, the dæmon forwards packets as normal to the
local network interfaces, while for Signpost flows, the
dæmon delegates control to the active tactic. Active tac-
tics use the OpenFlow protocol to intercept, inject and
control traffic, and can thus redirect flows to fit the net-
work abstraction of the underlying connection mecha-
nism. The dæmon exposes a local DNS resolver that in-
tercepts all application resolution requests, and uses this
to hook into subsequent traffic by returning a temporary
loopback IP address for requests and using it as a cookie
to associate traffic with that name lookup.

To provide some concrete examples of our architec-
ture, let’s consider Alice and the example given in §2.1.

Alice has a Signpost-controller running in a globally vis-
ible location in the cloud with a stable public IP address.
The controller is an authoritative name server for the do-
main alice.io and has a chain of trust with DNSSEC
through to the root node. The server will present a differ-
ent view of the network, based on the requester’s identity.

With respect to the example of Bob and
Charlie in §2.2, Charlie binds his desktop to
desktop.charlie.io and Bob binds his lap-
top to laptop.bob.io. Using Signpost, Charlie and
Bob can communicate as follows:

1. An application on Charlie’s desktop does a lo-
cal DNS query for desktop.bob.io, which is
caught by the device’s Signpost DNS resolver.

2. The Signpost DNS resolver signs the query and ini-
tiates the resolution.

3. The query is received by Bob’s Signpost-controller
as the authoritative server for bob.io.

4. Bob’s Signpost-controller authenticates the source
of the query and checks the connection policy for
the specific domain.

5. Bob’s Signpost-controller establishes a control
channel with Charlie’s Signpost-controller and ne-
gotiates the forwarding policy.

6. Both Signpost-controllers use their tactic engines
and begin to create tunnels between themselves and
with the respective devices.

7. Once a path is established, Bob’s Signpost-
controller responds to Charlie’s desktop with an IP
which is configured, through the OpenFlow service,
to traverse bi-directionally from Charlie’s desk-
top, to Charlie’s Signpost-controller over to Bob’s
Signpost-controller and in the end to Bob’s laptop,
using the respective active tactics.

8. The application on Charlie’s desktop can now send
packets to Bob’s laptop, and as the hosts move, the
tactics engine will reconfigure the end-to-end path,
while preserving the abstraction to applications.

This example describes a scenario where connectiv-
ity is established through the Signpost-controllers. Other
scenarios are possible, notably when Bob himself does
not have a Signpost-controller), but are elided for space.

4 Related Work

Building these personal device clouds ultimately re-
lies on establishing mutual trust. Signpost authenti-
cates hosts using the Public Key Infrastructure (PKI) of
DNSSEC, although alternative PKI systems have been
suggested due to DNSSECs reliance on single trusted en-
tities. Perspectives [32] authenticates a host’s public key
by observing it from a range of network vantage points,

5



and the Unmanaged Internet Architecture (UIA) [15]
similarly authenticates hosts by consensus. A common
theme is the decoupling of host location from host iden-
tity, and ILNP [5] replaces IP addresses with separate
locator and identifiers, allowing for improved mobility.
Delegation-Oriented Architecture [31] uses flat endpoint
identifiers like HIP [26] and UIP [14], unlike the user-
friendly DNS names used in UIA and Signpost.

DNS currently accommodates mobile hosts through
Dynamic DNS. Online services allow individuals to reg-
ister DNS names for their devices and dynamically up-
date the mappings to IP addresses. The popularity of
these services highlights the demand for DNS names for
an individual’s devices but they have proven woefully in-
sufficient for private devices due to the lack of access
control for DNS resolution [17]. UIA uses DNS names
like Signpost, e.g., phone.alice and laptop.bob,
though UIA doesn’t use the DNS. Instead, names are
mapped to unique endpoint identifiers using gossip pro-
tocols through device clouds. In UIA, connection persis-
tence is achieved by having each node maintaining con-
nections at all times with a set of peers, while Signpost
takes the approach of only creating connections as a side-
effect of the DNS query. Like Signpost, Hamachi [21]
aims to provide end-to-end connections via VPNs but
Signpost provides a wide range of tactics supporting dif-
ferent properties according to the needs of the communi-
cation.

5 Challenges & Open Issues

This paper describes an early prototype; we expect to
continue to evolve the architecture as we gain deploy-
ment experience. Our extensive use of DNS is not an
accident. Unlike most other Internet protocols, the mid-
dlebox architecture on the edge networks does not hinder
DNS, so it is (almost) always available. The DNS(SEC)
naming hierarchy difficult for a single political force to
surreptitiously or selectively disrupt.

DNSSEC provides authenticated DNS responses, in-
tegrity and authenticated denial of existence. However, it
doesn’t provide availability and confidentiality, and user
identity could be spoofed if the trust anchors are com-
promised. Signposts could use alternate name resolution
methods [32] as they get more widely deployed.

DNSCurve uses elliptic-curve cryptography to provide
query and response confidentiality in streamlined mode
and payload confidentiality in TXT mode. Large-scale
studies have shown that unknown DNS RRs are often
blocked by resolvers [19], and brand new protocols fare
even worse in the edge network [18]. Improving the
edge’s name resolution capabilities via Signpost’s tactics
engine is key to navigating this middlebox-plagued fu-
ture.

Neither DNSSEC nor DNSCurve address anonymity
directly, so the initial name lookup for a service is not
currently anonymous, although the reply and subsequent
data channels set up through Tor are anonymous. We are
currently designing schemes to improve the anonymity
properties of the initial name lookups as future work.

Backwards compatibility with existing devices is es-
sential to the successful deployment of Signpost, particu-
larly in a world where devices are becoming more locked
down and providing ever more limited APIs to applica-
tions. Our initial use-case for Signpost is for a single
user to gather their personal devices under one logical
namespace, and not require anyone else to participate.
The subsequent network effect arises from multiple users
wishing to communicate securely, and thus selectively
and transiently connecting their clouds. As the number
of such connections grows, when coupled with obfusca-
tion features such as use of aliases, it should enable us to
provide effective anonymity in scenarios such as §2.2 by
using Signpost servers as a mix-zone.

The biggest challenge is perhaps that of deployment
and ease-of-use. Moving from centralised services re-
quires non-technical users to have an infrastructure that
is reliable and resilient to attack. We are using library
OSes [22] and the recent “Raspberry Spring” of em-
bedded ARM devices to make our release as easy-to-
assemble as possible, but only a full deployment later
this year will allow us to gather data to demonstrate this.

The open-source community has released some excel-
lent tools to enable the creation of end-to-end tunnels, en-
abling authentication, encryption, mobility or anonymity
in the face of censorship and surveillance. Signposts
bridge the gap between development and deployment by
using existing DNS infrastructure as a signalling chan-
nel, giving us a head start in the race against censorship.

Signpost is not just a point-solution for combating cen-
sorship; it is a framework that can encapsulate all current
and future solutions. By explicitly naming users in this
system, we add a security and usability link absent from
previous attempts in this space. We are currently con-
verting our prototype implementation into a distributable
open-source package for release later in 2013. We are
also making tactics scriptable so that the latest connectiv-
ity techniques can be integrated into tactics engine. This
will allow ordinary users to overcome the currently insur-
mountable usability problems of keeping up-to-date with
the latest advances in securing online communication.

Acknowledgments. This work was supported by
Horizon Digital Economy Research, RCUK grant
EP/G065802/1. We would like to thank Tim Harris,
Malte Schwarzkopf, Derek McAuley, Marcel Waldvogel,
Alan Mycroft and Steven Hand and our shepherd Nikita
Borisov for feedback on earlier drafts.

6



References

[1] Iodine. http://code.kryo.se/iodine/.

[2] ARENDS, R., AUSTEIN, R., LARSON, M.,
MASSEY, D., AND ROSE, S. DNS Security Intro-
duction and Requirements. RFC 4033, IETF, Mar.
2005.

[3] BERNSTEIN, D. J. Dnscurve: Usable security for
dns. http://dnscurve.org/.

[4] BHATTI, S., AND ATKINSON, R. Reducing
DNS caching. In IEEE Computer Communications
Workshops (INFOCOM WKSHPS) (2011).

[5] BHATTI, S., AND ATKINSON, R. Identifier-
Locator Network Protocol (ILNP) Architectural
Description. RFC 6740, IETF, Nov. 2012.

[6] BLUMENTHAL, M. S., AND CLARK, D. D. Re-
thinking the design of the Internet: the end-to-end
arguments vs. the brave new world. ACM Transac-
tions on Internet Technology (Aug. 2001).

[7] CARPENTER, B., AND BRIM, S. Middleboxes:
Taxonomy and Issues. RFC 3234, IETF, Feb. 2002.

[8] CHESHIRE, S., AND KROCHMAL, M. Dns-based
service discovery. RFC 6763, IETF, Feb. 2013.

[9] CUEVAS, R., KRYCZKA, M., CUEVAS, A.,
KAUNE, S., GUERRERO, C., AND REJAIE, R. Is
content publishing in bittorrent altruistic or profit-
driven? Co-NEXT ’10, ACM.

[10] DAINOTTI, A., SQUARCELLA, C., ABEN, E.,
CLAFFY, K. C., CHIESA, M., RUSSO, M., AND
PESCAPÉ, A. Analysis of country-wide internet
outages caused by censorship. IMC ’11, ACM.

[11] DECLAN MCCULLAGH, C. N. Dropbox confirms
security glitch–no password required. http://cnet.
co/kvVbpz.

[12] DISCHINGER, M., MISLOVE, A., HAEBERLEN,
A., AND GUMMADI, K. P. Detecting bittorrent
blocking. IMC ’08, ACM.

[13] EASTLAKE 3RD, D. DNS Request and Transaction
Signatures (SIG(0)s). RFC 2931, IETF, Sept. 2000.

[14] FORD, B. Unmanaged Internet Protocol: taming
the edge network management crisis. SIGCOMM
Comput. Commun. Rev. 34, 1 (Jan. 2004).

[15] FORD, B., STRAUSS, J., LESNIEWSKI-LAAS, C.,
RHEA, S., KAASHOEK, F., AND MORRIS, R. Per-
sistent personal names for globally connected mo-
bile devices. OSDI ’06, USENIX Association.

[16] GUARDIAN. Pirate bay blockade begins with virgin
media. http://gu.com/p/37acx/tw.

[17] GUHA, S., AND FRANCIS, P. Identity trail: Covert
surveillance using dns. In Privacy Enhancing Tech-
nologies (2007), Springer.

[18] HONDA, M., NISHIDA, Y., RAICIU, C., GREEN-
HALGH, A., HANDLEY, M., AND TOKUDA, H. Is
it still possible to extend TCP? IMC ’11, ACM.

[19] KREIBICH, C., WEAVER, N., NECHAEV, B., AND
PAXSON, V. Netalyzr: illuminating the edge net-
work. In Proceedings of the 10th annual conference
on Internet measurement (2010), IMC ’10, ACM,
pp. 246–259.

[20] LEE, L. T. USA patriot act and telecommunica-
tions: Privacy under attack, the. Rutgers Computer
& Tech. LJ 29 (2003), 371.

[21] LOGMEIN. Virtual Networking with LogMeIn
Hamachi. https://secure.logmein.com/products/
hamachi/.

[22] MADHAVAPEDDY, A., MORTIER, R., ROTSOS,
C., SCOTT, D., SINGH, B., GAZAGNAIRE, T.,
SMITH, S., HAND, S., AND CROWCROFT, J.
Unikernels: library operating systems for the cloud.
ASPLOS ’13, ACM.

[23] MCKEON, M. The evolution of privacy
on facebook. http://mattmckeon.com/
facebook-privacy/.

[24] MCKEOWN, N., ANDERSON, T., BALAKRISH-
NAN, H., PARULKAR, G., PETERSON, L., REX-
FORD, J., SHENKER, S., AND TURNER, J. Open-
flow: enabling innovation in campus networks.
ACM SIGCOMM Computer Communication Re-
view 38, 2 (2008).

[25] MILLER, J. L., AND CROWCROFT, J. The near-
term feasibility of P2P MMOG’s. NetGames ’10,
IEEE.

[26] MOSKOWITZ, R., NIKANDER, P., JOKELA, P.,
ED., AND HENDERSON, T. Host Identity Proto-
col. RFC 5201, IETF, Apr. 2008.

[27] NETCRAFT. Netcraft monitors wikileaks and oper-
ation payback targets. http://url.anonfiles.org/bp.

[28] NYGREN, E., SITARAMAN, R. K., AND SUN,
J. The Akamai network: a platform for high-
performance internet applications. SIGOPS Oper.
Syst. Rev. 44 (August 2010).

7



[29] REUTERS.COM. India demands full blackberry ac-
cess. http://reut.rs/lQkPca.

[30] STAJANO, F. The resurrecting duckling. In Secu-
rity Protocols (2000), Springer, pp. 183–194.

[31] WALFISH, M., STRIBLING, J., KROHN, M., BAL-
AKRISHNAN, H., MORRIS, R., AND SHENKER,
S. Middleboxes no longer considered harmful.
OSDI’04, USENIX Association.

[32] WENDLANDT, D., ANDERSEN, D. G., AND PER-
RIG, A. Perspectives: improving ssh-style host
authentication with multi-path probing. ATC’08,
USENIX Association.

[33] YU, B., AND WANG, R. Research of access con-
trol list in enterprise network management. In In-
formatics and Management Science VI, W. Du, Ed.,
vol. 209 of Lecture Notes in Electrical Engineering.
Springer London, 2013.

8


