
Programming the Xen Cloud using OCaml

David Scott, Anil Madhavapeddy and Richard Mortier

The Xen Cloud Platform (XCP)1 is an open-source
software distribution that converts clusters of physical
computers into many virtual machines, all isolated from
each other via the Xen hypervisor. XCP is a large, ma-
ture and widely deployed OCaml code-base that is used
as mission-critical software on hundreds of thousands of
hosts today.

XCP is currently mostly used to run conventional op-
erating systems, such as Linux or Windows. Our next-
generation version of XCP bypasses this completely, and
permits programmers to compile OCaml code directly
into virtual machines that use the low-level APIs provided
by Xen, without all the intervening layers of abstraction
imposed by virtualisation. This system, under develop-
ment for 2 years, is based on Mirage, an OCaml operating
system2 specialised to run directly on the low-level APIs
provided by hypervisors.

In this talk we’ll show you how to write OCaml code
targetting these new “cloud APIs”. You’ll be able to
progressively remove decades of legacy cruft from your
software stack, increasing performance, security, relia-
bility. We provide a comprehensive set of open-source,
pure OCaml networking and storage libraries, enabling
your application to communicate with the outside world
via standard protocols such as SSH and TCP. You’ll be
able to take advantage of “Software Defined Network-
ing” by configuring state-of-the-art network switches with
the OpenFlow protocol while storing application state on
disks formatted with standard filesystems such as FAT32.

The public cloud is a vast datacenter, and OCaml is
the language of choice for constructing fast, safe and
reliable services on it.

Our contributions
We’ll describe the Xen Cloud Platform (XCP), an

OCaml software stack which connects physical servers
running the Xen hypervisor together into Resource Pools,
capable of running 1000s of Virtual Machines (VMs). The
OCaml software handles the allocation of physical hard-
ware (RAM, CPUs, PCI devices) to VMs, sets up network

1http://www.xen.org/product/cloudxen.html
2http://www.openmirage.org/

Deploy

Xen

μ μ μ μ μ μ

safe device drivers

link time optimisation

ubuild xen-direct

Linux

ELF

FreeBSD

ELFELF

Test

ubuild posix-direct

tuntap+safe I/O stack

x86_64 native code

Develop

ubuild posix-socket

kernel sockets

bytecode VM

Linux

ELF REPL

Figure 1: OCaml code can be progressively specialised
into standalone cloud microkernels.

and storage links and orchestrates activities such as VM
live migration. XCP is a building block used by cloud or-
chestration layers such as CloudStack3 and OpenStack.4

We’ll demonstrate Mirage, our OCaml-based program-
ming framework which allows the construction of spe-
cialised virtual machines that run directly on Xen hyper-
visors without recourse to a traditional guest OS. Mirage
applications are complete software stacks including ev-
erything from application logic to low-level device drivers
in one single, optimised microkernel binary.

Applications coded with Mirage can be very small and
boot using just 4MB RAM; Figure 2 compares the num-
ber of lines of code in each language in Mirage to other
conventional operating systems and applications. Many
of the layers in traditional software stacks are are dupli-
cated in a virtual cloud environment; a problem overcome
by our approach. Almost all the code in a Mirage kernel is
type-safe OCaml, from the device drivers, to the TCP/IP
stack, to the application itself.

Applications coded with Mirage are very fast, despite
all networking and device drivers being written in pure
OCaml; Figure 3 shows an application achieving over
10Gb/s disk I/O rates through a fast PCIe SSD storage
device, and another application achieving excellent DNS
DNS query throughput when pitted against conventional
C servers.

Applications coded with Mirage are naturally dis-
tributed; built-in rendezvous and communication proto-

3http://www.cloudstack.org/
4http://openstack.org/

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 1 2 4 8 16 32 64 128
 256

 512
 1024

 2048
 4096

Th
ro

ug
hp

ut
 (M

iB
/s

)

Block size (KiB)

Mirage
Linux, O_DIRECT
Linux, buffered I/O

 0
 10
 20
 30
 40
 50
 60
 70
 80

 100
 1000

 10000Th
ro

ug
hp

ut
 (r

eq
s/

s
x

10
3)

Zone file size (entries)

Linux, Bind 9
Linux, NSD

Mirage, no memoisation
Mirage, memoisation

Figure 3: (left) A Mirage application using all-OCaml device drivers and zero-copy I/O achieves over 10 Gigabits
per second of throughput performing random reads from a PCIe SSD storage device. (right) DNS queries-per-second
served comparing two Mirage applications against industry standard Bind and NSD running on Linux guests. Addition
of memoisation to the Mirage application took barely a dozen lines of OCaml.

 0

 100

 200

 300

 400

 500

 600

Linux 3.2.2

glibc 2.15

Bind 9.9.0

httpd 2.4.2

OpenSSH 6.0p1

Open vSwitch 1.4.0

NOX-zaku

Mirage

Li
ne

s
of

 c
od

e
(x

 1
03)

OCaml
C/C++
ASM

Figure 2: Comparison of the number of lines of code in
different languages within the Mirage core compared to
contemporary software systems.

cols allow applications to spread themselves across many
VMs in the cloud.

Applications coded with Mirage are feature-rich; Mi-
rage comes complete with an extensive set of pure OCaml
libraries including:

I/O pages : a representation of machine memory pages
allowing Mirage applications to perform zero-copy data
transfers.

cstruct : a lightweight camlp4 extension which al-
lows C-style structs to be “attached” to a buffer and fields
safely manipulated through the “struct”. This is used as
the foundation for all network and block protocol imple-
mentations, giving high performance while retaining com-
pact notation.

Device drivers : for both disk and network for the Xen
hypervisor. This allows Mirage guests to work easily and
transparently on public clouds such as Amazon EC2.

TCP/IP : supporting multiple application interfaces
allowing some applications to manipulate TCP packets
efficiently while others simply use a high-level channel
abstraction.

SSH : allowing secure remote control of your Mirage
application and the ability to ssh in to an OCaml toplevel.

DNS : providing both client name resolution and a
DNS server.

OpenFlow : enabling state-of-the-art hardware and
software switches to be dynamically reconfigured. Your
OCaml program can become the heart of a “Software De-
fined Network”.

FAT32 : a simple filesystem which allows application
state to be stored on disk.

HTTP : a webserver stack (including camlp4 exten-
sions to directly write XML, JSON and HTML directly).

These libraries are all individually first-class entities;
they are designed to also be compiled under UNIX using
the normal Lwt toolchain. This permits developers to use
a familiar development environment, and only compile to
Xen kernels for production. The key difficulty with de-
ploying such microkernels in the past has been managing
them without having a full OS available (e.g. logging,
shells, etc). We have extended XCP to provide many of
these facilities directly as Mirage libraries, thus turning it
into a distributed OS that supports microkernel guests.

How you can get involved
We’ll show you how to get started and install

XCP/Mirage, and demonstrate building a distributed ap-
plication that is deployed directly to EC2. Anyone with
an Amazon account can convert their homepage into their
own OCaml kernel. We are also looking for volunteers to
port Mirage to more platforms, such as the Raspberry Pi!

2

